
J. Parallel Distrib. Comput. 123 (2019) 90–99

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Beyond scalability: Swarm intelligence affected by magnetic fields in
distributed tuple spaces
Henrique D. Lima a, Luiz A. de P. Lima Jr. a,∗, Alcides Calsavara a, Henri F. Eberspächer a,
Ricardo C. Nabhen a, Elias P. Duarte Jr. b
a Post-Graduate Program on Computer Science, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba-PR 80215-901, Brazil
b Department of Informatics, Universidade Federal do Paraná, P.O. Box 19018, Curitiba-PR 81531-980, Brazil

h i g h l i g h t s

• A scalable bioinspired method for data retrieval in distributed spaces is proposed.
• The behavior of data retrieving agents is affected by virtual magnetic fields.
• Simulation results in six different scenarios bring about the method strengths.
• Comparisons with previous approaches show how better performance was achieved.

a r t i c l e i n f o

Article history:
Received 15 February 2018
Received in revised form 16 June 2018
Accepted 3 September 2018
Available online 15 September 2018

Keywords:
Tuple space
Swarm intelligence
Virtual magnetic fields

a b s t r a c t

Tuple Spaces have long been recognized as a simple and elegant model for parallel and distributed
computing. This is mainly because of spatial and temporal uncoupling of system components, which
simplifies inter-process communication as well as component inclusion and replacement. However,
Tuple Spaces have shown scalability limitations when employed in large scale and highly demanding
contexts. In order to deal with this problem, ‘‘bioinspired’’ techniques based on swarm intelligence
including SwarmLinda and Anti-Over-Clustering have been proposed. This work shows that although these
approaches do improve the system scalability, they end up producing an important degradation on tuple
search performance, due to poor tuple placement. By applying the concept of ‘‘virtual magnetic fields’’ to
swarms, a novel solution calledMagnetic SwarmLinda is proposed.Magnetic SwarmLinda arranges tuples in
expandable clusters of clusters (called ‘‘magnetic clusters’’) naturally providing load balancing among the
supporting computing nodes. Simulation results show that the proposed strategy outperforms previous
approaches in most scenarios.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Distributed Tuple Spaces – or simply Tuple Spaces [1] – provide
an associative shared memory computing model for process com-
munication and coordination in distributed and parallel systems.
Tuple Spaces have been employed in diverse areas such as the
Internet of Things (IoT) [12], cloud computing [3,10], and to build
large scale expert systems1.

Data is stored in the distributed space in the form of tuples,
which are ordered lists of fields of different data types, similar to
the concept of registers in typed programming languages. Clients
are either tuple consumers (that read or remove tuples from the
space) and/or producers (that insert tuples into the space). The

∗ Corresponding author.
E-mail address: laplima@ppgia.pucpr.br (Luiz A. de P. Lima).
URL: http://www.ppgia.pucpr.br/~laplima (Luiz A. de P. Lima).

1 www.gigaspaces.com.

main difference between Tuple Spaces and other models is that
tuples do not have explicit addresses. Searches in the tuple space
are performed by association using templates which specify the
‘‘format’’ of the requested tuple. Templates are ‘‘incomplete’’ tuples
in the sense that some of their fields may not hold instances of
data, but only their type. For instance, the template ⟨string, 2018⟩
represents all 2-element tuples such that the first field is a string
and the second is the integer 2018.

Processes communicate and synchronize with each other by
inserting, reading and removing tuples from the Tuple Space.
Because of this, the model provides temporal uncoupling (since
providers and consumers do not need to be simultaneously ‘‘on
line’’ in order to communicate) as well as spatial uncoupling (since
the communicating processes can be arbitrarily distributed in the
network).

The Tuple Space model was originally proposed and imple-
mented in the context of the Linda programming language
[6–8]. For this reason, it is generally identified with Linda itself.

https://doi.org/10.1016/j.jpdc.2018.09.004
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.09.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.09.004&domain=pdf
mailto:laplima@ppgia.pucpr.br
http://www.ppgia.pucpr.br/~laplima
http://www.gigaspaces.com
https://doi.org/10.1016/j.jpdc.2018.09.004


H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99 91

The language introduces two basic operations to insert and remove
a tuple from the Tuple Space: out and in, respectively. The out
operation takes a tuple as parameter, while the in operation takes
a template as parameter. The in operation is synchronous and
blocks the calling thread until a matching tuple is found in the
Tuple Space.

Although tuple spaces allow the construction of distributed sys-
tems, the original systems (including JavaSpaces [20]), are based
on a centralized component that is responsible for performing all
the operations on the Tuple Space. Later fully distributed strategies
were proposed, such as SwarmLinda [13] in which Tuple Spaces are
implemented using swarm intelligence. In SwarmLinda, whenever
an out operation is performed, a ‘‘tuple-ant’’ is instantiated with
the goal of finding an adequate node to deposit the tuple. In order
to improve the performance of future in operations, tuple-ants
try to deposit their tuples in nodes with a greater concentration
of similar tuples. In this way, clusters of similar tuples are created
in the network and the paths leading to these nodes are naturally
followed when searching for matching tuples. Although this ap-
proach does indeed improve the scalability of Tuple Spaces, it does
not completely solve the problembecause as the number of similar
tuples increases, some nodes are likely to become overloaded.
Moreover, overloaded nodes end up attracting more and more
tuples, thus further aggravating the problem.

In order to solve that problem, [4] proposes an Anti-Over-
Clustering strategy to overcome the excessive concentration of
similar tuples in some nodes. In this approach, although a tuple-
ant still tries to find a node with similar tuples in order to deposit
its own, when the number of similar tuples gets close to a given
threshold, the probability of depositing the tuple drops, thus de-
creasing the chance of creating over-sized clusters. Unfortunately,
this strategy forces tuple-ants to carry on the exploration of the
Tuple Space which turns out to consume more network and pro-
cessing resources. Moreover, this strategy leads to the creation
of clusters that are too scattered across the network, and this
considerably worsens the performance of tuple retrieval.

In this work, we proposeMagnetic SwarmLinda, a novel strategy
based on swarm intelligence affected by ‘‘Virtual Magnetic Fields’’.
The motivation is to both avoid overloaded nodes and excessive
cluster dispersion thus improving tuple retrieval performance. Vir-
tual Magnetic Fields are a distributed autonomic model originally
employed to allow efficient application-level message routing – a
message is delivered to the most suitable node – which is defined
as the one with the greatest attraction force. The attraction force
is a dynamic parameter defined by the application semantics. The
model has been also applied to implement a fully distributed
load-balancing mechanism [14] (in this case, the node’s attraction
force is inversely proportional to the node’s load). In Magnetic
SwarmLinda, however, magnetic fields act as magnetic shields that
protect nodes from an excessive concentration of similar tuples. As
a consequence, clusters of clusters (i.e., groups of neighboring nodes
containing similar tuples) are created to store similar tuples.

