
A Holistic Approach to Define Service Chains
Using Click-on-OSv on Different NFV Platforms

Alexandre Huff∗†, Giovanni Venâncio†, Leonardo da C. Marcuzzo‡,
Vinı́cius F. Garcia‡, Carlos R. P. dos Santos‡ and Elias P. Duarte Jr.†

∗Federal Technological University of Paraná, UTFPR, Toledo, Brazil

Email: alexandrehuff@utfpr.edu.br
†Department of Informatics

Federal University of Paraná, UFPR, Curitiba, Brazil

Email: {ahuff, gvsouza, elias}@inf.ufpr.br
‡Federal University of Santa Maria, UFSM, Santa Maria, Brazil

Email: {lmarcuzzo, vfulber, csantos}@inf.ufsm.br

Abstract—The deployment of services in virtualized networks
can be done by composing multiple Virtualized Network Func-
tions (VNFs). A Service Function Chain (SFC) consists of a
predefined sequence of VNFs which are virtually connected
and through which traffic is processed. This work proposes a
framework for composing and managing the lifecycle of SFCs
formed by VNFs built with Click-on-OSv. The proposal allows
the execution of SFCs on different NFV orchestrators. We call
the proposed approach “holistic” as it defines a generic API
for the composition of SFCs that leverages particular details of
different NFV orchestrators. A prototype of the framework was
implemented to allow the composition and lifecycle management
of SFCs formed by VNFs built with Click-on-OSv on the
OpenStack Tacker NFV orchestrator. Results show that the
framework is scalable and efficient.

I. INTRODUCTION

Network Function Virtualization (NFV) enables the im-

plementation in software of diverse network services which

are traditionally provided as middleboxes. Virtual functions

can then be executed on Commercial-Off-The-Shelf (COTS)

hardware. Middleboxes are thus replaced by Virtualized Net-

work Functions (VNFs) which can be managed by an NFV

orchestrator [1], [2]. The European Telecommunications Stan-

dards Institute (ETSI) has proposed a standard architecture for

NFV Management & Orchestration called as NFV-MANO [3]

which provides specifications of multiple tasks related to VNF

lifecycle management.

A VNF instance is responsible to process traffic and can

act on several layers of the protocol stack. Routing traffic

through a sequence of the VNFs according to a predefined

order is known as Service Function Chaining (SFC), or simply

“service chain” [4]. Usually a flow identifier is employed to

route traffic to the next VNF in a SFC. Note that this is

different from conventional routing, where decisions are taken

based on the destination IP address.

The deployment of static service chains, which usually

consist of multiple network functions composed in a certain

way, can be complex, expensive and time-consuming [5]. The

network operator has to execute a large number of tasks and

services to accomplish service chain composition. This can

be a laborious procedure that requires, in addition to expe-

rience, knowledge on specific modeling languages and their

requirements for describing the service chain composition.

In this way, network operators can get overwhelmed with

details of the NFV platform being used, instead of focusing

on the service composition logic itself. Furthermore, it is also

necessary to ensure efficient resource usage so that the NFV

infrastructure can be cost-effective.

Although the composition of network services has received

much attention in recent years, there are still many challenges

[6]. This work presents a solution to one of those challenges:

we propose a simple and effective framework for the compo-

sition and lifecycle management of SFCs. An architecture is

proposed for the framework as an extensible solution which

can be used with different NFV platforms and applications.

We call the proposed approach “holistic” as it defines a generic

API for the composition of SFCs that leverages particular

details of different NFV orchestrators. The “lifecycle man-

agement” terminology [7] that we follow represents a set of

functions in charge of instantiating, accessing and destroying

SFCs and their required resources.

A prototype of the proposed framework was implemented,

allowing the composition and lifecycle management of service

chains formed by VNFs built with Click-on-OSv [8] on

the OpenStack Tacker NFV orchestration platform [9]. The

system provides a REST API that abstracts a myriad of

details of the NFV orchestrator, providing generic operations

to compose and manage the SFC lifecycle. An application was

also implemented to run performance tests on the proposed

framework. Results show that it was about 4.145 times faster

to compose 128 SFCs concurrently instead of doing that

sequentially.

The remainder of this paper is organized as follows.

