
An NSH-Enabled Architecture
for Virtualized Network Function

Platforms
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Abstract. The proper execution of Virtualized Network Functions
(VNFs) depends on the employment of platforms specifically created
to fulfill multiple Network Function Virtualization (NFV) requirements
(e.g., performance, integration, and management). However, existing
VNF platforms implement different architectures, thus resulting in pro-
prietary or limited solutions that do not always support important NFV
specifications, such as Network Service Header (NSH). In this work, we
introduce a comprehensive architecture for VNF platforms that supports
the NFV requirements defined by the European Telecommunications
Standards Institute (ETSI), while also enabling the execution of NSH.
We implemented a VNF platform prototype, on which we conducted a
case study, and report a series of performance evaluation experiments.
Results demonstrate the intrinsic advantages of supporting NSH and
show the flexibility of our architecture in distinct NFV scenarios.

1 Introduction

Computer networks typically rely on dedicated equipment (i.e., middleboxes) to
perform common network functions (e.g., NAT translation, intrusion detection
and load balancing). However, despite the usual benefits of such middleboxes,
including performance and reliability, they offer limited flexibility regarding the
design and deployment of advanced network services. Network Functions Virtu-
alization (NFV), in turn, is a networking paradigm that leverages virtualization
technologies to decouple network functions from the physical equipment and run
such functions as software that executes on commodity hardware [5].

The adoption of NFV presents several benefits, including higher cus-
tomization and the reduction of Capital and Operational Expenditures
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(CAPEX/OPEX). Multiple efforts are being conducted to foster the adoption
of NFV technologies with the ultimate goal of encouraging the development of
solid foundations that support advanced NFV solutions.

Essentially, a VNF is divided into two main parts: the Network Function
(NF) itself and the VNF platform. NF corresponds to the software implemen-
tation responsible for packet processing, while the VNF platform is the envi-
ronment that supports the execution of NFs. VNF platforms are designed tak-
ing into account the need to enable the creation of multiple network functions
while consuming few computing resources. However, existing VNF platforms
(e.g., ClickOS [12] and OpenNetVM [15]) are not created using standardized
architectures, thus resulting in solutions that are either proprietary or present
serious limitations, such as the lack of support for advanced NFV specifications,
in particular Network Service Header (NSH) – a packet header that enables the
creation of dynamic service planes [13].

In this paper, we introduce a comprehensive architecture for VNF platforms
that strictly adheres to ETSI requirements and provides support for NSH. Our
key contributions are: (i) the development of a VNF platform prototype based
on ETSI requirements; and (ii) the identification of critical features provided by
NSH that enables the development of advanced network services.

The remaining of this paper is organized as follows. Section 2 presents the
background on NFV along with its main components, basic requirements, and a
review of the literature. In Sect. 3, we propose a architecture for developing VNFs
with support for NSH, and instantiate this architecture by describing a running
prototype platform implemented to support virtualized network functions. In
Sect. 4, we evaluate the performance of our prototype. Finally, in Sect. 5, we
conclude this paper with final remarks and an outline of future work.

2 Background and Related Work

In this section, we present the background on Network Functions Virtualization
(NFV) and Virtualized Network Function (VNF). We also discuss the charac-
teristics and limitations of existing VNF platforms.

2.1 Network Function Virtualization in a Nutshell

NFV aims to implement Network Functions (NFs) in software, so they can run
on commodity hardware by employing common virtualization technologies [5].
Two of the most relevant standardization bodies are expending considerable
energy in defining models, methodologies, and concepts in this area: the Euro-
pean Telecommunications Standards Institute (ETSI) and the Internet Engi-
neering Task Force (IETF).

The NFV architectural framework [7] defined by ETSI is composed of three
functional blocks: NFV Infrastructure (NFVI), NFV Management and Orches-
tration (NFV MANO), and Virtualized Network Functions (VNF). NFVI is the
collection of physical resources (e.g., processing, storage, and network) needed
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to execute VNFs. NFV MANO in turn encompasses: the Virtualized Infrastruc-
ture Manager (VIM), which controls the physical/software infrastructure; the
VNF Manager (VNFM), which is responsible for VNF lifecycle operations (e.g.,
instantiation, termination, scaling, and migrations); and the NFV Orchestra-
tor (NFVO), which enables the management of network services. Finally, the
VNF functional block itself represents the network functions that run on VNF
platforms.