In other words, the problem statement can be expressed as:
develop a Tuple Space strategy that improves the performance
of the tuple retrieval operations by avoiding excessive tuple con-
centration, and thus reducing agent competition, and therefore,
node overloading. Furthermore, the proposed strategy also pre-
vents excessive tuple dispersion by storing tuples in clusters of
neighboring nodes, which significantly improves the performance
of tuple retrieval. The proposed strategyMagnetic SwarmLindawas
implemented and the results obtained show that its performance
is superior to the other competing approaches except in scenarios
where similar tuples are rare in the tuple space.

The remainder of the paper is organized as follows. Section 2
describes relatedwork. TheMagnetic SwarmLindamodel is detailed
in Section 3. In Section 4, experimental results are described in-
cluding comparisons with the Anti-Over-Clustering approach. Con-
clusions follow in Section 5.

2. Related work – Distributed Tuple Spaces

In this section, some of the major distributed Tuple Space ap-
proaches are described. Arguably, WCL [16] is the first system
based on geographically distributed Tuple Spaces. Although the ba-
sic components ofWCL are centralized Tuple Spaces (each ofwhich
runs on a single node) WCL is capable of performing transparent
migration of a Tuple Space from one node to another. This allows
a specific Tuple Space to get closer to the nodes that issue most
requests, thus reducing the communication latency. Migration can
also occur when a given node becomes overloaded; in this case
the strategy proves to be effective only when the extra load is due
to the presence of several ‘‘small-sized’’ Tuple Spaces contributing
to the load. When a single Tuple Space alone is the cause of the
overload WCL does not work.

LInda in Mobile Environment (LIME) [15] is a Tuple Space im-
plementation that uses mobile agents in a heterogeneous mobile
network. Each agent provides a vision of the current set of avail-
able tuples. This set of available tuples expands or contracts as
connections among hosts are established or dropped, respectively.
The number of tuples in a Tuple Space can also change as agents
move fromone host to another. The distribution of tuples in LIME is
quite particular. Each tuple inserted into the Tuple Space is stored
in the host running the agent that was responsible for its insertion.
When an agent migrates to another host, it carries along all its
non-retrieved tuples. Because of this, when an agent cannot find
a given tuple in its own portion of the shared Tuple Space, it keeps
searching on other hosts of the Tuple Space until a matching tuple
is found, this strategy results in unbound delays.

Dtuples [11] is a Tuple Space implementation based on a Dis-
tributed Hash Table (DHT). The authors argue that the DHT sim-
plifies the communication among Tuple Space agents. Dtuples
requires that the first element of a tuple be a string containing the
tuple’s ‘‘name’’. Namesmaynot be unique, though. They are used to
determine the location where tuples are stored. When retrieving a
tuple, a name is again required to be the first field of the template so
that the system may compute the location of a possible matching
tuple. Unfortunately, this approach does not prevent unwanted
concentration of tuples, since the hash function may produce a
high number of collisions. Furthermore, the need for an additional
element (the name) imposes undesired changes in the traditional
Tuple Space interface.

Tupleware [1] is a Linda-inspired middleware that implements
Tuple Spaces using a distributed algorithm to retrieve tuples. Tu-
ples inserted by a process are stored in a local instance of the Tuple
Space. This strategy may result in an excessive concentration of
tuples on some nodes depending on the application communi-
cation pattern of specific applications. When a process requests
a tuple which is not locally available, an application-transparent
distributed search algorithm is initiated. This search is performed
sequentially, starting with the nodes belonging to the Tuple Space
that exhibit higher success factors. The success factor is computed
from the historical rates of search hits on the nodes. In thisway, the
success factor is incremented for a particular nodewhen the search
is successful and decremented otherwise. This strategy may result
in poor load distribution, since nodes with greater success factors
will probably be highly requested.

SwarmLinda [13,18] is a Tuple Space implementation that uses
swarm intelligence to provide scalability. Swarm intelligence is
one of the several different approaches inspired by nature (also
called ‘‘bioinspired’’ i.e. inspired by biological systems) that have
been proposed to address problems in several areas of computer
science. In SwarmLinda the tuple space is implemented through
the interactions of very simple individuals inspired by ants. The
system is fully distributed: the decisionsmade by these individuals



92 H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99

Fig. 1. Magnetic SwarmLinda distributes tuples in sets of neighboring nodes (calledmagnetic clusters), thus preventing ants from traveling very far when they are not found
in a cluster node.

are based solely on local information, thus rendering the knowl-
edge of the global system state unnecessary. This characteristic im-
proves the performance of the system, as it prevents the intensive
message exchanges that would be required to maintain the global
state knowledge.

In SwarmLinda, whenever a out operation is performed, a mo-
bile agent that implements an ant is instantiated to deposit a tuple
in the tuple space. This agent, referred to as tuple-ant, is responsible
for traversing the different nodes that make up the tuple space to
find a suitable node to deposit the tuple. The criterion used by the
tuple-ant to deposit a tuple is the number of tuples in the node that
are similar to the tuple it is carrying. Thus, the probability to drop a
tuple on a node is higherwhen there aremany tuples similar to the
tuple being carried. This behavior causes the formation of clusters
of similar tuples in a given node.

As a tuple-ant moves from one node to the next, it deposits a
‘‘pheromone’’ that is specific for the type of tuple being carried on
each visited node to mark the traversed path. Moreover, when a
tuple is deposited on some node x, pheromone is also disseminated
to x’s neighbors.

Similarly, whenever an in operation is executed, a mobile agent
is also instantiated. This agent, referred to as template-ant, is re-
sponsible for traversing the nodes of the Tuple Space to find a
tuple that matches the template. When the template-ant finds a
compatible tuple, it returns to its origin carrying that tuple. On its
way back, a template-ant agent also marks that path by depositing
pheromone on each visited node.

The strategy used by the tuple-ant and the template-ant to de-
cide which nodes need to be visited is based on the concentration
of pheromones that actually identify similar tuples. When an ant
does not reach its goal in the current node, it obtains information
about thenumber of similar tuples on that node and the intensity of
the pheromone in neighboring nodes to determine the probability
of moving on to each of these nodes. A Time to Live (TTL) variable
is employed by the ants in order to prevent them from moving
around indefinitely across the tuple space.

The creation of clusters of similar tuples prevents template-
ants from traversing the whole tuple space as they search for a
matching tuple. Instead, each template-ant concentrates its efforts
in identifying the path (from the pheromone tracks) that lead to
the cluster of interest. However, the higher the number of tuples
of a cluster, the slower the retrieval process can be, due to the
potentially large amount of ants being processed by the node.
Moreover, overloaded nodes tend to become more attractive from
the ant’s point of view because of the high levels of pheromone
leading to them.