Section II introduces basic concepts of Network Function

Virtualization and Service Function Chaining. In Section III

the proposed architecture is presented. The NFV service chain

enablers, the prototype implementation, and the evaluation are

described in Section IV. Section V points to related work.

Finally, the conclusion is presented in Section VI.

978-1-5386-4727-1/18/$31.00 ©2018 IEEE
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 21:44:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The Classifier and SFP components are interconnected.

II. SERVICE FUNCTION CHAINING

Network Function Virtualization allows the implementation

as software of several functionalities traditionally based on

middleboxes [10]. The virtual functions can then be executed

on general purpose hardware [1]. Software Defined Network-

ing (SDN) technology both complement and make feasible the

use of NFV by allowing the deployment of VNFs along with

existing services and by providing the required network oper-

ation support. Furthermore, implementing network functions

using NFV on software-defined networks makes it possible to

manage each virtual network as a whole with orchestration

mechanisms [11]. The NFV Orchestrator (NFVO) proposed

by the ETSI NFV-MANO specification [3] employs NFV In-

frastructure (NFVI) management and orchestration functions

provided by the Virtualized Infrastructure Manager (VIM) to

coordinate VNF composition to form network services.

In the context of NFV technology, instantiating a set of

these network functions and, subsequently, steering the traffic

orderly through a sequence of functions is known as Service

Function Chaining. SFC allows the creation of network ser-

vices consisting of multiple network functions in a given order

[4]. In this paper we use the term “service chain” as a synonym

to SFC. Several efforts have been recently made to standardize

network service composition [1], [3], [6]. The IETF SFC

Architecture [4] specifies that the decision of directing a given

network flow to the next network function is made based on

a flow identifier, instead of using destination IP address as is

done in conventional routing.

The IETF SFC Architecture includes several logical com-

ponents, such as Classifiers, Service Function Forwarders

(SFFs), SFC Proxies, and the network functions themselves.

The instantiation of a SFC is performed by selecting spe-

cific functions which are executed on certain network nodes,

forming a service graph. A path of this graph is called

Service Function Path (SFP). The Classifier deals with policies

and restrictions associated with a SFP by intercepting and

analyzing all traffic based on defined constraints for each

instantiated network service. Network header information is

configured so that the traffic flows through the appropriate

SFPs [4].

Fig. 1 shows the Classifier adding a header to the inter-

cepted traffic with the purpose of steering a flow to the corre-

sponding Service Function Path. The SFP in this case consists

of three network functions. A particular SFP is selected from

classification policies associated with the flow identifiers,

which can be those employed by MPLS (MultiProtocol Label

Switching), Generic Routing Encapsulation (GRE), or Virtual

eXtensible Local Area Network (VXLAN) [12].

The IETF SFC WG [6] has been making efforts to stan-

dardize the traffic encapsulation and information exchange

between the participants of an SFP by defining the Network

Service Header (NSH). The NSH contains metadata that

indicates to which SFC a particular flow belongs to [13]. In

this sense, SFC nodes need to be aware of the NSH since

header information must be correctly parsed and interpreted.

On the other hand, there are network elements unable to

interpret the NSH and they must employ a SFC Proxy that

does the job [5].

The SFC Proxy enables the usage of legacy network

functions that are unaware of the SFC, and consequently

of the NSH. These legacy functions can then be used in

a service chain. The SFC Proxy encapsulates/decapsulates

packets with the proper headers from both legacy network

functions and SFF components, acting as a gateway between

the SFC encapsulation and the legacy network functions. The

SFF is responsible for forwarding flows received from the

network to one or more SFCs and is also responsible for

returning the processed traffic received from the SFC back

to the network. SFFs maintain forwarding information that

allows identifying paths between the SFPs [4].

Reclassification operations can be executed on the traffic

that traverses a SFC and indicate a change of the original

SFC path. The node where reclassification occurs is usu-

ally called “Branching node”, suggesting the possibility to

follow more than a single path (SFP) from a given VNF

[4]. Moreover, a SFC can have symmetrical or asymmetrical

paths. A symmetrical path indicates that the return flow

must follow exactly the reverse path of the sending flow

(i.e., VNFs); asymmetrical paths do not pose any restriction

between sending and returning flows [12].

Defining and redefining SFCs are tasks that are still hard

to accomplish. The efficient composition of network services

lacks high-level procedures and easy understanding. Tools

that are easy to use and understand and that build efficient

SFCs are still not available. This is still an open and relevant

problem, and effective and simple SFC tools are essential to

encourage and popularize the NFV paradigm.

