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Distributed k-mutual exclusion ensures that at most a single process has permission to access each of
the k copies of a critical resource. In this work we present an autonomic solution for distributed k-mutual
exclusion that adapts itself after system changes. Our solution employs a hierarchical best-effort broadcast
algorithm to propagate messages reliably and efficiently. The broadcast is based on another autonomic
building block: a distributed algorithm for creating and maintaining spanning trees constructed in a fully
distributed and adaptive way on top of a virtual hypercube-like topology, called VCube. The proposed
solutions are autonomic in the sense that they reconfigure themselves automatically after the detection
of faults given the set of correct processes in the system. All proposed algorithms are described, specified,
and proofs of correctness are given. Results from simulation show that the proposed approach is more
efficient and scalable compared to other solutions.
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1. Introduction

Distributed systems allow a potentially large number of users to
share multiple resources. Although some resources can be accessed
by an arbitrary number of users at any time, there are resources for
which itis necessary to guarantee exclusive access: those resources
can be accessed at most by a single user at a given time instant
(e.g. concurrent updates of shared data, which occurs both in
replicated databases and in distributed shared memory systems,
such as Linda [3] and Midway [6], among others). Distributed mu-
tual exclusion [21,31,33] is employed to guarantee such exclusive
access. Given a user process, the segment of code that accesses
the shared resource is called the critical section (CS). Distributed
mutual exclusion algorithms must ensure two properties [20]:
safety, by which at most one process can access the resource per
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time instant, i.e., only a single process can be in the CS at a given
time instant and liveness, by which all processes that request access
to a resource eventually succeed.

There are basically two approaches to implement mutual ex-
clusion in distributed systems: permission-based and token-based
[30,38,20]. Permission-based mutual exclusion algorithms rely on
the principle that a node (process) only enters a critical section af-
ter having received permission from all the other nodes (processes)
(or a majority of them) [33,37]. The other family of algorithms is
token-based, i.e. a system-wide unique token is shared among all
processes, and its possession gives the process the exclusive right
to execute the CS and thus access the critical resource [39,29,26,7].

An extension of the mutual exclusion problem is the k-mutual
exclusion problem, which deals with k copies of the shared re-
sources, i.e., there are k resource units, but a single unit can be
accessed by at most one process at a given time instant. Thus,
as there are k units, at most k processes can access these units
simultaneously, with one process per unit. Therefore, a k-mutual
exclusion algorithm must guarantee that at most k processes can
be in the critical section at any time (safety property) and that every
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request to enter the critical section execution is eventually satisfied
(liveness property).

Raymond’s algorithm [28] solves the k-mutual exclusion prob-
lem by extending the permission-based solution proposed by Ri-
cart and Agrawala [33]. Whenever a process wants to use a unit
of the shared resource, it sends a request message to the n — 1
other processes and waits for at least n — k replies. Note that
if no other process is using or requesting the resource, the total
number of responses is n — 1. Therefore, in the worst case 2(n — 1)
messages are generated by each request. This means that there
is no reduction in the number of messages of k-mutual exclusion
compared to 1-mutual exclusion, but the process of acquiring the
required permissions can be accelerated.

Distributed mutual exclusion algorithms should be resilient
to failures. In permission-based mutual exclusion, a requesting
process needs to be informed about which processes have crashed
in order to avoid waiting indefinitely for permission from these
processes [8]. Similarly, in token-based algorithms, if the process
that holds the token fails, the failure must be detected and a new
token must be generated. In both cases, a solution would be to
use a monitoring mechanism that offers information about the
state (correct or faulty) of all processes in the system [36]. It is
worth pointing out that [11] proves the weakest failure detector to
solve fault-tolerant distributed mutual exclusion, given a majority
of correct processes, is the trusting 7 where, once a process is
detected as alive, it will not be suspected of being faulty until it
crashes. We should also point out that even if Raymond’s algo-
rithm [28] does not explicitly consider node failures, the fact that
it does not need to wait for replies from all the other nodes (only
n—k) implicitly renders it fault-tolerant to some extent. It tolerates
up to k — 1 faults. Thus, up to k — 1 crashes, a node asking a unit
of resource still gets it, but the effectiveness of the algorithm is
reduced since the number of processes which can concurrently
access the resource units decreases by one after each crash.

Besides failures, another important feature that has a direct
impact on the scalability and performance of distributed mutual
exclusion algorithms is the message dissemination mechanism
used by the algorithm. This is particularly critical for permission-
based algorithms in which processes broadcast their requests to
all other processes. If the algorithm runs on a network that does
not offer physical broadcast as service, the broadcast primitive
called by processes can generate multiple copies of the request
message that are sent to all other processes. Unfortunately, this
solution is not efficient. If the number of processes is large, the
sender will receive a large number of acknowledgments, which can
possibly cause the occurrence of a feedback implosion problem at
the sender [40]. To overcome this problem is one of the objectives
of this work. We propose an efficient and scalable message dissem-
ination mechanism based on a spanning tree [4] built on a logical
hypercube that presents logarithmic message complexity.

The contributions of this work are threefold:

e By extending Raymond’s algorithm [28], we introduce an
autonomic distributed permission-based k-mutual exclu-
sion algorithm which tolerates up to n — 1 process crashes.
Aiming at scalability and good performance, the algorithm
exploits the underlying VCube monitoring mechanism [12].
In VCube, processes monitor each other and dynamically
organize themselves on a virtual hypercube-like topology
that keeps its logarithmic properties even in the presence
of failures. Processes broadcast requests over adaptive and
fully distributed spanning trees built on VCube. Our choice
for a permission-based algorithm can be justified because,
although token-based algorithms usually present good per-
formance with respect to the number of messages, they
suffer from poor resiliency while, due to redundancy of

messages, the majority of permission-based algorithms in-
herently either tolerate failures or can be adapted to tolerate
failures more easily.

e The distributed algorithm that dynamically constructs the
above mentioned minimum spanning trees is also specified
in this work. It is based on VCube and builds a spanning tree
from any source process (which is the spanning tree root).
A spanning tree built with the proposed algorithm contains
all processes that are considered to be correct, according
to the monitoring tests executed by VCube. The algorithm
is fully distributed and autonomic in the sense that trees
are built and maintained autonomically, despite changes in
the system composition. These spanning trees are used to
implement the broadcast primitive, providing scalability to
the solution.

e Finally, we also present a best-effort broadcast algorithm re-
sponsible for disseminating messages to all processes of the
system. Best-effort broadcast ensures that, if the sender does
not fail, all fault-free processes will deliver the message from
that sender. Such a broadcast is employed by the mutual
exclusion algorithm to issue requests to access the resource
to all other processes. The proposed best-effort broadcast
algorithm employs the distributed minimum spanning tree
algorithm, above described.

The three algorithms are formally specified and proofs of
correctness are presented. Furthermore, the solution is experi-
mentally evaluated. Simulation results confirm that our k-mutual
exclusion algorithm executes efficiently in both fault-free and
faulty scenarios presenting better performance when compare to
two other permission-based k-mutual exclusion of the literature.

The rest of this paper is organized as follows. Section 2 sum-
marizes related work. In Section 3 the system model is specified
while in Section 4 VCube is described. The proposed spanning
tree algorithm is in Section 5. Sections 6 and 7 present the best-
effort broadcast and k-mutual exclusion algorithms, respectively.
Experimental results obtained with simulation are reported in
Section 8. Section 9 concludes the paper.