In [5], the Anti-Over-Clustering strategy is proposed to avoid
over-clustering of tuples in some nodes of SwarmLinda. This strat-
egy is implemented by modifying the computation of the prob-
ability of a tuple-ant to deposit a tuple on a given node. The
modification is based on a sigmoid function in which the probabil-
ity to drop a tuple decreases when the visited node has a number
of tuples higher than a threshold defined for the tuple space. The
probability to drop a tuple on a node considering the Anti-Over-
Clustering strategy is given by Eq. (1).

P ′

drop = Pdrop −

(
0.01 +

Pdrop − 0.01
(1 + 0.5e−b(X−2m))2

)
(1)

In the expression above, variable X represents the number of
tuples deposited on the node. Parameterm is computed based on X
when the maximum value of the derivative curve is observed. The
equation also takes into account the probability Pdrop that a tuple-
ant drop the tuple on a specific node (more details in Section 3.2).
b depends on the maximum number of tuples allowed on a node.
b gets smaller as the maximum number of tuples increases. Thus,
the probability to drop a tuple is closer to the traditional approach
when the node has a number of tuples that is well below the
maximum. Similarly, the probability to deposit a tuple isminimum
when the number of tuples is near to the maximum allowed.
This change in the drop probability results in a delay of the time
required for a tuple-ant to deposit its tuple in scenarioswhere there
are over-clustered nodes. Therefore, the dropping is postponed so
that the ant has the opportunity to find another node with similar
tuples that is not overloaded. Unfortunately, this strategy forces
ants to keep on exploring the Tuple Space; this movement by itself
has a performance impact on the whole system. And since this
approach is not concerned about the location where clusters are
created, these clusters will be most probably all scattered over
the network due to the random nature of their formation. This
dispersion of clusters results in poor performance, particularly of
the tuple retrieval process.

3. Magnetic SwarmLinda

Although the application of swarm intelligence in Tuple Spaces
brings several improvements, it also gives rise to a critical prob-
lem: node overloading. In this section we present a novel strategy
to deal exactly with this problem. Note that for ants in nature
although pheromone trails constitute an important orientation
mechanism, they are not the only information that they use. Ac-
cording to [19], other resources such as reference points, vibra-
tions, gravity, solar compass and polarized light that are also used
for orientation. Moreover, according to [2], magnetic fields may
cause a shift in the orientation of certain ant species. In the present
work we introduce a fully distributed strategy for implementing
Distributed Tuple Spaces called Magnetic SwarmLinda which ap-
plies the concept ofmagnetic fields to affect the ‘‘normal’’ behavior
of swarms with the goal of improving the performance of tuple
retrieval operations, in particular, by preventing excessive concen-
tration of tuples in a single node and, at the same time, avoiding the
excessive dispersion of similar tuples across the network.

Fig. 1 illustrates the difference of the three approaches: tra-
ditional SwarmLinda, Anti-Over-Clustering, and Magnetic Swarm-
Linda. Black nodes contain tuples that are similar to the one being
looked for and the ‘‘size’’ of the node represents the number of
tuples of that type that the node holds. SwarmLinda was proposed
to improve the scalability of earlier approaches, but unfortunately
it leads to certain nodes to become overloaded with similar tuples.
A growing number of tuples at a node has a direct impact on the
scalability, as the search performance of that node will decrease
and there is a limit of the number of tuples a single node can keep.
Anti-Over-Clustering solved that problem, as it effectively avoids
overloaded nodes, but unfortunately it created another problem
by scattering similar tuples across the network and thus making



H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99 93

Fig. 2. The simplified behavior of tuple-ants.

Table 1
Description of the notations used in this paper.
Notation Description

τc Tuple carried by a tuple-ant or desired by a template-ant
Pdrop(i, τc ) Probability of dropping a tuple τc on the current node i
C(i, τc ) Concentration at node i of tuples that are similar to τc
P(τc )i,j Probability of moving from node i to node j considering τc
Ph(k, τc ) Current amount of pheromone of node k considering τc
ML(i, τc ) Magnetic level of node i considering a tuple τc
Mc (i) Magnetic restriction of node i based on its capacity
FM (i, τc ) Magnetic force of some node i considering a tuple τc
PS (i, τc ) Probability that a ‘‘strange behavior’’ would affect a tuple-ant

tuple retrieval a costly procedure, as large portions of the network
have to be traversed to retrieve tuples of certain types. Magnetic
SwarmLinda solves the problem by using magnetic clusters that
improve the scalability not only by avoiding overloaded nodes but
also by avoiding scattering similar tuples too far away from each
other.

The Magnetic SwarmLinda model can be formalized as follows.
Let G = (V , E) be the network graph, where V is the set of nodes
and E ⊆ V × V is the set of edges representing bidirectional
links, each connecting a pair of nodes. Let N = |V | be the number
of nodes and M = |E|, the number of links of G. NH(i) repre-
sents the set of direct neighbors of node i ∈ V (i.e., NH(i) =

{j : (i, j) ∈ E ∨ (j, i) ∈ E}. The notation thatwill be used throughout
this paper are described in Table 1.

The next sections detail the Magnetic SwarmLinda model. First,
the behavior of tuple-ants (created by the out operation) is speci-
fied. Then, the equations that support the decision making process
concerning tuple drop, path selection and magnetic interference
are described in detail.

3.1. The out Operation and the Behavior of Tuple-Ants

When a Tuple Space receives a request to perform out(τc) (in
which τc is the tuple carried by a tuple-ant to be inserted in the
Tuple Space), the following steps are taken:

1. A new ant agent (a tuple-ant) associated with τc is created.
This agent is configured with the maximum number of hops
it can traverse set to the TTL (Time To Live) field. This tuple-
ant is responsible for depositing τc on some node of the
Tuple Space.

2. Let i denote the current location (i.e., the node it currently is
at) of the tuple-ant. The tuple-ant then checks ifmany similar
tuples have already been deposited on i. This information is
used to decide whether τc should or not be deposited in the
current node. The probability of dropping τc increases as the
number of similar tuples grows (as described in Section 3.2).

3. If the tuple-ant decides to deposit τc on node i, then the
only thing it has to do before dying is to mark its location

by spreading its pheromone on i and on all surrounding
adjacent neighbors (i.e, NH(i)). This process reinforces i as
an adequate location for future similar tuples, so that other
tuple-ants carrying similar tuples will have a greater proba-
bility choosing i.

4. If the tuple-ant decides not to deposit the tuple on i, then
it must choose an adjacent node to go to. This choice is
made stochastically based on information concerning the
neighboring nodes (as detailed in Section 3.3).

5. As the ant moves to a new node, its gets older, i.e., the
corresponding TTL is decremented. If TLL = 0, then the
tuple-ant deposits the tuple on the current node spreading
its pheromone as described in step 3 and then, it dies. On
the other hand, if TTL > 0, then the tuple-ant keeps going as
described in step 2 but now in a new node.