III. THE PROPOSED FRAMEWORK

This work proposes a framework for the definition and

lifecycle management of VNF service chains. The main goal

is to provide a framework that is simple enough so that

users (e.g., network operators) do not have to execute a large

number of configuration steps and grasp details of the multiple

subsystems that form the NFV infrastructure to do service

chain composition. Another important requirement is that the

framework is aligned with the ETSI NFV-MANO specifica-

tion, thus allowing its use on different NFV platforms that are

MANO-compliant. We call the proposed approach “Holistic-

Composer” as it defines a generic API for the composition

and lifecycle management of SFCs that leverages particular

details of different NFV orchestrators. The ultimate goal of the

proposed framework is to allow the composition and lifecycle

management of service chains in the simplest possible way,

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 21:44:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Proposed architecture for the Holistic-Composer framework.

in which the network operator specifies the service chain in

terms of which VNFs are to be used and the path connecting

those VNFs.

Fig. 2 shows the Holistic-Composer along with the ETSI

NFV-MANO framework. The proposed architecture is com-

patible with and complements NFV-MANO. We use commu-

nication agents to provide a generic solution that can be used

on different NFV platforms. These communication agents are

responsible for interacting with the NFV orchestrators. Hence,

for each NFV orchestrator, there must be a communication

agent responsible for abstracting those interactions.

The SFC-Core is the main component of the proposed

framework and was developed with the purpose to reduce the

complexity of composing and enabling lifecycle management

of service chains in different NFV orchestrators. For this

reason, the SFC-Core provides a standardized communication

interface with its client applications using the REpresenta-

tional State Transfer (REST) model. Client applications range

from end-user applications to other NFV frameworks. These

applications are illustrated in Fig. 2 as REST Clients and may

include applications that use a Graphical User Interface (GUI)

as well as those that use a Command Line Interface (CLI).

In addition, the SFC-Core component is in charge of

conducting and validating operations requested from client

applications. One of these operations refers to the management

of the local VNF repository, represented by the VNF Package
element in Fig. 2. The VNF Package format employed by

Holistic-Composer follows the ETSI model [14] in order to

allow the interoperability of the proposed framework with

other standardized VNF-based systems. Moreover, each VNF
Package has a VNF Descriptor (VNFD) and the specific

scripts to be performed after instantiating the corresponding

VNF on the NFV Infrastructure.

Furthermore, the VM Image element of Fig. 2 represents the

VNF image that a VNF Package may contain or not, since the

VM Image may be fetched directly from the NFVO repository.

The Manifest element represents the VNF Package descriptor

and includes information such as the VNF name, developer,

version, and release date.

The SFC-Core also maintains the VNF Catalog Descriptor
element to handle metadata information, such as unique identi-

fiers, names, storage location, descriptions, categories, and the

function types of VNF Packages stored in the local repository.

For instance, the function type shows whether a given VNF

runs on Click-on-OSv. Since Click-on-OSv requires extra

steps for its configuration these are on a specific Element Man-

agement (EM). The category (e.g., firewall or load balancer)

specifies the given functionality, and can be used so that the

SFC-Core can suggest VNFs for a specific composition or

even compose network services in an automated way.

In order to allow the interoperability of the proposed

framework and different NFV platforms and SFC solutions,

a catalog keeps information about VNFs instantiated by the

Holistic-Composer, which are depicted in Fig. 2 as VNF
Instances. Consequently, it is possible to distinguish VNFs

instantiated by other tools of those instantiated by the Holistic-

Composer.

The SFC Instances component maps active service chain

instances and the corresponding VNFs running on the NFV

orchestrator. The SFC Instances component also obtains in-

formation about the instantiated SFCs from the local and NFV

orchestrator repositories. This allows, for example, releasing

unused resources after destroying a service chain, and also

identify which particular SFCs are running on different NFV

orchestrators.

IV. IMPLEMENTATION OF THE PROPOSED ARCHITECTURE

A prototype of the proposed framework was implemented

with the NFV Enablers OpenStack, Click-on-OSv, and Tacker

to compose and manage the lifecycle of SFCs as described

below. According to the ETSI, NFV Enablers are tools that

contribute to the development and deployment of NFV [15].