2. Related work

The first solution for distributed permission-based mutual ex-
clusion was proposed by Lamport [21]. This algorithm uses three
types of messages: REQUEST, REPLY and RELEASE. It also uses logical
clocks to order the requests. When a process p; wants to access the
resource, it broadcasts a REQUEST message to all other processes
and stores its request in a local queue. A process p;, which receives
the REQUEST message from p;, enqueues the request locally and
sends a timestamped REPLY message back to p;. Process p; can
access the resource when two conditions are satisfied. First, it must
have received REPLY messages with timestamps greater than that
of its own request from all other processes. Second, the process’s
own request must be at the front of its queue. When p; releases the
resource, it broadcasts a RELEASE message.

Lamport’s algorithm employs 3(n — 1) messages, as n — 1
messages are employed at each step: request, reply and release.
Ricart and Agrawala [33] proposed an algorithm that requires
2(n—1) messages. This algorithm uses REQUEST and REPLY messages
as Lamport’s algorithm does, but does not employ RELEASE mes-
sages. This is possible because each process does not send REPLY
messages while it is using the resource or if it is trying itself to
use the resource and its request has higher priority. The REPLY
messages are deferred and sent only when the process releases the
resource. Thus a process only enters the critical section when it has
received REPLY messages from all other processes.

Naimi [25] proposed two mutual exclusion algorithms tailored
for hypercubes. The first solution is permission-based and requires
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d2¢ messages, where d is the dimension of the hypercube. The
second algorithm is token-based and requires 2d messages in the
worst case. Different to our solution, the spanning tree is built using
flooding, and no faults are considered.

In [28] is presented a token-based algorithm that employs a
spanning tree for nodes to communicate. Th average number of
messages is O(log,n), but in the worst case up to 2(n — 1) messages
are required. These mutual exclusion algorithms aim at minimizing
the number of messages, and do not tolerate faulty processes.

The algorithm proposed by Agrawal and El Abbadi [1] uses the
concept of coterie introduced by Garcia-Molina and Barbara [15]
and hierarchical quorums to solve mutual exclusion in a scalable
way. Another solution [2] presents a similar algorithm, but that
includes fault tolerance. A quorum-based solution to k-mutual
exclusion was proposed by [19] using the concept of k-coterie. To
circumvent deadlocks, if any process in a quorum is blocked to
another requester, the request is sent to other quorum. Park and
Lee [27] present a fault tolerant quorum-based mutual exclusion
algorithm that also uses a failure detector. Although they use a
similar topology, the solutions are based on tokens.

Another token-based solution was proposed by [32]. It uses
a dynamic tree based on reverse path approach, i.e., the tree is
generated considering the source instead the destination. Faults
are probabilistically tolerated using replication on successors and
predecessors in the path.

Bouillaguet, Arantes, and Sens [8] adapted the permission-
based approach proposed by [28] to tolerate up to n — 1 faulty
processes using the perfect failure detector 7. Later, the same
authors proposed in [9] a solution that avoids the use of failure de-
tectors and extra messages to detect faulty processes by including
information about processes state into the messages of the mutual
exclusion algorithm themselves and introducing a communication
behavior property based on winning channels. The solution toler-
ates up to k — 1 failures.

In a previous work [35] we presented a preliminary version of
our k-mutual exclusion solution using spanning trees algorithm to
propagate messages and a previous different version of the virtual
hypercube-like topology used in this paper.

3. System model and definitions

We assume a distributed system consisting of a finite set of
nodes named P = {py, .., pn_1}, where n > 1. The set of partic-
ipants are uniquely identified and known by all nodes. There is
one process per node, hence we use the terms node and process
interchangeably. Every pair of nodes is assumed to be connected
by means of a bi-directional reliable communication channel (no
loss, corruption or duplication of messages) and processes com-
municate by sending and receiving messages.

Processes can fail by crashing and a crash is permanent. A
process is correct if it does not crash during a run, otherwise, it is
faulty. The system is considered to be synchronous, i.e., there are
known bounds on both message delays and process speed. There-
fore, by correcting calibrating timeouts, false failure suspicions are
avoided. We should remember that the weakest failure detector
to solve fault tolerant distributed mutual exclusion on message-
passing system is the 7 failure detector [ 11]. In this failure detector
once a process is known by another, it is never suspected before
it actually crashes. In other words, a fault-tolerant distributed
k-mutual exclusion algorithm can only be implemented in a syn-
chronous system.

There are k identical units of the shared resource. k is known
in advance by all processes. We consider that processes behave
correctly. A process requests only one resource unit at each time,
i.e., a process cannot issue a new request while it is still using a
resource unit. It calls function REQUEST to ask access to a unit of

the resource, and function RELEASE, when it releases the resource
unit. Whenever a process obtains a unit of the resource, it keeps it
during a bounded interval, i.e., the duration of every critical section
(CS) is bounded.

Processes are logically organized on an adaptive virtual topol-
ogy which is based on a d-dimensional hypercube (d-cube)
maintained by the distributed diagnosis algorithm VCube [12],
described in the next section. A complete d-VCube consists of n =
24 processes. Each process i has a unique identifier from 0 ton — 1
represented as a d-bit binary address ig_1, ig_3, . .., ip. In a fault-
free scenario, two processes are connected if their binary addresses
differ by only one bit. Thus, each process is connected directly to
d = log,n neighbors and the maximum distance between any
two processes is log,n. In faulty scenarios, correct processes can
be reconnected to remove faulty processes in such way that the
logarithmic properties are kept.

4. VCube: the virtual hypercube topology

VCube [12] is a logical topology that can be used to virtually
interconnect network processes. Processes can leave the system
as they become faulty (crash). When all processes are fault-free,
the topology is a perfect hypercube of d = log,n dimensions and
24 processes, named d-VCube. Such a topology presents important
logarithmic properties. For example, the number of links from one
process to other processes is log,n and the maximum distance be-
tween any two processes is log,n. Upon the detection of processes
failure, the remaining fault-free processes reorganize themselves
in order to keep the logarithmic properties.

Nodes maintain the topology by running a distributed diagnosis
algorithm [23], which offer fault-tolerant monitoring based on
the execution of tests and distribution of test results. VCube is
based on the Hi-ADSD algorithm proposed by [13], where fault-
free processes of a system of n processes learn about new events
of the system in at most log%n testing rounds. However, VCube
presents even better performance, as it uses a new testing strategy
that guarantees that the maximum number of tests executed per
log,n testing rounds is nlog,n and each fault-free process gets as
much new information as possible at each test round. This is one
of the main advantages of using VCube: after a network change,
it takes a logarithmic number of testing rounds and a logarithmic
number of messages (tests) for all nodes to update the information
locally, including the routing table.

The principle of the hierarchical testing strategy is to organize
the processes in progressively larger clusters. The list of ordered
processes tested by process i in a cluster of size 257!, is denoted
by ¢is, s = 1..log,n. In the first testing interval, the tested cluster
for process i is ¢; 1; in the next testing interval, the tested cluster
is ¢; 2, and so on until the tested cluster is ¢; jog,n. Then, in the next
interval the tested cluster is again ¢; ; and the same testing process
continues. When a fault-free process is tested, the tester obtains
diagnostic information from the tested process.