The behavior of tuple-ants (see flow-chart of Fig. 2) can be
simplified by not checking the TTL field at all if the drop probability
guarantees that the tuple will be deposited when TTL = 0. That is
exactly what is done in the proposed model (as it will be shown in
3.2).

The probability of dropping tuple τc in the current node i –
Pdrop(i, τc) – is based on the tuple concentration on i (see Section
3.2 for details). After computing Pdrop(i, τc), a tuple-ant generates a
random number r : 0 ≤ r < 1. If r < Pdrop(i, τc), then the τc is
deposited in the current node i and the corresponding pheromone
is spread. Otherwise, the tuple-ant continues exploring the Tuple
Space (as described in Section 3.3), unless it develops what we
call a ‘‘strange’’ behavior that results from being affected by a
strong magnetic field. The probability of exhibiting this behavior –
PS(i, τc) – is described in Section 3.5).

3.2. The drop probability

As mentioned in Section 2, the probability of dropping a tuple
on the current node depends on the concentration of similar tuples
on that node. A similarity function – sim(τA, τB) ∈ [0, 1] – must
therefore be defined so that the degree of similarity between
two tuples τA and τB can be assessed. Although more sophisti-
cated application-dependent functions could be employed, for the
experiments of Section 4, the simple binary similarity function
in Eq. (2) produced good results (see Section 4). In this case, tuples
are considered similar if their numbers of fields and the respective
types of each field match.

sim(τA, τB) =

{
1, if template(τA) = template(τB)
0, otherwise

(2)

The concentration at node i of tuples that are similar to τc (the
tuple that the agent is currently carrying) – C(i, τc) – is given
by Eq. (3). C(i, τc) is computed by comparing τc with each tuple
τs stored in i ∈ V .

C(i, τc) =

∑
∀τs∈i

sim(τc, τs) (3)



94 H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99

Fig. 3. How a tuple-ant explores the Tuple Space.

Therefore, Pdrop(i, τc) which corresponds to the probability of
depositing tuple τc on node i is given by Eq. (4). µ > 0 is a prede-
fined (small) constant used to guarantee that there will always be
a (small) probability of depositing τc in i (i.e.,µ prevents Pdrop(i, τc)
from being zero), even when there are no other similar tuples
stored on i. In the simulation experiments described in Section 4,
µ = 0.0001.

Pdrop(i, τc) =

(
C(i, τc) + µ

C(i, τc) + µ + TTL

)2

(4)

Notice as well that Pdrop(i, τc) depends on the TTL value. The
probability of dropping the tuple increases as the TTL decreases.
Remember that TTL represents an upper bound of the number
of hops that a tuple-ant traverses in order to drop a tuple. The
TTL value prevents tuple-ants frommoving indefinitely around the
nodes of a tuple space thus overloading the whole system. In other
words, the probability of dropping a tuple is 100% when the TTL =

0. Moreover, as mentioned above, the probability of depositing a
tuple on a given node is directly proportional to the concentration
of similar tuples on that node. As the influence of TTL on Pdrop(i, τc)
decreases as C(i, τc) increases this causes the formation of clusters
of nodes that are close to each other all of them storing similar
tuples.

3.3. Path selection

If a tuple-ant does not achieve its goal (i.e., dropping the tuple)
on the current node, it needs to choose a neighboring node to
visit so that it can carry on. In order to increase the chance of an
ant achieving its goal, it should move along paths which many
other individuals carrying similar tuples have previously traversed.
Moreover, a tuple-ant must consider the number of similar tuples
in a potential destination node. Eq. (5) defines the probability
that an ant at node i carrying tuple τc moves to another node
j, where Ph(k, τc) represents the current amount of pheromone
corresponding to tuple τc in node k ∈ V .

P(τc)i,j =
C(j, τc) + Ph(j, τc)∑

∀n∈NH(i)(C(n, τc) + Ph(n, τc))
(5)

Fig. 3 shows how a tuple-ant explores the network. For each
neighbor in set NH(i), the tuple-ant compares a random value
r ∈ [0, 1) with P , which is the cumulative sum of P(τc)i,j for the
neighbor under evaluation (j = NH(i)[index]) and the previously
evaluated neighbors. The next node corresponds to the neighbor
for which P is greater than or equal to r . Notice that when all
neighbors have been evaluated, P will reach 1.0. Therefore, the
tuple-ant always chooses one neighbor to go to. When it finds
some neighbor j that satisfies r < P , then it moves to node j. As
mentioned above, as it moves it ‘‘gets older’’ by decrementing TTL.

3.4. Pheromone evaporation

The pheromone evaporation mechanism is essential to make
the system adaptable, since trails leading to node regions that no
longer have a significant concentration of tuples must disappear
as time goes by. An ‘‘evaporation’’ mechanism prevents tuple-ants
from having a chaotic behavior thus compromising the proper
functioning of the whole system. Furthermore, the evaporation
mechanism makes shorter paths more attractive, thus optimizing
the amount of hops necessary for tuple-ants to reach the desired
graph regions. Eq. (6) defines how pheromones of some node i
fades out as time t passes by.

Pht (i, τc) = Ph(t−1)(i, τc)(1 − ρ) (6)

All system nodes decrease the amount of local pheromone
according to the evaporation rate ρ (ρ ∈ [0, 1]). Nevertheless, ρ
must not be so high as to prevent the exploration of new trails.
On the other hand, if ρ is too small, the displacement of tuple-
ants can be negatively affected by trails that lead to regions that
no longer have similar tuples. It is important to highlight that
all decision-making is based only on the current concentration of
pheromone. Thus, it is not required to maintain information about
previous concentrations levels. Thereby, for the sake of simplicity,
parameter t will be omitted from Pht (i, τc) from this point on.

Themodel present up to this point suffers from scalability prob-
lems, since similar tuples tend to be deposited on the same node
that rapidly becomes overloaded, causing a severe degradation on
future tuple retrieval operations. In order to solve this problem, we
introduce the concept of magnetic fields.

3.5. Magnetic Interference

Magnetic Interference is a mechanism to prevent the excessive
concentration of tuples in a few (possibly overloaded) nodes. The
‘‘traditional’’ approach states that the probability that a new tuple
is deposited on a given node is proportional to the number of simi-
lar tuples the node holds. This property improves the performance
of tuple retrieval operations by guiding the search process to only
a certain region of the tuple space. However, when there is an
excessive amount of tuples stored in a single node, it is likely that
the node will become a bottleneck. The overload is related to the
fact that such a node holding a large number of tuples will most
probably receive too many ants trying to retrieve and/or deposit
tuples. This is particularly relevant for template-ants that produce
a greater load when compared with tuple-ants, since the template-
ants may have to perform several match-trial operations in order
to find a tuple that meets the restrictions specified in the template.