OpenStack [16] is a cloud computing platform that provides

virtual physical resources used by VNFs, thus acting as a VIM

in the NFV environment. Click-on-OSv [8] allows the creation

and execution of high-performance and minimalist VNFs built

with the Click Modular Router which run on the OSv uniker-

nel. In addition, Click-on-OSv supports multiple hypervisors

(e.g., Xen, KVM, VMware, VirtualBox) and provides FCAPS

(Fault, Configuration, Accounting, Performance and Security)

functionalities through a REST API. Tacker [9] is an official

OpenStack platform project that implements capabilities of

both VNF Manager and NFV Orchestrator, as well as allows

orchestrating network services using end-to-end VNFs.

The Holistic-Composer was implemented in Python. We

used the Flask library to implement specific SFC-Core fea-

tures that provide a standardized REST interface. REST clients

can interact with the SFC-Core to compose and manage the

lifecycle of service chains. All the information used on REST

Clients remains stored in a database which is managed by

the SFC-Core. This database stores information from VNF
Packages, VNF Catalog Descriptor, VNF Instances, and SFC
Instances. Directories generated by SFC-Core store the raw

VNF Packages content.

The SFC-Core implementation also enables JSON and

TOSCA/YAML formats for VNF descriptors, as required

by NFV orchestrators such as Tacker and the Open Baton.

Furthermore, the VNF Instances element stores information

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 21:44:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Messages exchanged between the framework and the Tacker NFVO.

such as the unique identifier of the VNF Package being used,

and also the VNFD and VNF instance identifiers generated

by the NFV orchestrator. Storing NFVO generated records is

essential to retrieve status information of VNFs and besides it

is used to destroy VNFs and their descriptors when removing

a service chain running on the NFV orchestrator.

Similarly, the content of the SFC Instances element includes

information such as the SFC unique local identifier, the list

of VNF instances involved in the service chain composition,

as well as identifiers of SFC descriptors and their VNF

Forwarding Graphs (VNFFG) running on the NFVO. A com-

munication agent was also implemented using the Requests
library to exchange information with the REST API provided

by the Tacker. A client application was implemented to test the

proposed framework. This application runs through CLI and

assists the composition and management of service chains. We

also implemented an Element Management (EM) of the NFV-

MANO specification for Click-on-OSv to handle its FCAPS

functionalities.

A. Service Chain Composition

Fig. 3 shows at a high level a typical sequence of messages

exchanged between the framework components and the Tacker

NFV orchestrator during the SFC composition process.

The first message “1: Retrieve Catalog VNF List” sent

from the REST Client to SFC-Core requests a list of available

VNFs stored in the local repository. As a result, the SFC-
Core queries the VNF Catalog Descriptor and replies with

the full list of VNFs stored in the catalog. Subsequently, the

REST Client sends the message “2: Retrieve SFC uuid” to

the SFC-Core in order to get a universal unique identifier to

be used as a label to identify the service chain composition

on all next message exchanges. This allows multiple service

chain compositions to be performed concurrently.

Message “3: Send VNF id” is then employed to submit the

unique ID of the selected VNF to SFC-Core. As soon as the

SFC-Core receives that message it selects and validates the

suitable Connection Points (CP) using the corresponding VNF

descriptor (VNFD) which is stored in the local repository. The

selection and validation operations are triggered by message

“3.1: Select & Validate CPs” and the steps described next

are executed to select the proper CPs. First, the SFC-Core
searches for a CP which has a Virtual Link (i.e., subnet name)

that corresponds to the same Virtual Link of the output CP
of the previous VNF in the SFC. If this process succeeds,

then the input CP is selected. In case no CP matches the

prior CP’s Virtual Link, a NACK message is returned to the

Rest Client. In case the VNF is the first of the SFC, then

the first valid CP of that VNFD is chosen. Essentially, NFVO

orchestrators communicate in a way that allows the execution

of management operations on VNFs using isolated network

traffic. For that reason, CPs attached to management Virtual
Links are not valid for the SFC composition and thus are not

used for this purpose.

On the other hand, the output CP selection rules depend

on the NFVO. In general, if a VNF has just one CP and the

input CP rule is satisfied (i.e., the Virtual Link matches), this

CP is selected as input and output for that VNF and a ACK
message is returned. If the output CP could not be selected, the

SFC-Core places that responsibility on the particular NFVO

communication agent through message “3.1.1: Select VNF
cp out”. We are currently using the Tacker Agent as the NFVO

communication agent.