A compact expression for computing ¢;s, i = 0..n — 1, in which
@ corresponds to the exclusive or operation is:

Gs=1®2" " || Cgpy [ k=1,2,...,s— 1. (1)

Basically, in the above function, the hypercube neighbor of node
iin cluster s is computed firstly. Note that the identifiers of the two
neighbor nodes differ only by one bit: the bit which is equal to 1
in 2°~1. Then, the remaining nodes in the cluster s are computed:
they are the nodes in cluster 1,2,...,s — 1 of the neighbor,
i.e., Cigs—1 1, Cigs—1 3 - - - » Ciggos—1 s_1- The table of Fig. 1 shows the
result of ¢; ; applied to a system with 8 nodes.

Process i tests another process in the ¢; s to check whether it is
correct or faulty. The tester executes a test procedure and waits
for a reply. If the correct reply is received within an expected time
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s|| co,s Cl,s €2, €3, Ca,s C5,s C6,s C7,s
1|1 0 3 2 5 4 7 6
2(|2 3 32 01 10 67 76 45 54
3|[45675476|6745|76540123/1032{2301{3210

Fig. 1. Hierarchical cluster organization by 3-VCube and the respective c;  table.

interval and is correct, the monitored process is considered to be
correct. Otherwise, the tested process is considered to be faulty.
Considering the results of the tests, each process i is connected to
one correct process in each clusters, if it exists. If there are no faults,
a complete hypercube is created.

Fig. 1(left) shows the tests executed by process po on a 3-VCube;
clusters ¢y 1, Co,2, and cg 3 are also shown. Considering that there are
no faults, po performs tests on processes {1, 2, 4} which will then
give information about the local state of all other processes in the
system.

The VCube testing strategy is based on the following rule: before
process i executes a test on process j € ¢, it checks whether it is
the first fault-free process in ¢; s (please note that the index is j).
After process i tests process j € c; as faulty-free, it obtains new
diagnostic information from tested process j. This information is
not restricted to the cluster: the tester may obtain any new infor-
mation that the tested process has—in comparison with its own
local information. As a tester may obtain information about a given
process from different tested processes, the algorithm employs
timestamps to determine which information is newer. Initially
every process is assumed to be fault-free and the corresponding
timestamp is zero. As an event is detected, i.e., a process failure,
the corresponding timestamp is incremented. Thus, an even times-
tamp corresponds to a fault-free process and an odd timestamp to
a faulty process.

Node i keeps timestamp array t;[0..N — 1]. After obtaining infor-
mation from process j tested as fault-free, process i only updates a
local timestamp entry when the obtained value is greater than the
current one. An advantage of such a strategy is that tester nodes
can obtain new diagnostic information about every system process
from any tested process. In order to avoid transferring the complete
t; array as process i tests process j as fault-free, it is possible to
implement a simple solution in which process j only sends new
information, i.e., information that has changed since the last time
process j was tested by process i.

5. The spanning tree algorithm

Let G = (V, E) be an undirected graph, where V is the set of ver-
tices that correspond to the system’s nodes, and E the set of edges,
each of which represents a communication channel connecting
pair of nodes. We assume that G consists of a single connected
component. A spanning tree of G is an acyclic connected graph that
contains all vertices of G [ 14]. If the edges are weighted, a minimum
spanning tree is the tree for which the sum of all edge weights is the
minimum for all possible trees. If G is unweighted or if all edges
have the same weight, all trees of G are minimum.

A spanning tree is an efficient mechanism for nodes of a dis-
tributed system to disseminate information [5]. For instance, in a
naive implementation of a broadcast algorithm every node (vertex)

sends the message to all neighbors, thus messages are sent through
|E| links. Using a spanning tree, the messages need to be sent only
to the neighbors in the tree, and thus n — 1 messages are sent [ 16].
Whenever |[E| > n — 1, i.e,, G is not a sparse graph, the spanning
tree reduces the number of messages employed by the broadcast
algorithm.

In this section we describe and specify a distributed spanning
tree algorithm which is embedded on a VCube. Any process can be
the root of the tree. Trees are dynamically built using the strategy
described in Section 4. In particular, function c; s is employed to
determine the hierarchical clusters and the set of edges available.

5.1. Variables and functions

Let correct; be the set of nodes that node i considers to be correct,
based on the tests executed and information received by node i
through the VCube. Note that a given node j might be faulty but
node i has not yet received information about the fault due to
VCube’s latency.

Algorithm 5.1 Spanning tree algorithm at process i

1: correct; < {0, ..,n — 1} > list of processes considered correct by i
according VCube

: procedure STARTTREE( )
for all k € neighborhood;(log, n) do
neighbors of i
SEND((TREE)) to py

> send the message to all

: upon receive (TREE) from p;

6: if j € correct; then

7: for k € neighborhood;(cluster;(j) — 1) do > retransmit to
neighbors in subclusters of i

8: SEND((TREE)) to pi

9: upon notifying crash(j) > j is detected as faulty by VCube at i

10: correct; <— correct; ~ {j}

11: if 3k = FF_neighbor;(cluster;(j)) then

12: SEND((TREE)) to py

The following functions are defined:

e cluster;(j) = s: Leti and j be two nodes of the system, i # j.
Function cluster;(j) = s returns the index s of the cluster of
node i that contains node j, 1 < s < log,N. For instance, in
the 3-VCube shown in Fig. 1, clusterg(1) = 1, clusterg(2) =
clusterg(3) = 2 and clusterg(4) = clustery(5) = clustery(6) =
clustery(7) = 3. Note that for any i, j, cluster;(j) = cluster;(i).

e FF_neighbor;(s) = j returns the first node j in ¢; ; which also
belongs to correct;. If there is no such node, the function re-
turns L (no neighbor). For example, in the 3-VCube of Fig. 1
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(a) Fault-free execution.

(b) Process 4 is faulty.

Fig. 2. Spanning trees in the 3-VCube rooted at process 0 (po).

in a scenario with no faulty nodes, FF_neighbor4(1) = 5 and
FF_neighbor,(2) = 6. On the other hand, if node 6 is faulty
and 4 is aware of that fault (i.e., 6 does not belong to correct,),
FF_neighbors(2) = 7. If both 6 and 7 are faulty and 4 has
been informed about their faults, FF_neighbor4(2) = L.

e neighborhood;(h) returns {j | j = FF_neighbori(s),1 < s <
h}, i.e., a set that contains all fault-free nodes virtually
connected to a node i according to FF_neighbor;(s), for s =
1, .., h. The parameter h can range from 1 to log,N. If log,N
is applied, the function returns all fault-free neighbors of
node i in the hypercube. For any other value of h < log,N,
the function returns only a subset of the first fault-free
neighbors that are connected to node i, i.e., those first fault-
free neighbors whose respective cluster number s <= h.
For example, considering the 3-VCube of Fig. 1 and a fault-
free scenario, neighborhoody(1) = {1}, neighborhoody(2) =
{1, 2} and neighborhoody(3) = {1, 2, 4}. If node p4 is de-
tected as faulty by pg, then neighborhoody(3) = {1, 2, 5};
if p1 is also detected as faulty by po, neighborhoody(1) = L.