The magnetic level that some node i is exposed to with respect
to a given tuple τc is defined by Eq. (7).

ML(i, τc) = Max{C(n, τc) : n ∈ NH(i)} (7)



H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99 95

In other words, for a given node i, the magnetic level corre-
sponds to the maximum concentration of tuples that are similar
to τc in i’s neighbors.ML is used to determine themagnetic force (or
strength) of some node i, designated by FM (i, τc) (see Eq. (8)). This
magnetic force is responsible for producing the so called ‘‘strange
behavior’’ on a tuple-ant, causing it to drop the tuple in the current
node earlier than normally expected.

FM (i, τc) =
Mc(i) × ML(i, τc)
Mc(i) + ML(i, τc)

(8)

The magnetic force affecting tuple-ants at node i tends to zero
when there is no significant magnetic field exerted by i’s neigh-
bors. FM (i, τc) depends on themagnetic restriction positive constant
(Mc(i) > 0) which represents the maximum number of tuples that
node i can store without being considered overloaded.

The probability of the ‘‘strange behavior’’ affecting a tuple-ant
currently at node i carrying tuple τc is defined by Eq. (9).

PS(i, τc) =
FM (i, τc) + C(i, τc)∑

∀n∈NH(i)(C(n, τc) + Ph(n, τc)) + FM (i, τc) + C(i, τc)

(9)

A given node i that has an overloaded neighbor is under a
high level of magnetic interference (computed using FM (i, τc)) and,
consequently, tuple-ants at i carrying tuples similar to τc are very
likely to exhibit the strange behavior. This prevents most tuple-
ants (since the decision is stochastic) from reaching already over-
loaded neighbors. Because of this behavior, groups of nodes storing
similar tuples (called magnetic clusters) tend to be formed. At the
same time magnetic interference also prevents nodes from being
overloaded.

4. Experimental validation

In order to evaluate the performance of the Magnetic Swarm-
Linda approach, an event-based simulator for multi-agent systems
was implemented. The simulator is similar to SimPy [17], which
is a process-based discrete-event simulation framework built with
Python. In this section, results are presented for six different sce-
narios. In each scenario the performance of Magnetic SwarmLinda
was compared both with ‘‘traditional’’ SwarmLinda and Swarm-
Lindawith Anti-Over-Clustering.

The metric used to evaluate the performance is the average
tuple retrieval delay, that is, the response time for executing an
in operation. Time is measured in Ideal Time Units (itus). Each itu
represents the delay for a message to be delivered from one node
to a direct neighbor. The choice of evaluating just the in operation
is justified by the fact that, from the application point of view, the
tuple insertion operation is instantaneous, since the out operation
is asynchronous (i.e., it does not require the client to wait for its
completion).

For simulation purposes, the magnetic constraint Mc(i) was set
to the ‘‘desirable’’ amount of tuples to be deposited on each node.
This value was obtained by considering a uniform distribution of
all tuples throughout the tuple space (the total amount of tuples
deposited in tuple space is known in the simulation). So, Mc(i) =

T/N, ∀i ∈ V , where T is the total number of tuples in the system
(regardless their ‘‘types’’), V is the set of nodes and N = |V | is the
number of nodes (as explained in Section 3).

In order to evaluate the performance of the proposed approach,
a set of client processes was defined to perform operations on the
tuple space. In the architecture, for each node i ∈ V , there is a
client process that is responsible for inserting and retrieving tuples.
Moreover, we assume that the network topology represented by
graph G is connected.

Each client periodically executes tuple insertion and tuple re-
trieval operations alternately with a given probability. In order to

measure the performance of tuple retrieval operations, clients only
try to retrieve tuples that are already available in the tuple space,
since application-dependent delays would be introduced if clients
had towait indefinitely till an unavailable tuple becomes available.
It is important to highlight that these simulation parameters and
architecture do not restrict neither the number nor the location of
clients, nor the topology of the application (except that it must be
connected). In other words, scenarios in which some nodes have
multiple connected clients and others with no clients are both
possible.

The number of possible types of tuples to be generated – desig-
nated by τ t – as well as the variety of tuples of a particular type –
designated by τ v – are simulation parameters. τ v represents the
set of possible values for a given tuple field type. For instance,
τA = ⟨10, "Bob", 1.2⟩ and τB = ⟨5, "Alice", 2.3⟩ are examples of
two instances of the same type of tuple (that consists of an integer
field, a string-typed field and a floating point field).

4.1. Simulation parameters and scenarios

For each scenario, random graphs were generated using Net-
workX [9], a Python library for the ‘‘creation, manipulation, and
study of the structure, dynamics, and functions of complex net-
works’’. The tuple space topologyused is basedonWatts–Strogatz’s
Small-World Graphs [21], which are known to represent the struc-
ture and dynamics of social, biological, and infrastructure net-
works. A random Small-World graph G = (V , E) is generated by
initially creating a ring with N = |V | nodes, each one connected
to its k nearest neighbors. Then, each edge (u, v) ∈ E is replaced
with probability σ by a new edge (u, w) where w ∈ V is randomly
chosen. The following values were used for all simulation runs:
σ = 30% (so that the resulting topology will present a certain
degree of randomness) and N = 16. The default value of k is 4.

For each simulation run, a different seed for the uniformly dis-
tributed pseudo-random number generator was used. Each client
has the same probability of producing any of the τ t types of tuples
and their τ v possible values when executing an out operation.
Similarly, each client also has an equal probability of producing any
type of templates when executing an in operation.

Initially, before retrieving any tuple with the in operation,
clients execute out operations until T tuples have been deposited
into the tuple space. This is needed so that the performance can
be measured without interference from fluctuations that occur in
the early stages of the formation of clusters and pheromone trails.
Furthermore, the total amount of tuples in the tuple space T tends
to remain unchanged, since client processes alternate executing in
and out operations. Notice that this is done with the purpose of
removing application-dependent delays (cases in which suitable
tuples are not available in the system) from the simulation results
thatwould introduce distortions of the results asmentioned above.

In order to be able to observe variations of the response time
due to some nodes being overload, it is necessary to impose limits
on the resources available at each node. For this purpose, param-
eter OP is defined to represent the number of operations that a
node can processwithin an itu. These operations include: checking
whether the tuple-templatematches, selecting a neighbor tomove
the ant and deciding whether to drop or not a tuple. An excessive
number of (similar) tuples stored in a node has a negative impact
on the performance of the operations executed by template-ants to
search for a tuple that matches a requested template.

Thedefault values of themain simulationparameters are shown
in Table 2.