The IETF has been working on standardizing the Service Function Chain
(SFC) [8], which consists of multiple VNFs working together in a composition
that provides a network service. In addition to VNFs, a SFC also includes bound-
ary nodes (i.e., incoming and outgoing points of traffic) and steering specifica-
tions. One way to implement those SFCs is by using the architecture defined
in the IETF’s Request for Comments (RFC) number 7665 [8]. In that RFC, a
Network Service Header (NSH) [13] is employed to enable packets to traverse
a specific path of VNFs. Each VNF, in turn, can either be NSH-aware or not.
NSH-aware VNFs make a request to a proxy element to remove the NSH before
processing, after which the proxy element is again invoked to update/reinsert
the NSH element. Alternatively, VNFs can process NSH themselves, without
relying on external elements.

An NSH encapsulates L3 packets as they are processed by the SFC, and car-
ries information about the Service Function Path (SFP), the current packet loca-
tion in the SFP, and meta-data provided by the VNFs during packet processing.
NSH is subdivided into three meta-headers: Base Header, Service Path Header,
and Context Header. The Base Header provides general information about the
protocol itself and the next meta-headers data. This meta-header (4 bytes), in
turn, carries 5 fields (i.e., version, O bit, TTL, length, and meta-data type), in
addition to reserved space for future protocol use. The Service Path Header is
also formed by 4 bytes and has 2 fields: Service Path Identifier (identifies the
SFC’s SFP) and the Service Index (provides the location of the packet in the
SFP). Finally, the Context Header can be fixed (16 bytes) or variable to carry
meta-data information as the SFC is processed.

VNF platforms are specially designed to host VNFs and their associated
components. The ETSI lists the basic requirements for developing such platforms
(e.g., hardware independence, elasticity, reliability) [14]. The ETSI also specifies
that a VNF platform must host VNFs independently of the underlying hardware.
Furthermore, VNF platforms must provide the flexibility expected from the NFV
paradigm to support the operations of deployment, scaling, and migration.

Several aspects of VNF platforms, however, are still unexplored in the lit-
erature. For example, the lack of standardization on existing VNFs platforms,
mostly created without a well defined architecture and missing features such as
NSH and SFC support. Existing platforms, detailed next, usually support only a
single programming language, run on very specific hypervisors, do not describe
a formal architecture, and do not fulfill all the above requirements defined by
the ETSI.
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2.2 VNF Platforms

Many research efforts concentrate on creating VNF platforms that are capable of
executing NFs. However, these VNF platforms do not provide support for more
recent NFV specifications, such as NSH. Still, two of the most important VNF
platforms today are ClickOS and OpenNetVM, described next.

ClickOS [12] is an optimized platform for running NFs based on Mini-OS,
netmap, and Click Modular Router. ClickOS uses paravirtualization techniques
along with several modifications in both Xen and VALE to support fast packet
I/O, being able to saturate 10GbE links with a single processing core. Alas,
the ClickOS architecture is monolithic and inflexible and supports only a single
packet acceleration tool for sending and receiving network traffic to an indivisible
NF.

OpenNetVM [15] is a simplified platform that uses containers to execute
VNFs on commodity servers along with the packet acceleration framework
DPDK [9]. OpenNetVM meets the ETSI scalability requirements because of
its lower overhead due to the use of containers, which are a lightweight solution
in comparison with virtual machines. The OpenNetVM architecture consists of a
packet acceleration tool interconnecting VNFs with Virtualized NICs (VNICs).
NFs are created as a single component within a proprietary framework and
are deployed on a container core. OpenNetVM also provides an internal router
implemented using shared memory, which steers network traffic between multiple
VNFs.

Both ClickOS and OpenNetVM unfortunately lack support for important
VNF elements (e.g., VNFCs and NSH). The ClickOS architecture is straight-
forward and does not have any native management method, providing only a
minimalist environment to execute simple NFs. Despite OpenNetVM’s internal
traffic router, the platform is restricted to a single packet acceleration tool and
a single packet processing framework, both deployed on a container core and
managed by an external native agent. Furthermore, these platforms do not meet
all of the requirements specified by the ETSI. ClickOS, for example, can only
be executed on the Xen hypervisor and every control operation is performed
locally through the XenStore. Also, OpenNetVM presents limitations related
to NF instantiation (due to hardware device sharing), portability (migrations
are only possible between compatible infrastructures), and security issues with
containers (single kernel sharing) [11].