5.2. Description of the algorithm

The spanning tree algorithm can be started at an arbitrary root
node i. Its children are returned by neighborhood;(log,n). Each
child j discovers that its parent is i with the similar function
neighborhood;(cluster;(i) — 1). Node i is a leaf if cluster(j) = 1 or if
there is no correct processes in ¢; 5, s = cluster;(j) — 1. Note that the
proposed spanning tree algorithm is autonomic because function
neighborhood “automatically” adapts to the fault situation of each
cluster.

All correct processes learn about the state of the other processes
through VCube. If a crash is detected, all processes execute the
event CRASH(j) (line 9). The process that crashed, say j, is removed
from the local list of correct processes and a TREE message is sent
to the next correct process k in the same cluster that contains j (if
one exists). To discover to which cluster of a process i a process j
belongs, we use function FF_neighbor;(cluster;(j)), defined above.

First consider a fault-free execution. In the first step, the process
that starts the algorithm sends log,n request messages, each to
the first correct process of each cluster s = 1, ..., log,n. Upon
receiving message TREE from a process j, a process i retransmits it
to its own clusters, from cluster 1 to cluster s = cluster;(j)—1, i.e.,all
internal clusters smaller than the cluster s from which process i
received the TREE message. For example, consider the 3-VCube
of Fig. 2(a). Process po starts sending a message TREE to the first
correct process of clusters ¢g;; = (1), co2 = (2,3)and o3 =
(4,5, 6, 7). Process p; receives the message, verifies thats = 1 and
does not forward the message. Process p, verifies that s = 2 and
forwards the message TREE to p3, which is the first correct process
of cluster c; ;1 = (3). When receiving the message, p; does not

retransmit it, since s = 1. Finally, process p,4 receives the message
with s = 3 and forwards it to clusters c4» = (6,7) and c41 = (5).
The last message is sent by ps to p;. Thus, all processes receive a
single copy of the message sent initially by pg in the tree topology.

Now consider the algorithm executed in scenarios with faulty
nodes. Before sending a message, the process queries the monitor-
ing system and checks if there is a correct process in the destination
cluster. If all processes in the cluster are faulty no message is sent
and the process tries the next cluster. Fig. 2(b) shows an example of
execution. Process pg sends message TREE to p; and p,, as described
before in the fault-free scenario. However, in the last round, as
process py is faulty, po sends message to ps, that is the first correct
process in cluster ¢ 3 = (4, 5, 6, 7). Now consider ps: fors = 1
the message would be forwarded to ¢s; = (4), but py4 is faulty
and for s = 2 the message is sent to p;. Since cluster;(5) = 2
(5,2 = {7, 6}), p; retransmits the message to its cluster ¢; ; = (6).
The transmission thus completes and the tree is formed.

5.3. Proof of correctness

In Lemma 5.1 we show that the proposed autonomic spanning
tree built with Algorithm 5.1 can be used to propagate a message
to every process in the system.

Lemma 5.1. Let m be a message broadcast by a correct source process
src. Every other correct process in P receives m.

Proof. We prove this lemma by induction. We first consider as the
basis of the induction that n = 2: py is the src process that broad-
casts message m and p; € ¢ 1. If py is correct, FF_neighbory(1) = 1
and pg sends m to p; (line 3). Therefore, p; receives m, and the
lemma holds.

We assume as the induction hypothesis that for n = 2* every
correct process correctly receives m broadcast by src.

Now for the induction step consider a system with n = 2¢+1
processes. This system can be seen as consisting of two subsystems
each of which with n = 2* nodes as shown in Fig. 3. The figure
shows that src and j are the roots of these subsystems. As the
src process executes the algorithm it sends m to every process
returned by FF_neighborg(s), s = 1,...,k (line 3). Since j =
FF_neighborg.(k) is a correct process, it correctly receives m. If j is
detected as faulty, m is sent to the next fault-free process in the
same cluster of j (line 11). Thus, message m is broadcast in the two
subsystems and, based on the above hypothesis, it is guaranteed
that every correct process correctly receives m in each subsystem.
As every process in P is in one of these systems, every correct
process in P correctly receives m. 0O

The spanning tree described in this section is used by our
best-effort broadcast algorithm, described next in Section 6. The
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Fig. 3. Message propagation in the spanning tree built over VCube.

best-effort broadcast algorithm in its turn is used by the fault
tolerant mutual exclusion algorithm, described in Section 7.

6. An autonomic best-effort broadcast algorithm

A process of a distributed system uses broadcast to send a
message to all processes in the system. Broadcast is a basic build-
ing block used to implement several distributed algorithms and
services such as event notification, content delivery, replication,
and group communication [22,24]. Fault-tolerant broadcast algo-
rithms [ 18] are particularly relevant as faults can affect the ability
of disseminating messages in many ways. For instance, if a process
fails as it is broadcasting a message, some processes can receive the
message while others do not. Fault-tolerant broadcast algorithms
are usually implemented by using reliable point-to-point links and
primitives SEND and RECEIVE. It is common to define primitives
BROADCAST(m) and DELIVER(m) to broadcast and deliver a message
m. A failure detector can be used to notify the broadcast algorithm
that some process has failed, and the algorithm can then react
accordingly as faults are detected.

In this work we focus on a fault-tolerant broadcast algorithm
that implements a best-effort solution. Best-effort broadcast en-
sures that, if the sender is correct, all correct processes deliver the
message that it broadcasts. Thus, best-effort broadcast assumes
that the sender does not fail. Other strategies such as reliable
broadcast must be implemented if this assumption cannot be
adopted [18].In [34], we proposed an autonomic hypercube-based
reliable broadcast. Best-effort broadcast is characterized by two
properties: validity and integrity [ 17]. Validity is a liveness property
and ensures that if a process i broadcasts a message m then every
correct process eventually delivers m. Integrity is a safety prop-
erty guaranteed by the no-creation and no-duplication properties.
No-duplication ensures that no message is delivered twice, and no-
creation guarantees that no message m sent by process i is deliv-
ered by any correct process unless it was previously broadcast by i.

Algorithm 6.1 presents a solution to best-effort broadcast using
the spanning tree mechanism proposed in Section 5. It is then used
by our autonomic k-mutual exclusion algorithm (Section 6). Pro-
cesses get information about the state of other processes by using
VCube. This broadcast algorithm tolerates up to n — 1 processes
crashes and still works correctly.

6.1. Variables and messages

Two types of messages are used:

e (TREE, m): identifies the application message m broadcast
by a sender;
e (ACK, m): confirms the delivery of m by a receiver.

The local variables kept locally by each process are:

e correct;: the set of processes considered correct by process i
obtained from the underlying VCube;

e last;[n]: last message delivered by each sender process;

e ack_set;: set of pending ACK messages expected by process
i. For each message (TREE, m) received by process i from
a process j and retransmitted to a process k, an element
(j, k, m) is added to this set.

The symbol L represents a null element. The asterisk is used as
awild card to select acks in the set ack_set. An element (j, %, m), for
example, represents all pending acks for a message m received by
process j and retransmitted to any other process ().

