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h i g h l i g h t s

• VCube-PS presents logarithmic behavior in terms of latency.
• One tree per publisher instead of one per topic distributes better the load.
• Messages have a small delivery delay and carry a causal barrier of reasonable size.
• In a real world scenario, VCube-PS performs better than a well-known approach.
• Dynamics of subscriptions temporarily induces a few false-positive messages.
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a b s t r a c t

In this work we present VCube-PS, a topic-based Publish/Subscribe system built on the top of a virtual
hypercube-like topology. Membership information and published messages are broadcast to subscribers
(members) of a topic groupover dynamically built spanning trees rooted at the publisher. For a given topic,
the delivery of publishedmessages respects the causal order. VCube-PS was implemented on the PeerSim
simulator, and experiments are reported including a comparison with the traditional Publish/Subscribe
approach that employs a single rooted static spanning-tree for message distribution. Results confirm the
efficiency of VCube-PS in terms of scalability, latency, number and size of messages.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Publish/Subscribe (Pub/Sub) systems consist of a set of publish-
ers which are distributed nodes that publish messages that are
consumed by subscribers. The communication between publishers
and subscribers is conducted on an overlay infrastructure, which is
generally composed by a set of nodes that organize themselves for
ensuring the delivery of published messages to all (and preferably
only) subscribers interested in those messages. Hence, publishers
and subscribers exchange information asynchronously, without
interacting directly [7,17]. They might even not know each other.

In topic-based Pub/Sub systems, a subscriber can register its
interests in one or more topics, and then receives all published
messages related to these topics (e.g., Scribe [12], Bayeux [44],
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DYNATOPS [43], Dynamoth [20], Magnet [23], DRScribe [25], Bea-
Convey [13], etc.). The advantages of topic-based Pub/Sub sys-
tems when compared to content-based systems (see Section 5)
are mainly that messages can be statically grouped into topics, the
diffusion of messages to subscribers is usually based on multicast
groups, and the interface offered to the user is simple. The topic
approach is widely used by popular applications including Twitter
and Firebase/Google Cloud Messaging, IBMMQ, distributed multi-
player online games, chat systems, and mobile device notification
frameworks.

Many topic-based Pub/Sub systems found in the literature are
based on per topic broadcast trees built over P2P DHTs [12,44,
20,25]. A single multicast tree is associated to each topic com-
posed by both subscribers (resp., brokers) and forwarders, i.e., non-
subscribers (resp., non-brokers) of the topic. Therefore, all publish
messages related to a topic are broadcast through the same tree.
In this work, we call these systems SRPT (Single Root Per Topic).
As they are built over P2P DHTs, they are scalable in terms of the
number of subscribers. On the other hand, the maintenance of
the one single tree per topic can be costly, particularly when the
membership of the system changes [12,43]. SRPT employsmultiple
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Fig. 1. VCube hierarchical organization.

forwarders, which are nodes that do not deliver the messages
themselves but are employed in the dissemination. Forwarders
induce a higher latency and, in the case of a high number of simul-
taneous publications of a single topic, the root of the tree presents
contention problems, becoming a performance bottleneck.

In [38], the authors show that in applications like Twitter, most
of the publications are concentrated in few topics: roughly 83%
of the analyzed topics have up to 5 published messages and only
0.15% of the topics (‘‘hot topics’’) are related to more than 1000
publishing messages. An example of such applications is multi-
player online combat games in which locations are mapped to
topics [21,3]. During the game, players move towards the same
location increasing the publishing load for the topic corresponding
to the location, i.e., the location becomes a ‘‘hot topic’’. We argue
that SRPT -based Pub/Sub systems are not suitable to handle a high
publishing load as they present root contention constraints.

We also claim that a topic-based Pub/Sub systemmust enforce,
for a given topic, the causal order of published messages. For
instance, in a discussion group, a question published on a group
should never be delivered to any subscriber after an answer to
that question which was also published in the same group, as the
answer is causally related to the question. In other words, if a
node publishes a message after it delivers another message, then
no node delivers the second message after the first. It is worth
emphasizing that causal message ordering is of prime interest to
the design of many distributed applications. Examples of them are
event notification systems [28], multimedia applications [8,33],
multi-part online games [22], systems that provide distributed
replicated causal data consistency [2], distributed snapshots [1],
distributed database [40], and shared objects [32]. Specifically for
the case of Pub/Sub systems, few works deal with causal order-
ing [15,31,41].