However, other rules could be applied by communication

agents when using other NFVO orchestrators that allow SFCs

to cross different subnets, or allow SFCs consisting of VNFs

that use the same Virtual Link for various CPs. In this case,

the communication agent searches for all valid CPs in the

VNF descriptor and applies one of the following rules: if there

is just one CP the process succeeds by selecting the output

CP and returns an ACK status code. On the other hand, a

message with the OPTIONS status code along with the list of

suitable CPs is returned if there is more than one applicable

CP. Indeed, selecting the output CP depends on particular

NFVO features since each NFVO has a different approach to

form SFCs. In addition, multiple CPs might share the same

Virtual Link. This happens in VNFs acting as SFC branching

nodes, which can also use more than one Virtual Link.

It is important to highlight that each different NFVO

presents specific restrictions. For instance, at the time of this

writing, the Tacker NFVO does not allow SFCs that use more

than one subnet. It also does not allow the creation of SFPs

(Service Function Paths) which have VNFs that use two CPs
sharing the same Virtual Link in the same SFC. In addition,

if neither the SFC-Core nor the Tacker Agent could select the

right CP, a message with the OPTIONS status code and a

list of potential CPs is sent to the REST Client. This message

requires the user to select a CP. As a result, the alternative

block “alt: Options Mapping Mode” takes place. Message “4:
Send VNF id, cp out” carries the output CP selected by the

network operator from the Rest Client to the SFC-Core. As

soon as the SFC-Core receives that message, it validates the

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 21:44:34 UTC from IEEE Xplore. Restrictions apply.

output CP and sends a reply indicating whether that VNF has

been successfully included in the SFC. This message exchange

pattern (i.e., loop block) is executed repeatedly until all VNFs

have been included in the SFC composition.

After all VNFs are successfully included in the SFC, the

REST Client application requests the Access Control List

(ACL) restrictions to the SFC-Core using message “5: Re-
trieve ACL List”. Afterwards, the operator makes the required

assignments to the ACL constraints (e.g., ip proto: 6, des-
tination port range: 80-80 and ip dst prefix: 10.10.0.5/32).

Message “6: Send Selected ACLs” is used to send all this

information to the SFC-Core. Since the OpenStack Tacker also

requires selecting the Open vSwitch network traffic source

port identifier, the SFC-Core sends message “7: Retrieve
SFC in ACL” to the Tacker Agent requesting the source port

identifier. As a result, the Tacker Agent retrieves this identifier

in message “7.1: Retrieve network src port id ACL” using

the OpenStack Tacker REST API. As soon as this identifier is

received by the SFC-Core, it is added to the ACL constraints.

In addition, the REST Client application sends message

“8: Start VNFFG” to the SFC-Core in order to instantiate

the SFC. Once the SFC-Core receives this message it sends

all VNF descriptors to the Tacker Agent with message “9:
Send All VNFDs”. The Tacker Agent in turn, submits and

instantiates all the VNF descriptors to the Tacker NFVO,

which is represented by message “10: Send VNFDs & Start
VNFs”. Subsequently, the SFC-Core sends the generated SFC

descriptor (i.e., VNFFGD) to the Tacker Agent through mes-

sage “11: Send VNFFGD”. Finally, the Tacker Agent sends the

VNFFGD to the Tacker NFVO and requests its instantiation

with message “12: Send VNFFGD & Start VNFFG”.

B. Evaluation: Concurrent

This section describes experiments executed to evaluate the

prototype performance. We were particularly interested on the

time it takes to compose SFCs in different scenarios as de-

scribed below. The experiments were executed on an Intel(R)

Core(TM) i7-6700HQ CPU with 4 cores up to 3.5 GHz, and

12 GiB of DDR4 RAM at 2133 MHz. We used the Linux

Ubuntu 16.04.3 running kernel 4.13.0-37-generic x86 64, and

the Apache HTTP Server 2.4.18 with the mod wsgi adapter

libapache2-mod-wsgi-py3 to provide a standard Python WSGI

(Web Server Gateway Interface) between the web server and

the SFC-Core Flask library. Apache also was configured to

have 4 processes listening for incoming requests to the SFC-
Core. We also employed the memcached daemon which is a

distributed memory object cache system to do inter-process

communication, as the Apache HTTP Server handles each

stateless request using a different process. We also employed

the MongoDB database.