Algorithm 6.1 The hierarchical best-effort broadcast executed by
process i

1: lastj[n] < {L, .., L}
2: ack_set; =

3: correct; = {0, ..,n — 1}

> Initialization

4: procedure BROADCAST(message m)

5 wait until ack_set; N {{L, *, last;[i])} = @
6: last;[i] = m
7
8

DELIVER(m)
for all j € neighborhood;(log, n) do > send the message to all
neighbors
9: ack_set; <— ack_set; U {(L,j, m)}
10: SEND({TREE, m)) to p;

11: procedure CHECKACKS(process j, message m)
12: if ack_set; N {(j, x, m)} = ¢ then

13: if {source(m), j} C correct; then

14: SEND((ACK, m)) to p;

15: upon receive (TREE, m) from p;

16: if {source(m), j} ¢ correct; then

17: return

18: if last;[source(m)] = L or

19: ts(m) = ts(last;[source(m)]) + 1 then > check if m is new
20: last;[source(m)] < m

21: DELIVER(m)

22: for all k € neighborhood;(cluster;(j) — 1)do > retransmit to the

neighbors in subclusters

23: if (j, k, m) ¢ ack_set; then
24: ack_set; <— ack_set; U {(j, k, m)}
25: SEND((TREE, m)) to py

26: CHECKACKS(j, m)

27: upon receive (ACK, m) from p;
28: k < x: (x,j, m) € ack_set;

29: ack_set; < ack_set; ~ {(k,j, m)}
30: if k # L then

31: CHECKACKs(k, m)
32: upon notifying crash(j) > j is detected as faulty by VCube at i
33: correct; < correct; . {j}

34: k < FF_neighbor;(cluster;(j))

35: forallp=x,q=y,m=z:(x,y,z) € ack_set; do

36: if {source(m), p} ¢ correct; then > remove pending ACKs to
(j, *, x) and (x, %, m) : source(m) = j

37: ack_set; < ack_set; \ {{p, q, m)}

38: else if ¢ = j then

39: ifk # L and (p, k, m) ¢ ack_set; then > retransmit to the
new neighbor k

40: ack_set; <— ack_set; U {{(p, k, m)}

41: SEND((TREE, m)) to py

42: ack_set; < ack_set; ~ {(p, j, m)}

43: CHECKACKS(p, m)




47

LA. Rodrigues et al. / J. Parallel Distrib. Comput. 115 (2018) 41-55

broadcast

ack_set[1,2] ack_set[2]

complete ack_set[1,2]

failure detection latency

broadcast

complete

ack_set[2] ack_set[3]

0
° ? ? ?
» n d
xa . ~ ® H
57 H S\ \x &
o : ? ® S
. . .
N 5 N
é 8! é
p1 <:
.
.
.
.
:
ack_set[3] : X
p2 r
: crash
5!
o

p3

Fig. 4. Example of execution of the best-effort broadcast algorithm.

6.2. Description of the algorithm

A process i broadcasts a message m by invoking BROADCAST(m).
Line 5 ensures that a new broadcast is started only after the
previous one has been concluded, i.e., when there are no more
pending acks to the message in last;[i]. So, a new message is sent
to all neighbors considered correct by process i (lines 8-10). For
each message sent, an ack is inserted in the list of pending 1acks.

When a process receives a message TREE from a process j

(line 15), first it verifies if either the source or process j is con-
sidered correct. If the source and j are correct, process i checks
if the message m is new by comparing m’s timestamp and the
timestamp of the message stored in last;[j] (line 19). If m is new,
last;[j] is updated and the message is delivered to the application
layer. Next, m is retransmitted to the neighbors in each internal
cluster. On the other hand, if there is no correct neighbor or if i
is a leaf ((cluster;(j) = 1), no ack is added to the set ack_set; and
CHECKACKS sends an ACK message to j, completing the broadcast in
that branch. If either the original sender of j is faulty, the delivery
is aborted because: (1) if j is faulty, the process that sent m to j
will detect that j became faulty and will retransmit m to the next
fault-free process in the same cluster of j, rebuilding the tree; and
(2)if the source is faulty, by the validity property it is not necessary
guarantee the delivery of m anymore.

Whenever a message (ACK, m) is received, the respective ack is
removed from the set ack_set; and, if there are no more pending
acks to message m, CHECKACKS sends a (ACK, m) to the process k
from which i had previously received the message TREE. However,
if k = L, it means that the ACK message reached the source
process and the ACK propagation from that branch is completed.
The broadcast started by a source i is finished when all ACKs are
received from each branch of the tree rooted at i.

If a process j is detected as faulty, the CRASH event is executed.
Three actions are performed: (1) the list of correct process is
updated; (2) the pending acks containing process j as source or
destination are removed from the list; and (3) the messages in
the list of pending acks sent to process j are retransmitted to the
next fault-free process k in the same cluster of j, if one exists. This

last action starts a propagation through the branch of the new tree

rebuilt after the crash.

6.3. Example of execution

Fig. 4' shows an example of execution of the hierarchical best-
effort broadcast algorithm proposed in a system with n = 4 pro-
cesses. In the first request, all processes are correct. The broadcast
is started by process po. Initially, py sends the TREE message to
its neighbor p1 and p, (messages 1 and 2). Process p; delivers the
message and sends an ACK to confirm it has delivered the TREE
message (message 3). Then, process p, retransmits the message to
its neighbor ps, completing the spanning tree. The ACK message is
returned from p3 to p,, and finally to py, ending the broadcast.

In the second broadcast, process p; fails, but pg is not aware. In
this case, pg sends the TREE message to p; and p,, but only process
p; returns the ACK message to py. After the detection latency, pg is
notified by VCube about p,’s crash. Then, pg retransmits the TREE
message to the next fault-free process in the same cluster, that
is p3. As soon as pg receives the ACK from p3 (message 11) the

broadcast is completed.

6.4. Proof of correctness

The correctness of Algorithm 6.1 as a solution to best-effort
broadcast (Theorem 6.3) is guaranteed by Lemma 6.1 (validity
property) and Lemma 6.2 (integrity property), presented next.

Lemma 6.1 (Validity). If a correct process i broadcasts a message m,
then every correct process eventually delivers m, including i.

Proof. Consider the procedure BROADCAST(m) of Algorithm 6.1.
Process i = src is the source process. It sends m to all neighbors,
one from each cluster s = 1..log,n and waits from all ACK mes-
sages related to the last message broadcast by it, stored in last;[i]
(line 5). As soon as the broadcast algorithm uses the spanning tree
construction proposed in Section 5, it was proved in Lemma 5.1
that a message broadcast by a sender src is delivered by all correct
processes in the system. Once the source has received all pending
acks, last;[i] is updated and the source delivers the message itself

(lines 5-7). O

1 Time space diagram generated using http://pluxos.github.io/dis-sys-vis/live/.
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Lemma 6.2 (Integrity). Every correct process i delivers a message m
from a given source process sr at most once (no-duplication property)
and if and only if m was previously broadcast by src (no-creation

property).

Proof. It was proven by Lemma 6.1 that a message m broadcast by
a source process src, m is delivered by all correct processes j in the
system by using the spanning tree rooted at src. When a process j
receives m, j verifies if m is new comparing timestamps (line 19)
and, if m is new, j delivers m. In this way, even if a message m is
retransmitted after a failure is detected and gets to a process j that
has already received m, j will never deliver m twice. No-creation is
derived from the properties of the reliable links. O

Theorem 6.3. Algorithm 6.1 is a solution to best-effort broadcast: if
sender i is correct, all correct processes will deliver the same set of
messages broadcast by i.