Considering the above discussed points, we propose in this
work VCube-PS, a non DHT Pub/Sub system, that ensures low la-
tency, and load balancing for publishing messages. It also respects
the causal delivery order of published messages of a given topic,
which is a crucial feature for several types of Pub/Sub applications.
In our system, a published message is sent to all subscribers of a
topic by a broadcast protocol that creates a spanning tree com-
posed just by the subscribers, whose root is the publisher. Hence,
the root ‘‘hot topic’’ contention problem of SRPT does not exist in
VCube-PS since there is no single root tree per topic, as each node
that publishes a message becomes the root of the corresponding
spanning tree. Broadcast trees are dynamically built on top of a
virtual hypercube-like topology, called VCube [16], that presents
several logarithmic properties, thus ensuring scalability. Contrarily
to SRPT Pub/Sub systems and thanks to VCube’s properties, both
the construction and maintenance of spanning trees by VCube-PS
have no overhead, even in the presence of subscriber membership
changes. In other words,VCube-PS locally defines to which nodes
themessages need to be forwarded,without the need of routine ta-
bles. In the absence of churn, VCube-PS does not present forwarder
nodes and in the presence of churn, forwarders are temporary.

It is important to highlight that, contrarily to SRPT systems,
our target applications are mainly those that present ‘‘hot topics’’
(e.g. multiplayer combat games, company chat groups, etc.).

We implemented VCube-PS and two SRPT -like Pub/Sub sys-
tems on top of the PeerSim simulator [30]. One SRPT Pub/Sub is
subscriber-based (e.g., Scribe, Magnet, DRScribe) while the second
one is broker-based (e.g. Dynatops). In Dynatops, subscribers are
connected to brokers based on locality. Results confirm the ad-
vantages of using per-publisher dynamically built spanning trees
in terms load balancing, latency, number and size of messages
metrics.

The rest of the paper is organized as follows. Section 2 gives
an overview of VCube. Section 3 presents VCube-PS’s algorithms
to manage topics, order messages, as well as the specification of
VCube-PS’s algorithms. Section 4 presents evaluation of results
conducted on PeerSim simulator. Section 5 discusses related work
and, finally, Section 6 concludes the paper.

2. VCube

In VCube [16], a node i groups the other N − 1 nodes in d =
log2 N clusters forming a d-VCube, each cluster s (s = 1, . . . , d)
having 2s−1 nodes. The ordered list of nodes in each cluster s is
defined by function ci,s below, where⊕ is the bitwise exclusive or
operator (xor).

ci,s = i⊕ 2s−1
∥ ci⊕2s−1,k | k = 1, . . . , s− 1

This recursive function can be described as follows. Initially,
the first neighbor of node i in cluster s is computed. The iden-
tifiers of these two nodes differ only in one bit, the bit that
is set to one in 2s−1. Then, the remaining nodes in the cluster
are nodes in clusters 1, . . . , s − 1 of the hypercube neighbor,
i.e., ci⊕2s−1,1, ci⊕2s−1,2, . . . , ci⊕2s−1,s−1.

The table of Fig. 1 contains, for N = 8, the composition of all ci,s
of the 3-VCube. The same figure also shows node 0’s hierarchical
cluster-based logical organization in the 3-VCube.

3. VCube-PS: Publish/subscribe system

In this section, we present the topic-based VCube-PS Pub/Sub
system. We first describe the system model. Then, we describe
causal order broadcast, the use of causal barriers, and the per-
source FIFO reception order of VCube-PS. Finally, we give the al-
gorithms that compose VCube-PS.

3.1. System model and definitions

We consider a distributed system composed of a finite set of
Π = {0, . . . ,N − 1} nodes with N = 2d nodes, d > 0. Each
node has a unique identifier (id) and nodes communicate only by
message passing. A user of the Pub/Sub system corresponds to a
node. Nodes are organized on a logical hypercube.
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Fig. 2. Example of causal barrier.