In order to evaluate the performance of Magnetic SwarmLinda
in different contexts, six distinct scenarios were used (see Table 3).
Parameters were chosen in such a way to allow the evaluation
of representative application profiles, e.g., varying the number of



96 H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99

Table 2
Default simulation parameters.
Parameter Value Description

k 4 the average number of edges per node
S 50 the number of simulation runs
ρ 20% the evaporation rate (see Section 3.4)
τ t 8 the number of types of tuples
T 100,000 the number of tuples deposited in tuple space
τ v 1,000 the number of possible values for each type of tuple
D 1,000 the simulation duration in terms of number of in operations
OP 1,000 the maximum number of operations per itu
I 10 the time interval (in itus) between consecutive operations

Table 3
Evaluation scenarios — In each scenario, parameters other then the ones in the second column are
shown in Table 2.
Scenario Varying

Parameter
Parameter Values Performance evaluation for

1 I 3, 4, 5, 6 and 7 high rates of operation
executions

2 I 5, 15, 25 and 35 high and low rates of operation
executions

3 τ v 500, 1000, 1500 and
2000

different tuples of the each type

4 k 4, 6, 8 and 10 different average number of
edges per node

5 T 105 , 2 × 105 , 3 × 105

and 4 × 105
different number of permanent
tuples in the tuple space

6 τ t 3, 4, 5, 6, 7 and 8 different number of types of
tuples

types of tuples, the number of tuples of each type, the frequency
in which operations are executed, the density of the tuple space
topology, among other features. In each scenario, the proposed
approach is compared with both the ‘‘Traditional’’ SwarmLinda
and with SwarmLinda with Anti-Over-Clustering. Each scenario
evaluates the impact of a single parameter. The other parameters
remain at their default values shown in Table 2.

In Scenarios 1 and 2, the performance of the three approaches is
evaluated for different load levels. In order to do so, the simulation
parameter I that represents the time intervals between two con-
secutive operations is set to different values as shown in Table 3.
The smaller the value of I , the greater the frequency of operations
and therefore the heavier the load of the tuple space. Scenario 1
differs from Scenario 2 only with respect to the time intervals; in
Scenario 1, the demand on the tuple space is heavier.

Scenario 3 was designed to evaluate the system response with
retrieval operations trying to find rare tuples. The greater the value
of τ v , the larger the variety of possible values for each tuple field
and the smaller the number of identical tuples (since the total
number of tuples is constant).

In Scenario 4, all approaches are evaluated with respect to the
density of the Tuple Space topology. With smaller k values, the
network topology becomes less dense.

Scenario 5 was designed to investigate how the number of
tuples T deposited on the tuple space during the warm-up phase
affects the performance of the different approaches. Since clients
alternate executing tuple insertion and removal operations, the
total amount of tuples on the tuple space is nearly constant during
each simulation run. This allows us to assess the performance of
each approach for different numbers of tuples in the Tuple Space.

Finally, in Scenario 6, the performance of the tuple space is
evaluated for different numbers of types of tuples. This allows us
to measure the impact of different amounts of node clusters, since
each cluster (in theMagnetic SwarmLindamodel) is associatedwith
a given type of tuple.

In addition to the evaluation scenarios shown in Table 3, an-
other experimentation was executed using the parameters of Sce-
nario 2 in order to evaluate how far a template-ant travels in each

Fig. 4. Scenario 1 – Performance evaluation in a high demanding scenario.

of the three approaches. Thus, only the time spent for traversing
the network during the execution of the tuple retrieval request is
computed, leaving aside the time spent for processing the tuples.
This metric is called the round-trip delay of a template-ant.

4.2. Simulation results

The results obtained for Scenario 1 are shown in Fig. 4. Scenario
1 aims at evaluating the average delays to retrieve a tuple from
the tuple space when clients issue operations at very short time
intervals (i.e., in a high demanding scenario). The confidence level
for the results is of 95%.

From the results obtained, it is possible to identify the saturation
point of all the approaches.



H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99 97

Fig. 5. Scenario 2 – Performance evaluation for different (non-saturated) loads.

This point is reached when the system starts taking longer
and longer to execute tuple request operations. Below the sat-
uration point the time interval between consecutive tuple re-
quest operations is shorter than the system’s capacity of effectively
executing the operations. Above the saturation point, the Tuple
Space sustains the load, causing, therefore, a steady performance
degradation at each new operation. The saturation point for the
Magnetic SwarmLinda approach happens when I = 3. For the
other two approaches (SwarmLinda and SwarmLinda with Anti-
Over-Clustering), the saturation point occurs when I = 4.

In Fig. 4, the y axis has been ‘‘trimmed’’ at 20 in order to
better show the behavior of the three approaches when I ≥ 4.
Furthermore, even for the traditional approach, when I = 4, the
average tuple retrieval time tends to infinity as the simulation
proceeds. This happens becausewith I = 4 the clients are inserting
tuples every 8 itus, while the mean time to recover a tuple is at
about 20 itus.

Performance results for Scenario 2 are shown in Fig. 5. Notice
that the average delay to retrieve a tuple using the Magnetic
approach was always smaller than the delay of the other two
approaches when the tuple space is not saturated.

As expected, all approaches show faster response times when
clients execute operations less frequently. However, the perfor-
mance improvement is not so relevant since, unlike Scenario 1, the
Tuple Space is not exposed to a load that could cause the saturation
of the system.

Results for Scenario 3 (Fig. 6) demonstrate that the proposed
approach performs well in scenarios where there is a relatively
small number of possible values for a given type of tuple. This
behavior is due to the fact that a small set of options will end
up generating more identical tuples in the Tuple Space. Thus, the
number of nodes that a template-ant needs to visit also tends to
be small since there is a greater probability of finding compatible
tuples in the group of neighboring nodes containing similar tuples
formed as a result of the Magnetic approach. This group of nodes
is amagnetic cluster.

On the other hand, Traditional SwarmLinda and the approach
that employs Anti-Over-Clustering both present a similar perfor-
mance in scenarioswhere there is a large number of possible values
for a given type of tuple (notice that their confidence intervals
overlap). This happens due to the small amount of identical tuples
present in the Tuple Space, which forces template-ants to visit
more nodes that belong to a magnetic cluster. As the number of
similar tuples decreases, i.e., the number of rare tuples increases,
the performance of the proposed strategy becomes worse that
of traditional SwarmLinda and with Anti-Over-Clustering. This

Fig. 6. Scenario 3 – Performance evaluation for different possible values for each
type of tuple.

Fig. 7. Scenario 4 – Performance evaluation for different network densities.

happens because, in order to find a rare tuple, more cluster nodes
have to be visited.

The results obtained for Scenario 4 (Fig. 7) show that all three
approaches can be considered stable in terms of the response delay
to retrieve a tuple for different Tuple Space topologies. In the case
ofMagnetic SwarmLinda, this happens because even for a less dense
topology in which nodes have a small number of neighbors, the
likelihood of a template-ant to reach any magnetic cluster with
a small number of hops is high because the magnetic cluster is
composed of multiple nodes. Therefore, there is a high probability
that there is a short path from any node in the Tuple Space to at
least one node of some magnetic cluster.