Proof. The theorem is correct due to the validity and integrity
properties, formalized by Lemmas 6.1 and 6.2, respectively. O

7. An autonomic k-mutual exclusion algorithm

The distributed k-mutual exclusion algorithm we propose in
this work is a permission-based algorithm that toleratesup ton—1
faulty processes. The algorithm obtains monitoring information
from VCube, described in Section 4. The underlying VCube provides
state information (correct or faulty) about every system process.
Processes disseminate requests by using the best-effort broadcast
mechanism described in Section 6. Processes keep global logical
clocks [21] to keep track of event causality. Algorithm 7.1 presents
our solution.

7.1. Variables and messages

The distributed k-mutual exclusion algorithm employs two
types of messages:

e (REQUEST, i, C;): a message issued by p; to all other pro-
cesses whenever it wants to access a resource unit. A mes-
sage REQUEST is timestamped with the pair (G; i), i.e., the
current value of p;’s logical clock and its identifier. The
timestamp provides Lamport’s total order for the requests:
(G;)<(Gij) e G <Gor(G=Candi <j)

e (REPLY, count): message sent by process i to answer to one
or more requests from p; meaning that p; gives permission to
process j to access a resource unit. The count parameter in-
forms the number of requests from p; that p; had postponed
(details are given below).

Each process p; keeps the following local variables:

e correct;: the set of processes considered correct by process i
according to VCube;

e state;: stores the current state of the process, which can be
requesting, not_requesting or executing;

e clock;: used to implement the logical clock locally. Initially
set to zero, clock; is updated whenever a new request is
issued or a new REQUEST message is received. Upon recep-
tion of a REQUEST message, p; updates its clock; with the
maximum value between clock; value and the timestamp of
the REQUEST message received;

e last;: timestamp of the last REQUEST message sent;

e perm_count;: the total number of permissions received
(REPLY messages) since its last request;

e reply_count;[n]: array that stores the number of replies ex-
pected from each process;

e defer_count;[n]: stores the number of deferred replies to
each process. After releasing the resource, the process sends
all outstanding permissions in a REPLY message.

7.2. Description of the algorithm

The interface of the distributed k-mutual exclusion algorithm
consists of two functions that application processes use: RE-
QUEST (), is employed by a process to ask for permissions to access
a unit of the resource, and RELEASE (), executed when a process
releases a resource unit. A process gets access to a unit of a resource
if it gets n — f — k permissions, where f is the number of current
faulty processes informed by VCube to the requesting process.

Algorithm 7.1 The Autonomic k-Mutual Exclusion Algorithm at
process i

1: correct; < {0, ..,n — 1} > Initialization
2: state; <— not_requesting

3: Vj € n: reply_count;[j] < 0

4: Vj € n: defer_counti[j] < 0

5: perm_count; <— 0

6: clock; < 0

7: last; < 0

8: procedure REQUEST( )

9: state; < requesting
10: clock; < clock; + 1
11: last; < clock;

12: perm_count; <— 0

13: BrROADCAST(REQUEST(H, last;)) > using best-effort broadcast
14: Vj # i,j € correct; : reply_count;[j] + +

15: wait until (perm_count; > |correct;|—k)

16: state; < executing

17: procedure RELEASE( )
18:  state; < not_requesting
19: forall (j #i:j e correct;) do

20: if (defer_count;[j] # 0) then
21: SEND(REPLY(defer_count;[j])) to p;
22: defer_count;[j] < 0

23: upon receive REQUEST(], last;) from p;

24: clock; < max(clock;, last;)

25: if (p; € correct;) then

26: if (state; = executing or (state; = requesting and (last;, i) <
(last;, j))) then

27: defer _count;[j] + +

28: else

29: SEND(REPLY(i, 1)) to p;

30: upon receive REPLY(j, count) from p;
31: if (j € correct;) then

32: reply_count;[j] < reply_count;[j] — count
33: if (state; = requesting and reply_count;[j] = 0) then
34: perm_count; + +

35: upon notifying crash(j) > j is detected as faulty by VCube at i
36: if (state; = requesting and reply_count;[j] = 0) then

37: perm_count; — —

38: correct; <— correct; \ {j}

The REQUEST () function starts by changing the state of process
p; to requesting (line 9). Then, a timestamped REQUEST message
with p;’s local logical clock value is broadcast using the best-effort
broadcast algorithm (line 13). If p; receives a request from another
process p; while it is in the requesting state, it first checks whether
the p;’s REQUEST message timestamp is smaller than p;’s or, in case
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of atie, if p;’s identifier is smaller than its own identifier (line 26). In
these cases, p;’s request has higher priority than p;’s request and,
therefore, p; gives its permission for p; to access the resource (it
sends a REPLY message in line 29). Otherwise, p; defers sending the
REPLY message, incrementing defer_count;[j] (line 27).

As mentioned above, by accessing the VCube monitoring sys-
tem, the algorithm dynamically gets information about the number
of faulty processes. This number is subtracted from the number
of expected responses, allowing processes to get access to the
resource even when k or more processes are faulty (line 15).
Upon receiving the minimum number of permissions, process p;
gains access to a unit of the resource and changes its state to
executing. Note that when a process is detected as faulty during
the requesting phase, the algorithm checks if a permission has
already been received from that process (lines 36-37). If this is the
case, perm_count is decremented in order to keep consistent the
condition in line 15, ensuring, thus, the safety property. We should
point out that (for sake of simplicity the code for this part is not
show), if a crash is detected, the condition in line 15 is checked only
after the number of permissions received has been decremented in
order to ensure that permissions sent by the crashed process is not
considered in the final value of perm_count.

When p; releases the resource, it changes its status to
not_requesting and sends all deferred REPLY messages stored in
defer_count (lines 18 -22) to the respective requesting processes.
Hence, processes that are waiting for permissions can check the
condition in line 15 and eventually get one unit of the resource.

7.3. Example of execution

Fig. 5 shows an execution of the k-mutual exclusion algorithm
in a system with n = 4 processes and k = 2 resources. First,
consider py broadcasts a request(0) message by using the best-
effort broadcast algorithm (ACKs are not presented). The message
will be delivered to p1 and p,. Then, process p, will retransmit the
request message to its neighbor p3;, completing the spanning tree.
As they are not requesting, everyone will reply immediately and pg
will get the permission to access the critical section.

While pg is executing the critical section, process p, starts a
request procedure. It sends a request message to its neighbors p;
and po. Process ps is not requesting and replies immediately. On
the other hand, pg is executing and defers the reply message, but
retransmits the request to its neighbor p1, following the spanning
tree. Process p; also replies immediately, since it is neither exe-
cuting nor requesting the critical section. At this point, p, receives
two REPLY messages and can access the second resource. Finally,
process p; starts a request procedure, sending request messages to
po and p3 (that retransmits the request to p,). Process p3 replies
immediately, but pg and p, do not, since both are using one copy
of the resource. As soon as pg or p, releases the critical section,
the deferred reply will be delivered to p,, given access to a free
resource (in this example, after py’s release).

7.4. Proof of correctness

In order to ensure the correctness of the distributed k-mutual
exclusion algorithm, two properties must be satisfied:

e Safety: at any time, at most k different processes can concur-
rently access the k resource units (one process per unit). In
other words, at most k process are in the critical section at a
given time instant;

e Liveness: a correct process that makes a request to access one
unit of the resource, will eventually have access to it. This
property ensures the absence of deadlock and starvation.