All experiments were performed 100 times, averages are

presented. A REST Client was implemented in order to run

SFC composition experiments. We highlight that the client

application simply sends REST requests to the SFC-Core
which composes and manages the SFC. The elapsed time of

Fig. 4. Time to compose SFCs with different sizes.

Fig. 5. Time to compose different numbers of SFCs.

each test was recorded by the REST Client at the time instants

the SFC composition process starts and completes.

Fig. 4 shows the time spent by a single client to compose

SFCs that consist of 1, 2, 5, and 10 VNFs. As can be

seen, after adding the second VNF, around 17.5 ms are

needed on average to add each of the next VNFs, time thus

follows a roughly linear pattern. Fig. 5 shows the time to

compose different numbers of SFCs all consisting of 10 VNFs,

using both the Sequential and the Holistic approaches. In

the Sequential approach, 25.485 seconds were necessary to

compose 128 SFCs sequentially. On the other hand, when

using the Holistic approach all the 128 SFCs are composed

concurrently, requiring in average 6.149 seconds to complete

each composition, which is around 4.145 times faster than the

Sequential approach.

V. RELATED WORK

NFV-related technologies have become increasingly rele-

vant. The Open Source MANO (OSM) project [17] imple-

ments the NFV-MANO framework and has three main com-

ponents known as OpenVIM, OpenMANO and OpenMANO-

GUI. In addition, the OpenMANO component implements the

NFVO functional block and uses the REST model to provide

VNF management functionalities, network services and their

corresponding templates. Although the OSM project provides

a web interface to model network services through VNF

composition, users still need to deal with the complexity of

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 21:44:34 UTC from IEEE Xplore. Restrictions apply.

setting descriptors manually, furthermore it does not support

the Click-on-OSv FCAPS operations.

Open Baton [18] also implements the ETSI NFV-MANO

specification. Its main components include an NFV Orches-

trator, a generic VNF Manager (VNFM), and a Software

Development Kit (SDK) with libraries to implement specific

VNFMs. Open Baton also uses OpenStack as the standard

implementation for the VIM component of the NFV-MANO

specification. Although Open Baton offers a web interface to

manage VNFs and network services, the capabilities to create

these services are limited to the upload of VNF Packages

created manually or by third-party tools. Currently, the inter-

face does not allow composing VNFs to create service chains.

Also, Open Baton does not natively support FCAPS operations

required by VNFs that run over Click-on-OSv.

Salsano et al. [19] proposed the Reusable Functional Blocks
Description and Composition Language Design, Deploy and
Direct (RDCL 3D) framework in the context of service chains.

Although the RDCL 3D enables the composition of VNFs in

different NFV platforms through communication plugins, it is

necessary to modify OpenVIM so that it is possible to execute

VNFs built with ClickOS [10]. Our proposal does not require

any ETSI VIM modifications to run Click-on-OSv. Another

distinction between RDCL 3D and our work refers to the use

of the Click Modular Router. While RDCL 3D uses ClickOS

which only runs on a Xen Server, our architecture is based on

Click-on-OSv which is portable and can be executed e.g., on

KVM, Xen Server, VMware, or VirtualBox.

Finally, RDCL 3D uses proprietary descriptors to specify

SFC projects and also implements the service chain compo-

sition logic on the client side (i.e., GUI). In our proposal,

the SFC-Core component is in charge of abstracting both the

implementation and validation complexities of service chain

composition on the server side through a REST API. This

allows a larger number of NFV enablers to be employed by

the Holistic-Composer.

VI. CONCLUSION

In this work we proposed the Holistic-Composer framework

to simplify the composition and lifecycle management of VNF

service chains on multiple NFV platforms. The framework

was specified according to the ETSI NFV-MANO architecture

and can be used along with different NFV platforms and virtu-

ally any end-user applications. A prototype was implemented

that allows the composition and lifecycle management of SFCs

built with Click-on-OSv running on the OpenStack Tacker

NFV orchestration platform. Multiple SFC compositions can

be done concurrently. In particular, we highlight the REST

API provided by the SFC-Core component that frees the

operator from understanding minute details to configure and

operate NFV orchestrators by defining generic operations for

the composition and lifecycle management of SFCs.