3 VNF Platform Architecture and Prototype

In this section, we introduce an architecture for VNF platforms which supports
SFC chaining using NSH. The proposed architecture is designed to be flexible
and technology agnostic. Ultimately, we expect this architecture to serve as a
template for designing new systems and re-engineering existing ones.
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3.1 Architecture Overview

Currently, there is no de facto standard for the design and development of VNF
platforms, from neither industry nor academia. VNF platforms, however, must
be developed to meet multiple strict requirements (e.g., portability, performance,
integration, management, and scalability), in order to fulfill the needs of modern
networks. Furthermore, the NFV area is evolving, with new technologies being
created continuously. Therefore, it is essential to design flexible solutions that
support new NFV Enablers (i.e., existing frameworks and technologies that con-
tribute to the development and implementation of NFV) from an ever increasing
number of players in the NFV market. VNF platforms must also be created with
integration in mind. There are several systems (OSS/BSS, Hypervisors) and ele-
ments (NFVI, VNFM, EMS) that must work together with multiple VNFs in
order to adequately provide virtualized network services [7].

Fig. 1. VNF platform architecture

In this context, we propose a generic and flexible architecture for VNF plat-
forms, (Fig. 1). The proposed platform consists of multiple modules, deployed
on a host operating system (called here VNF Core): an module responsible for
management access of Virtual Network Interfaces (vNIC), being the main point
of input/output of packets from the architecture, a module consisting of a frame-
work for development and execution of network functions, a management agent
responsible for configuration of the host operating system and the other mod-
ules and, finally, a NSH Processor which provides an abstraction for the network
functions regarding the existence of NSH packets.

Network Service Header (NSH) is a new service plane protocol, specified
by IETF, inserted onto packets/frames to provide service function paths [13].
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Despite its advantages, NSH is not always employed to steer traffic across mul-
tiple VNFs. In order to support the cases where NSH is employed or not, we
introduced the NSH Processor, which is responsible for manipulating the NSH
fields that may be modified when a packet is traversing a network path (i.e.,
the Service Index - SI; and Context Header - CH). The proposed NSHP also
provides the following operations: NSH removal, NSH reinsertion, CH retrieval,
and CH update.

Packets are then received by the development frameworks used to implement
network functions. Basically, these frameworks include applications (e.g., Click
Modular Router [10] and Vector Packet Processing [3]), programming languages
(e.g., C, C++, Python), libraries (e.g., Scapy, libtins, libnet), or even single
routines that support the construction and handling of network packets.

All the described modules are controlled by an management agent, which is
responsible for monitoring and controling the execution of VNFs. Once a VNF
is executing, the retrieve operations can be used to gather information about
the VNF instance (e.g., VNF ID, network interfaces), measuring performance
indicators from the VNF Core (e.g., CPU, memory, and network usage), and
providing information from the extended agents deployed in the VNF platform.

3.2 NFV Enablers

As a proof of concept of the proposed architecture previously presented, we
implemented a prototype that consists of a VNF platform that employs modern
and well-accepted NFV enablers. In this context a NFV enabler is any technology
used as a basis for the development of NFV ecosystems [5], such as hypervisors,
packet acceleration frameworks, virtual routers, and operating systems. Specifi-
cally, we employed the following technologies in our solution:

• Click Modular Router – a well-known packet processing framework that
provides an extensive list of network elements, native support for packet accel-
eration frameworks, and built-in control methods. The Click framework has
been extensively investigated in academia and employed in several efforts
to develop VNF platforms, such as ClickOS [12], Click-on-OSv [4], and the
platform proposed by Bu et al. [2];

• Intel Data Plane Development Kit (DPDK) – a packet acceleration
framework that provides high throughput with reduced resource consump-
tion (by using PCI passthrough and zero-copy) and supports multiple net-
work interface cards (including paravirtualized ones, such as virtio and
netfront);

• RESTful Web Services – an architectural style for the provisioning of Web
Services (WSs) with simplified access to resources. RESTful web services are
lighter than traditional SOAP-based WSs and are used here as the basis for
the management agent to export performance statistics regarding the VNF
platform, and to receive management requests from an external VNFM or
EMS.
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Furthermore, we have chosen Debian as the operating system for the VNF
Core. Although this operating system is not explicitly designed to support the
NFV requirements (e.g., performance), this decision enabled us to focus on the
development of the internal modules without concerns about software compati-
bility, thus enabling the analysis of the architecture from the functional point-of-
view. However, the development of NFV platforms for production environments
should benefit from more recent solutions such as OSv, CoreOS, MiniOS, and
Alpine.