Besides the two properties above, the fact that a new request
is broadcast only after the previous one was completed and that
REQUEST messages timestamps define a total order for requests,
the fairness for the satisfaction of the requests is guaranteed by the
algorithm. In the context of mutual exclusion, the fairness property
ensures that each process has the same chance to execute the
critical section.

Lemma 7.1 (Safety). Algorithm 7.1 ensures that no more than k
different processes get permission to use the k existing units of the
shared resource at the same time instant.

Proof. Consider that at time ¢, the k units of the resource are being
used by k processes. Let f = FD;.crashed be the number of faulty
processes detected by VCube and informed to process p;. If process
p;i wants to get access to the resource, it sends a REQUEST message
ton — f — 1 other processes. For each process p; that receives the
request, four cases are possible, depending on p; state:

1. if p; is not_requesting, it sends a REPLY message to p; immedi-
ately;

2. if p; is executing, it defers the REPLY until it releases the
resource;

3. if pjisrequesting and (last;, i) < (last;, j), it sends the REPLY to
p; immediately, because in this case, p; has a higher priority
over p;. Otherwise, it defers the reply until it gets and releases
the resource;

4. If p; is crashed, it does not send any reply.

If k processes are using the k units of resource, k replies will be
deferred (line 27). Therefore, at most n — k— f — 1 processes can be
in the states of case (1) or (3), giving their respective permission to
p; immediately upon receiving its request. Since process p; needs
n — f — k replies to get a unit of the resource, it will have to wait
until one of the processes using a resource releases it by sending
a REPLY message (line 20) or crashes. In the latter case, f will
be incremented and p; can get all permissions needed (line 15).
Consequently, at most k processes can use the k resources at the
same time.

Note that if a process p; crashes after sending a REPLY message
to a process p;, the number of permissions must be decremented
in p; (line 37) in order to avoid that a faulty process contributes
twice (in f and perm_count), breaking the safety property ensured
by line 15. O

Lemma 7.2 (Liveness). Every request for a resource executed by a
correct process i is eventually satisfied by Algorithm 7.1.

Proof. Since pending requests are totally ordered by their times-
tamps and a new request has lower priority than the pending ones
ensures that every request will eventually be the one with the
highest priority. Let us consider a request from process p; with
the highest priority and the four possible cases enumerated in
Lemma 7.1. Due to the safety property, at most k processes can be
accessing the resource at the same time (in the CS) and, therefore,
these processes will defer sending REPLY messages (2). If all other
n—f —k—1processes are requesting, but p; has the highest priority,
then p; will receive n — f — k — 1replies according to (3). However,
as soon as one of the k processes in CS releases one unit of the
resource, the deferred REPLY message will be received by p;. On the
other hand, if one of the k processes fails, f will be incremented (4).
In both cases, p; will receive n — f — k replies and will then obtain
the necessary number of permissions to access the resource unit
that is now free. O

Lemma 7.3 (Fairness). In Algorithm 7.1, requests are satisfied in the
order they are issued, considering the priority defined by the logical
clock.
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Fig. 5. Example of execution of the k-mutual exclusion algorithm.

Proof. Each request message sent by a process p; is identified
by a unique timestamp last; defined by its current logical clock
value. A new request is broadcast only after the previous one has
been completed and before issuing the former, the timestamp
is incremented (line 10). In addition, for each REQUEST message
received by a process, its logical clock is updated in line 24 with
the highest value between its local clock value and the timestamp
value of the REQUEST message. Furthermore, whenever p; is waiting
to get access to the resource and receives a REQUEST message from
p;j with timestamp last;, p; checks if its last request has priority over
the request from p;, i.e., (last;, i) < (last;, j) (line 26). Since process
p; only replies to requests with higher priority than its own current
request, the systematic request ordering is ensured. O

Theorem 7.4. Algorithm 7.1 is a solution for the k-mutual exclusion
problem, tolerating up to n — 1 process failures.

Proof. Theorem 7.4 follows directly from Lemmas 7.1and 7.2. O

8. Experimental results

In this section we present results obtained by simulation on
top of the Neko framework [41]. VCube was implemented using
the Java classes available in Neko’s fault tolerance library.> The
proposed k-mutual exclusion algorithm, in this section denoted
VCUBE, was compared with two other solutions: Raymond’s algo-
rithm [28] (RAY) and the solution proposed by Bouillaguet, Arantes,
and Sens [8] (BAS). RAY does not use failure detection, but intrin-
sically tolerates k — 1 faults. However, each crash degrades the
performance of the algorithm. BAS uses the failure detector 7 and
tolerates n — 1 faults. See Section 2 for more details about these
algorithms. Unlike our algorithm, both RAY and BAS use a one-to-
all strategy to broadcast request messages, i.e., a process needs to
send a copy of the message directly to every other process in the
system and waits for replies.

8.1. Parameters

The simulation model is based on [10]. Each process executes
a new request at t time units (t.u.) after the previous request was

2 All source code and configuration files are available at www.inf.unioeste.br/
~luiz.

completed. After getting permission to use a unit of the resource,
a process uses the unit for e time units. Each message exchanged
between two processes consumes t; + t; + t, time units (t.u.): t;
t.u. are taken to send the message at the source, t; t.u. are taken
to transmit the message across the network, and t, t.u. are taken
to receive the message at the destination. Considering that there is
no broadcast facilities available in the system, if a message is sent
to multiple destinations, t; is multiplied by the number of copies
sent.

The algorithms were compared under two different load sce-
narios. Under light load (LOW), only k processes request one of the
k units of the resource. On the other hand, under high load (HIGH),
all processes send request concurrently.

The following metrics were used to compare the algorithms:

o the total number of resource units allocated during the exe-
cution;

e the obtaining time for a process to get the resource, defined
as the time interval from the instant that the process re-
quests the resource until the moment it gets permission to
access a resource unit;

e the number of messages (requests and replies) sent per
request.

For all executions, simulation parameters were set as follows:
time to send/receive a message t; = t, = 0.1; time to transmit
a message t; = 0.8; time to use a resource e = 0.0002; time
interval between two consecutive requests by a process t = 0.1;
and total number of resources available k = 3. Each execution
was performed for 1000 time units. The parameter f represents the
total number of faulty processes.

8.2. Results

Experiments were conducted in both fault-free scenarios, in
which no process crashes, and in faulty scenarios, where a varying
number of processes crash during the execution. The number of
processes varied from 8 to 1024.

8.2.1. Experiments in fault-free scenarios

The mutual exclusion algorithms VCUBE, RAY, and BAS were
executed in scenarios with different number of processes and
under LOW and HIGH loads. In LOW load, only the first k = 3
processes with identifiers from O to k — 1 request a unit of the
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Fig. 7. Obtaining time in fault-free scenarios with k = 3 during 1000 time units.

resource. Under faulty-free scenarios, RAY, and BAS present similar
results, since they use the same one-to-all message propagation
algorithm.