Experimental results are shown for the time it takes to com-

pose a single SFC with a growing number of VNFs and the

time to compose multiple SFCs each consisting of 10 VNFs.

The holistic framework was able to compose concurrently 128

SFCs around 4.145 times faster than a sequential approach. As

future work, we are currently implementing a communication

agent for the OSM Orchestrator. Other orchestrators such

as Open Baton are also planned. Future work also includes

extending the architecture to allow resource management,

in particular elasticity. Moreover, allowing service chains to

share VNF instances can also be useful.

REFERENCES

[1] M. Chiosi, S. Wright, D. Clarke, P. Willis, L. Johnson, M. Bugenhagen,
J. Feger, W. Khan, C. Chunfeng, and et al, “Network Functions Virtu-
alisation (NFV): Network Operator Perspectives on Industry Progress,”
ETSI, White Paper, Oct. 2013.

[2] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “NFV and SDN -
Key Technology Enablers for 5G Networks,” IEEE Journal on Selected
Areas in Communications, vol. 35, no. 11, pp. 2468–2478, 2017.

[3] J. Quittek, P. Bauskar, T. BenMeriem, A. Bennett, M. Besson, P. M.
Bruun, J.-M. Calmel, B. Chatras, and et al, “Network Functions Vir-
tualisation (NFV); Management and Orchestration. GS NFV-MAN 001
V1.1.1,” ETSI, Group Specification, dec 2014.

[4] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” Internet Requests for Comments, RFC Editor, RFC 7665, October
2015.

[5] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” J. Netw. Comput. Appl., vol. 75, no. C, pp. 138–155,
Nov. 2016.

[6] IETF, “Service function chaining (sfc) - documents,” 2018. [Online].
Available: https://datatracker.ietf.org/wg/sfc/documents/

[7] ETSI, NFVISG, “Network Functions Virtualisation (NFV); Terminology
for Main Concepts in NFV,” ETSI, Group Specification, dec 2014.

[8] L. da Cruz Marcuzzo, V. F. Garcia, V. Cunha, D. Corujo, J. P.
Barraca, R. L. Aguiar, A. E. Schaeffer-Filho, L. Z. Granville, and
C. R. P. dos Santos, “Click-on-OSv: A platform for running Click-based
middleboxes,” in 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). IEEE, may 2017, pp. 885–886.

[9] OpenStack Tacker, “Tacker - openstack nfv orchestration,” 2018.
[Online]. Available: https://wiki.openstack.org/wiki/Tacker

[10] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 459–473.

[11] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[12] P. Quinn and T. Nadeau, “Problem statement for service function
chaining,” Internet Requests for Comments, RFC Editor, RFC 7498,
April 2015.

[13] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (nsh),”
Internet Requests for Comments, RFC Editor, RFC 8300, January 2018.

[14] A. Kojukhov, A. M. de Nicolas, B. Chatras, D. Druta, D. Gassanov,
M. Brunner, M. Brenner, S. Li, T. Nguyenphu, U. Rauschenbach, and
Z. Sacks, “Network functions virtualisation (nfv) release 2; protocols
and data models; vnf package specification. GS NFV-SOL 004 V2.3.1,”
ETSI, Group Specification, jul 2017.

[15] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng, and U. Michel, “Network
functions virtualisation: An introduction, benefits, enablers, challenges
& call for action,” ETSI, White Paper, Oct. 2012.

[16] OpenStack, “Openstack - open source software for creating private and
public clouds,” 2018. [Online]. Available: https://www.openstack.org/

[17] ETSI, “Open source mano,” 2018. [Online]. Available:
https://osm.etsi.org/

[18] F. Fokus and B. Tu, “Open baton: an open source reference
implementation of the etsi network function virtualization mano
specification,” 2018. [Online]. Available: http://openbaton.github.io/

[19] S. Salsano, F. Lombardo, C. Pisa, P. Greto, and N. B. Melazzi, “RDCL
3D, a Model Agnostic Web Framework for the Design and Composition
of NFV Services,” in IEEE Conference on Network Function Virtual-
ization and Software Defined Networks, no. 1, oct 2017.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 21,2021 at 21:44:34 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