3.3 Platform Prototype

For handling the vNICs, we initially chose DPDK. However, the platform also
supports L2 Sockets to provide increased flexibility. These two options are
available and can be selected according to the specific needs of the operator1.
Although we have employed these two solutions, other solutions (e.g., PF RING,
and netmap) could be used without significant implementation efforts.

The NSH Processor operates as a proxy during the platform execution and
can be enabled by the network operator. When enabled, packets first pass
through the NSHP in order to remove NSH before steering the packets to the
network function (i.e., CMR or Python-based NFs/VNFCs), and for NSH rein-
sertion before forwarding processed packets back to the vNIC (i.e., DPDK or
L2 Sockets). The NFs, when necessary, can access the NSH Context Header to
retrieve or replace content using specific libraries we developed (both in Python
and CMR)2. Notice that, during the NSHP reinsertion operation, the Service
Index field is updated.

The Management Agent was developed as a RESTful WS and is able to
control (through system calls and CMR’s control socket) all the internal compo-
nents of the platform. For monitoring, Glances3 was used to recover system-wide
statistics, while a custom REST API was developed to meet the management
requirements as specified in [1], such as providing information regarding the VNF
(e.g., function description, system state, logs) and supporting the reconfigura-
tion of running functions. These operations can be accessed either directly by
network operators (through the integrated EMS) or by external EMS and VNF
Managers (by using REST calls to the management interface).

To initiate the platform, the network operator must first provide (through
the Management Agent) a VNF Package that contains the network function
implementation, its descriptor, and settings to initialize the internal modules
properly. These settings are used, for example, to enable/disable the NSH Pro-
cessor. After the initial platform configuration, the NF lifecycle operations (e.g.,
start, stop, status, and monitoring) become available to the network operator.

1 The polling method of DPDK is inefficient regarding to CPU resources, while L2
Sockets are not able to achieve high throughput.

2 By the time of writing, we opted to support only Context Headers of fixed-length
[13].

3 https://nicolargo.github.io/glances/.

https://nicolargo.github.io/glances/
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The platform prototype supports three execution scenarios: NSH packets with
NSH unaware NF, NSH packets with NSH aware NF, and packets without NSH.

4 Evaluation

To evaluate our proposed architecture, a case study of the prototype presented in
Sect. 3.2 are presented. An Intel Core i7-4790K@3.60 Ghz server with 8 GB RAM
DDR4 running Debian 8 was used. The prototype platform was configured to
use L2 Sockets for input/output and NFs developed using both Python3 and/or
CMR frameworks. All the experiments were repeated 30 times, considering a
confidence level of 95%.

4.1 NSH for VNFs Intercommunication and SFC Steering

We used NSH to improve an existing NFV-based solution to mitigate DDoS
attacks called DeMONS [6]. In DeMONS, six separate VNFs were employed
to detect malicious traffic and steer it through separate channels with different
bandwidth capacities. These VNFs are Manager, Priority Classifier, Firewall,
Allocator, Traffic Policing, and Router. The Manager is responsible for orches-
trating the environment execution, for example, by monitoring the network load
to scale running VNFs. The Priority Classifier, the Firewall, and the Allocator
are responsible for identifying and classifying benign traffic, and blocking mali-
cious traffic. Finally, both the Traffic Policing and the Router are responsible for
applying user-defined policies (e.g., partial dropping and traffic shaping) on the
suspicious flows.

In the original DeMONS, the first three VNFs (i.e., Priority Classifier, Fire-
wall, and Allocator) are connected through a static path and share the traffic
reputation through the Manager (acting as a central point of communication).
The Priority Classifier uses Intrusion Detection System (IDS) techniques to gen-
erate the traffic reputation, and classifies the incoming flows with values ranging
from 0 to 1. Reputation 0 means a malicious flow, reputation 1 indicates a benign
flow, and values between those limits indicate unclassified traffic. After the clas-
sification, the traffic is forwarded to the Firewall, which queries the Manager
to verify the traffic reputation, blocks 0 marked flows, and forwards the rest to
the Allocator. The Allocator, in turn, steers the traffic to a high priority tunnel
(that guarantees QoS for high reputation flows) or to a low priority tunnel (that
can be overloaded with low reputation flows). Figure 2-A presents the original
DeMONS implementation design.