Fig. 6 shows the total number of resources allocated by all
algorithms using the two types of load and a constant k = 3.
Under light load, it can be observed in Fig. 6(a) that for small
systems (8-64 processes) RAY and BAS are more efficient, since
the requester sends messages directly to the other n — 1 processes
which consume less time than the time to propagate messages
over the VCUBE virtual tree. On the other hand, with 128 pro-
cesses, the three algorithms present equivalent performance and
with more than 128 processes, more unit of resources are used
concurrently in VCUBE than in RAY and BAS. Considering the HIGH
load, Fig. 6(b) shows that RAY and BAS have similar performance
as in the previous case, because of the one-to-all propagation
strategy. On the other hand, VCUBE increases the allocation rate
quickly and surpasses the others from around 16 processes, when
the hierarchical message propagation strategy starts to make a
difference. The number of resources allocated peaks at about 64
processes for VCUBE and 256 processes for both RAY and BAS, in
this case the limitation is posed by the propagation delay of broad-
casting multiple copies of the request messages by all processes
concurrently.

Fig. 7 shows the average time to obtain resource units under
LOW and HIGH loads. BAY and BAS present similar performance,
due to the one-to-all broadcast mechanism. Under light load, when
the number of processes is greater than 128, VCUBE presents

higher efficiency. Under high load, VCUBE presents linear growth,
much smaller than the others. This behavior is due to the hierar-
chical broadcast strategy based on spanning trees used by VCUBE.

The mean number of messages (REQUEST and REPLY) per re-
quest is shown in Fig. 8. Algorithms RAY and BAS send the same
number of messages, since they use the same one-to-all broadcast
strategy. On the other hand, VCUBE sends more messages because
of the tree-based strategy in which messages (specially REQUEST
messages) are sent along the tree. Even with a larger number of
messages, the best-effort algorithm used by VCube prevents the
ACK implosion problem in the broadcast layer. In HIGH scenar-
ios, large numbers of REQUEST/REPLY messages are transmitted by
VCUBE, RAY, and BAS. However, considering that VCUBE presents
a resource allocation rate much higher than the other algorithms,
in average VCUBE uses fewer number of messages than the other
algorithms, especially for 512 and 1024 processes.

Taking into account the results for the three parameters de-
scribed above, we can conclude that, as the number of processes
grows, VCUBE is more efficient (more unit of resources are allo-
cated and lower obtaining time) than RAY and BAS both in light
and high loads, even if more messages are needed per request.

8.2.2. Experiments in faulty scenarios

Similarly to the experiments conducted in the fault-free scenar-
ios, experiments with fault processes were also conducted under
LOW and HIGH loads. We set k = 3 resources to all experiments.
Considering that RAY does not tolerate more than k faulty process,
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Fig. 9. Resources allocated in faulty scenarios with k = 3 during 1000 time units and f = 3 random faults.

three random processes were set to fail at random time instants.
In the LOW load scenarios, processes from 0 to 2 never fail, since
they are the ones which send requests. Each run was simulated for
1000 time units. The total number of resources allocated is shown
in Fig. 9. Different from the fault-free results, under the faulty
scenario, the performance of RAY is worse than BAS’s, since it does
not use a failure detector to identify crashes, i.e., it is not aware that
the system size has decreased when processes fail. However, as the
system size grows, the one-to-all broadcast time compensates the
waiting time of RAY and, therefore, their performance is similar,
as shown in the systems from 256 processes under LOW and HIGH
loads, shown by Figs. 9(a) and 9(b). We should point out that the
reason for the fast allocation rate growth of VCUBE in Fig. 9(b) is
the same as explained for Fig. 6(b).

The time to obtain a unit of resource unit in the faulty scenarios
is shown in Fig. 10. Considering both LOW and HIGH loads, VCUBE
and BAS present the same behavior that they presented in the
fault-free scenarios, and the reason is that they are informed about
failures. On the other hand, RAY presents a poor performance for
small systems (8-32 processes) as processes get blocked waiting
for replies from processes that are actually faulty. As the system
size increases, the time to broadcast the REQUEST messages by RAY
and BAS compensates the waiting time and the performance of RAY
becomes equivalent to BAS’. The performance results shown in the
figures confirm clearly the benefits of the hierarchical propagation
and the logarithmic detection delay of the proposed solution.

The number of messages per request under faulty scenarios is
presented in Fig. 11. The results are similar to those obtained in
fault-free scenarios. Under a LIGHT load (Fig. 11(a)), for example,
as the system increases in size, VCube sends more messages than
the others, due to the reverse spread of ACKs on the tree. However,
it is possible to see that the number of messages sent by RAY
and BAS increases considerably. VCube sends less messages when
compared with the fault-free scenarios. This occurs because VCube
stops sending messages to faulty processes after it detects they are
faulty. RAY always sends REQUESTSs to all processes, even if they
are faulty (no failure detection) and BAS uses a non-hierarchical
failure detector, in general slower than VCube failure detector to
detect events (specially in larger systems).

In the second experiment with faults, scenarios with 128 pro-
cesses were carefully investigated. Random faults were generated
from 1 to 100 processes at random time instants. Under a LIGHT
load (Fig. 12(a)), in most cases, VCube allocates more resources
than RAY and BAS. RAY is always worst, since it has no failure
detection. As soon as the number of faulty processes increases, BAS
is able to allocate more resources than VCube, as we can see when
there are 20 faulty processes. Moreover, with 50 and 100 faulty
processes, for example, BAS was unable to allocate even a single
resource. This situation occurs due to the time the fault event hap-
pened and the diagnostic latency of the detector employed. Under
a HIGH load, RAY and BAS are limited by the one-to-all broadcast
mechanism. VCube presents high performance, supported by the
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spanning-tree-based broadcast and the hierarchical failure detec-
tion mechanisms.

9. Conclusions

In this work we presented an autonomic distributed permiss-
ion-based algorithm for k-mutual exclusion. The algorithm is
autonomic in the sense that it adapts itself dynamically and trans-
parently to changes in the system composition. The algorithm is

built on top of a VCube, a virtual hypercube-like topology, which
has several logarithmic properties. VCube monitors processes and
after a crash is detected, it heals itself by reconnecting correct
processes. An autonomic distributed spanning tree algorithm is
proposed. It is built exploring the hierarchical cluster organization
of VCube. A best-effort broadcast algorithm which is based on the
autonomic spanning trees is then proposed to propagate messages
reliably through the VCube. Finally, the fault tolerant k-mutual
exclusion algorithm uses the best-effort broadcast algorithm to
disseminate information among processes.
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The k mutual-exclusion algorithm was described, specified and
implemented. We present comparison results with two other al-
gorithms: (1) the algorithm proposed by Raymond that tolerates
up to k — 1 fault processes, but failures degrade its performance
and (2) the algorithm by Bouillaguet, Arantes, and Sens that use
a failure detector 7 to detect crashes; up to n — 1 crashes are
tolerated. Experimental results show that, although the overall
number of messages of our solution is greater than of the other two
algorithms, our solution guarantees that the efficiency to obtain
resources is maintained throughout the execution regardless of the
number of faulty processes. In addition, the proposed algorithm
presented the highest total number of resource units allocated
during system execution in comparison with the other two algo-
rithms in all scenarios. Finally, when the number of processes is
greater than 64 our algorithm presents the lowest time to obtain
aresource unit. These results confirm the efficiency and scalability
of the proposed autonomic solutions.

Future research directions include extending the proposed al-
gorithm to allow process recovery. Another direction is to defined
autonomic mutual exclusion for systems with different resource
types. Also left as future work is the implementation of the auto-
nomic mutual exclusion strategy using quorumes.
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