Anti-Over-Clustering is the approach that benefits the most
from a denser graph since a tuple-ant located in an overloaded
node is more likely to find a path that leads to another node with
many similar tuples and that is possibly not overloaded. Moreover,
a template-ant looking for a compatible tuple will take advantage
of the fact that there is a higher probability of finding nearby
nodeswith similar tuples. In this scenario, the traditional approach
presents an intermediate performance.

In Scenario 5, Fig. 8 shows that Magnetic SwarmLinda is clearly
better for different total amounts of tuples deposited in the Tuple
Space. Furthermore, the average time to retrieve a tuple decreases
very steadily using this approach. SwarmLinda and SwarmLinda
with Anti-Over-Clustering presented a slower improvement as the



98 H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99

Fig. 8. Scenario 5 – Performance evaluation for different amounts of deposited
tuples.

Fig. 9. Scenario 6 – Performance evaluation for different amounts of types of tuples.

number of tuples grew in comparison with Magnetic SwarmLinda,
as shown in Fig. 8.

Finally, the results obtained for Scenario 6 (Fig. 9) demonstrate
that Magnetic SwarmLinda is better adapted to scenarios where
the amount of tuple types is smaller than the number of nodes
that make up the Tuple Space. This happens because the lesser
the amount of possible types of tuples, the smaller the number of
magnetic clusters. In other words, each cluster can be formed by a
larger number of nodes, which causes a considerable improvement
in the overall performance. Although the other approaches also
benefit from a smaller amount of types of tuples, they do that in
a less significant way.

Concerning the round-trip delay of a template-ant as defined
in Section 4.1, Fig. 10 demonstrates that Anti-Over-Clustering
SwarmLinda shows a worse performance than the other two ap-
proaches even when the processing time is not considered. This is
due to the fact that Anti-Over-Clustering scatters clusters of similar
tuples over the Tuple Space, whileMagnetic SwarmLindamaintains
‘‘clusters of clusters’’ (a.k.a.magnetic clusters).

For SwarmLinda with Anti-Over-Clustering, when a template-
ant is in a cluster formed by tuples similar to its own template
does not find a compatible tuple, it is penalized. This happens
because the ant has to keep exploring the Tuple Space in order
to find another cluster of matching tuples to eventually retrieve
a compatible one.

Fig. 10. The round-trip delay to retrieve a tuple.

The Traditional SwarmLinda and the proposed Magnetic ap-
proach do not suffer from this clustering dispersion problem. Ac-
tually, in the traditional approach, similar clusters are not even
formed and nodes become overloaded. In the Magnetic approach,
on the other hand, the over-clustering is avoided by the creation of
magnetic clusters composed of nodes containing similar clusters of
tuples. Thus, the performance impact when an ant does not find a
compatible tuple in the first cluster visited is small since there are
similar clusters nearby.

5. Conclusions

Tuple Spaces are an attractive alternative for building parallel
and distributed systems as they provide a simple, elegant and flex-
ible inter-process communication model. In this work, we intro-
duced Magnetic SwarmLinda which combines swarm intelligence
with virtual magnetic fields, to improve the scalability of Tuple
Spaces by both avoiding overloaded nodes and by decreasing the
average delay for executing tuple retrieval operations as it pre-
vents the excessive dispersion of similar tuples. Magnetic Swarm-
Lindawas implemented and results show that it outperforms other
strategies, except in scenarios where similar tuples are very rare
in the Tuple Space. This situation is nevertheless uncommon, as
typical applications do not search for very specific (i.e., rare) tu-
ples of which all the fields are known beforehand. In general, a
search template includes one ormore ‘‘blank’’ fieldswith only their
types specified which will match multiple tuples. On the other
hand, the gains of Magnetic SwarmLinda were always expressive
as the amount of similar tuples grew, and its behavior remained
stable regardless of the network density. In particular, important
performance improvements were observed in scenarios where the
number of nodes is greater than the number of types of tuples.

By improving the scalability of Tuple Spaces, Magnetic Swarm-
Linda may open new application fields of the paradigm of Dis-
tributed SharedMemory for the effective construction of very large
distributed systems. There are multiple types of applications that
can benefit from the temporal and spatial uncoupling provided
by Tuple Spaces, in particular those involving Big Data, including
the context of IoT. Future work also includes the development
of a dynamic mechanism to determine the value of the mag-
netic restriction Mc(i). Furthermore, the investigation of different
similarity functions can further improve the performance of the
system,which is specially relevant for applicationswith rare tuples
since by changing the similarity function, a rare tuple may become
ordinary.



H.D. Lima et al. / J. Parallel Distrib. Comput. 123 (2019) 90–99 99

References

[1] A. Atkinson, Tupleware: A distributed tuple space for cluster computing, in:
Parallel and Distributed Computing, Applications and Technologies, 2008,
PDCAT 2008, Ninth International Conference on, IEEE, 2008, pp. 121–126.

[2] A.N. Banks, R.B. Srygley, Orientation bymagnetic field in leaf-cutter ants, Atta
Colombica (Hymenoptera: Formicidae), Ethology 109 (10) (2003) 835–846.

[3] V. Buravlev, R. De Nicola, C.A. Mezzina, Tuple spaces implementations and
their efficiency, in: International Conference on Coordination Languages and
Models, Springer, 2016, pp. 51–66.

[4] M. Casadei, R. Menezes, R. Tolksdorf, M. Viroli, On the problem of over-
clustering in tuple-based coordination systems, in: Self-Adaptive and Self-
Organizing Systems, 2007, SASO’07, First International Conference on, IEEE,
2007a, pp. 303–306.

[5] M. Casadei, R. Menezes, M. Viroli, R. Tolksdorf, Self-organized over-clustering
avoidance in tuple-space systems, in: 2007 IEEE Congress on Evolutionary
Computation, IEEE, 2007b, pp. 1408–1415.

[6] D. Gelernter, Generative communication in Linda, ACM Trans. Program. Lang.
Syst. 7 (1) (1985) 80–112.

[7] D. Gelernter, Multiple tuple spaces in linda, in: International Conference on
Parallel Architectures and Languages Europe, Springer, 1989, pp. 20–27.

[8] D. Gelernter, A.J. Bernstein, Distributed communication via global buffer, in:
Proceedings of the first ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, ACM, 1982, pp. 10–18.

[9] A. Hagberg, D. Schult, P. Swart, Networkx, 2013, http://networkx.github.io/
index.html.

[10] H. Hari, Tuple Space in the Cloud (Master’s thesis), Uppsala University, De-
partment of Information Technology, 2012.