DeMONS was deployed using the IETF’s SFC architecture (i.e., Classifier
and Service Function Forwarder) [8] and the VNF Platform prototype developed
in this work. NSH was used to enable in-band control for sharing flow reputa-
tions and to orchestrate the traffic steering across all the employed NSH aware
VNFs (i.e., the SFC). The reputation table (originally at the Manager) is now
maintained by the Priority Classifier and shared between the VNFs through the
NSH Context Header. In case of benign traffic, the Service Index is decremented
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Fig. 2. DDoS mitigation NFV solution (DeMONS)

by two in order to forward the packets directly to the Allocator, thus skipping
the Firewall. Finally, the Allocator gets the reputation value directly from the
flow packet by using the NSH’s Context Header. Figure 2-B presents the adapted
DeMONS implementation design.

The use of NSH led to performance improvements in DeMONS due to
redesign and the embedded mechanism to exchange control data. The first
experiment was executed to evaluate the execution time overhead introduced
by retrieving and processing the reputations in both original and modified
DeMONS. Two versions of the Packet Filter VNFC were developed in order
to operate in both scenarios (NSH and Non-NSH), and were instrumented to
measure the elapsed processing time for each packet. Iperf was used to generate
the network traffic (UDP packets of 1470 Bytes), with the results presented in
Fig. 3.
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Fig. 3. Reputation retrieval processing time overhead

In the Non-NSH DeMONS, the reputation retrieval process consists in con-
tacting the Manager (through a UDP Socket) to discover the reputations. This
operation is performed for all the network packets traversing the VNFC. When
NSH is employed, on the other hand, the reputation value is included in the NSH
Context Header of each packet by the Priority Classifier. In this case, the Packet
Filter just needs to open this header to retrieve the information. As suspected,
the same operation (reputation retrieval) leads to significant differences in terms
of processing time (in favor to NSH-based), which may affect other performance
indicators (e.g., throughput and packet loss). An important observation is that
no major differences occurred for packets with different sizes.

The use of a Service Function Forwarder in the NSH DeMONS scenario also
demonstrated interesting opportunities for improving the traffic steering overall.
This SFC element (e.g., an OpenFlow Switch or a P4-enabled device) steers the
network traffic according to the Service Index value present in the NSH Service
Path Header. In this way, it is possible to manipulate the VNF execution order
by updating the NSH Service Index according to decisions taken during VNF
processing. For our case study, the Firewall VNF only processes the malicious
traffic in order to collect statistics (e.g., number of discarded packets) and then
discards the packets. In addition to not processing benign flows – when malicious
traffic is nonexistent (i.e., no attack occurring) – it is possible to temporarily
disable the Firewall VNF, thus saving computational resources.
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5 Conclusion and Future Work

Network Functions Virtualization (NFV) has been attracting great interest from
both industry and academia. However, despite all the advancements in the field,
there are still opportunities for research, development, and standardization. For
example, there are no widely accepted definitions for the internal architecture of
the platforms responsible for executing NFs, neither the processing of NSH inside
those VNFs. This leads to a scenario where several platforms (e.g., ClickOS and
OpenNetVM) have been created without integration concerns in mind, the result
is that none fulfills the complete set of NFV requirements.

This work proposed an architecture for VNF Platforms with NSH support.
We specified the basic modules for building a platform, as well as identified
existing NFV enablers that can be employed during such development. We also
presented a platform prototype that employs the proposed architecture to sup-
port the execution of disparate network functions. Finally, we conducted a per-
formance evalution to identify the advantages of employing NSH. The exper-
iment shows the advantages of using NSH when designing SFCs. First, the
NSH Context-Header enables the functions to communicate and change infor-
mation in-band. Second, the Service Index field allows the creation of dynamic
SFCs, without the need to a priori set the path of VNFs, thus enabling traffic
steering to be executed by using common solutions (e.g., Open vSwitch, P4-
enabled equipment). Future work includes the investigation on how the current
VNF/SFC descriptors (e.g., TOSCA) have to be adapted to support NSH, and
improve the prototype by supporting novel packet processing frameworks (e.g.,
VPP) and other virtual network technologies (e.g., netmap).
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