[11] Y. Jiang, G. Xue, Z. Jia, J. You, Dtuples: A distributed hash table based tuple
space service for distributed coordination, in: Grid and Cooperative Comput-
ing, 2006, GCC 2006, Fifth International Conference, IEEE, 2006, pp. 101–106.

[12] M.E. Maia, R. Andrade, W. Viana, Towards a component infrastructure for
cyber-physical systems, in: Proceedings of the 31st Annual ACM Symposium
on Applied Computing, ACM, 2016, pp. 626–628.

[13] R. Menezes, R. Tolksdorf, A new approach to scalable linda-systems based on
swarms, in: Proceedings of the 2003 ACM Symposium on Applied computing,
ACM, 2003, pp. 375–379.

[14] L.A. de Paula Lima Jr., A. Calsavara, Autonomic application-level message
delivery using virtual magnetic fields, J. Netw. Syst. Manage. 18 (2010)
97–116.

[15] G.P. Picco, A.L. Murphy, G.-C. Roman, LIME: Linda meets mobility, in: Pro-
ceedings of the 21st International Conference on Software Engineering, ACM,
1999, pp. 368–377.

[16] A. Rowstron, WCL: A co-ordination language for geographically distributed
agents, World Wide Web 1 (3) (1998) 167–179.

[17] T. SimPy, SimPy Overview, 2016, https://simpy.readthedocs.io/en/latest/ (Ac-
cessed 12 October 2016).

[18] R. Tolksdorf, R. Menezes, Using swarm intelligence in linda systems, in: Proc.
4th Int. Workshop Engineering Societies in the Agents World, LNCS 3071,
2004, pp. 49–65.

[19] E. Wajnberg, D. Acosta-Avalos, O.C. Alves, J.F. de Oliveira, R.B. Srygley, D.M.
Esquivel, Magnetoreception in eusocial insects: an update, J. R. Soc. Interface
(2010).

[20] J. Waldo, et al., Javaspace Specification-Revision 0.4, Technical report, Sun
Microsystems, JavaSoft Lab, 1997.

[21] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’networks, Na-
ture 393 (6684) (1998) 440–442.

Henrique Duarte Lima has obtained his graduate degree
in computer engineering at the Pontifical Catholic Uni-
versity of Paraná-PUCPR in 2013 and a Master degree
in Computer Science at the same university in 2016. In
the industry, he has experience with research and devel-
opment (R&D) in the following subjects: cloud comput-
ing, Long-Term Evolution (LTE) Networks and distributed
computing. His current main subjects of interest include:
Swarm Computing, Speculative Parallelism and Internet
of Things (IoT).

Dr. Luiz A. P. Lima Jr. is currently a full professor of
computer science at the Pontifical Catholic University
of Paraná-PUCPR (Brazil), leader of the Research Group
on Distributed Systems. He graduated in Computer Sci-
ence from the University of são Paulo-USP (Brazil) in
1991, got his master degree from State University of
Campinas- UNICAMP (Brazil) in 1994 and his Ph.D. from
theUniversité D’Évry- Val D’Essonne/National Institute of
Telecommunications-INT (France) in 1998. He has since
supervised several research projects and has published
many papers in the areas of distributed and parallel al-

gorithms, distributed systems and middleware, data replication, virtual magnetic
fields, swarm computing, mobile computing and disruption-tolerant networks.

Alcides Calsavara received the B.Sc. in computer science
from the University of Campinas, Brazil, and the Ph.D.
in computer science from the University of Newcastle
upon Tyne, UK. He is a Research Fellowwith the Graduate
Program in Informatics, Pontifical Catholic University of
Paraná, Brazil., where he is a member of the Distributed
Systems Group. His research interests include load bal-
ancing, mobility, middlewares, IoT, and smart cities.

Henri F. Eberspächer received the B.Sc. degree in Com-
puter Engineering fromPUCPR (1994), theM.Sc. degree in
Industrial Informatics from UTFPR (1998), both in Brazil
and the Ph.D. degree in Computer Science from Univer-
sité Montpellier II/LIRMM – Laboratoire d’Informatique,
Robotique et Microélectronique de Montpellier – France
(2007). He is full professor at the Computer Engineer-
ing Department of the Pontifical Catholic University of
Paraná. His current research interests include mobile
platforms, pervasive computing and Role-Based Collab-
oration.

Ricardo C. Nabhen is professor of electrical engineer-
ing at the Pontifical Catholic University of Paraná-PUCPR
(Brazil) since 1991. He graduated in Electrical Engineer-
ing from the Federal University of Itajuba-UNIFEI (Brazil)
in 1990, got his master degree in CS from the Pontifical
Catholic University of Paraná-PUCPR (Brazil) in 2003 and
his Ph.D. in CS from the Pierre et Marie Curie University -
Paris 6 (France) in 2009 and from the Pontifical Catholic
University of Paraná -PUCPR (Brazil) in 2010. He is cur-
rently professor and head of the Electrical Engineering
undergraduate course and leader of the R&D Innovation

Center in Computer Networks and Cloud Systems. He has since supervised several
research projects in cooperation with the industry in the areas of mobile systems
and cloud computing.

Elias P. Duarte Jr. is a Full Professor at Federal University
of Paraná, Brazil. Research interests include Dependabil-
ity, Computer Networks and Distributed Systems. He has
published nearly 200 peer-reviewer papers, chairedmore
than 20 conferences and workshops, and is Associate
Editor of the IEEE Transactions on Dependable and Se-
cure Computing. He chaired the Special Interest Group
on Fault Tolerant Computing of the Brazilian Computing
Society (2005–2007); the Graduate Program in Computer
Science of UFPR (2006–2008); and the Brazilian National
Laboratory on Computer Networks (2012–2016). He is a

member of the Brazilian Computing Society and a Senior Member of the IEEE.

http://refhub.elsevier.com/S0743-7315(18)30648-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb1
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb2
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb2
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb2
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb3
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb3
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb3
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb3
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb3
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb4
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb5
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb6
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb7
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb8
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb8
http://networkx.github.io/index.html
http://networkx.github.io/index.html
http://networkx.github.io/index.html
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb10
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb11
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb12
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb13
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb14
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb14
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb14
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb14
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb14
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb15
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb16
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb16
https://simpy.readthedocs.io/en/latest/
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb19
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb20
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb20
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb20
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb21
http://refhub.elsevier.com/S0743-7315(18)30648-8/sb21

	Beyond scalability: Swarm intelligence affected by magnetic fields in distributed tuple spaces
	Introduction
	Related work – Distributed Tuple Spaces
	Magnetic SwarmLinda
	The out Operation and the Behavior of Tuple-Ants
	The Drop Probability
	Path Selection
	Pheromone Evaporation
	Magnetic Interference

	Experimental Validation
	Simulation Parameters and Scenarios
	Simulation Results

	Conclusions
	References