Nodes communicate by sending and receiving messages. The
network is fully connected: each pair of nodes is connected by a
bidirectional point-to-point channel and there is no network par-
titioning. Nodes do not fail and links are reliable. Thus, messages
exchanged between any two processes are never lost, corrupted
nor duplicated. The system is asynchronous, i.e., relative processor
speeds and message transmission delays are unbounded.

The source of amessage is the node that broadcasts themessage.
We distinguish between the arrival of a message (reception) at
a process and the event that corresponds to the message being
delivered to the application/user (delivery). Only the latter respects
the causal order of published messages.

3.2. Causal and per-source FIFO reception ordering

For each topic, VCube-PS enforces the causal order of published
messages, implementing, thus, causal broadcast. It also implicitly
ensures that for a single publisher, nodes will receive messages in
the order they are published.

3.2.1. Causal ordering
For a given topic t , if a process publishes a message m′ after

it has delivered a message m, then no process in the system will
deliver m after m′. Note that if a process i never delivers m′ (i.e., i
leaves the topic before delivering m′) or delivers m′ but never
delivers m (i.e., i was not subscribed to t when m was published),
the causal order of published messages is not violated.

In order to implement the causal order of published messages,
we apply causal barriers [34]. The key advantage of the causal
barrier approach is that it does not enforce the causal order based
on the identifiers of the nodes (per node vector) but by using direct
message dependencies, which renders the algorithmmore suitable
for dealing with node dynamics (subscriptions and unsubscrip-
tions), in comparison to other vector clock-based implements of
causal broadcast such as [10] or [39].

Let m and m′ be two application messages published for topic
t . Message m immediately precedes m′ (m ≺im m′) if (1) the
publishing of m causally precedes the publishing of m′ and (2)
there exists no message m′′ such that the publishing of m causally
precedes the publishing of m′′, and the publishing of m′′ causally
precedes the publishing ofm′. The causal barrier ofm (cbm) consists
of the set of messages that are immediate predecessors ofm.

Fig. 2 shows a distributed system with three nodes (p0, p1, and
p2) that have subscribed to the same topic t . Message ms,t,c is the
message published by s with sequence number c for topic t . On
the left, a timing diagram shows messages being published and
delivered; the graph with message dependencies is shown on the
right side. We can observe that the delivery ofm1,t,1 is conditioned
by the delivery ofm0,t,1 (m0,t,1 ≺im m1,t,1) since p1 deliveredm0,t,1
before publishing m1,t,1, (i.e., cbm1,t,1 = {m0,t,1}). On the other
hand, m1,t,2 directly depends on m2,t,1 and m1,t,1 (i.e., cbm1,t,2 =

{m2,t,1,m1,t,1}). Note that sincem0,t,1 precedesm1,t,1 that precedes

m1,t,2, m0,t,1 is an indirect dependency of m1,t,2, and was not
included, therefore, in cbm1,t,2 .

Now suppose that in the same system shown in Fig. 2, p3
subscribes to t after messages m2,t,1 was published to the other
nodes, i.e., node p3 did not take part in the spanning trees that
broadcast m2,t,1 and, consequently, in this case, node p3 will nei-
ther receive nor deliverm2,t,1. Hence, after having deliveredm1,t,1,
p3 can deliver m1,t,2. Since nodes can dynamically subscribe to
or unsubscribe from a topic in VCube-PS, our implementation of
causal ordermust distinguish between the case inwhich amessage
will be delivered (e.g., m1,t,1) from the one that it will never be
delivered (e.g., m2,t,1 by p3). To this end, VCube-PS guarantees the
following property on the FIFO order of messages published on a
given topic.

3.2.2. Per-source FIFO reception ordering
Messages published by a same publisher are received by sub-

scribers in the same order as theywere produced. This order allows
a subscriber of t to know that it will never receive some messages
previously published, i.e., if m′s,t,c′ is the first message that node
i receives from s on topic t after it joined t ’s group, i will never
receivems,t,c , ∀c < c ′.

In VCube-PS, per-source FIFO reception order is ensured by the
acknowledgment of publishedmessages: a source node broadcasts
a newmessage only after having received all the acknowledgments
for the previous message it broadcast. Note that the per-source
FIFO reception order is defined in regard to the reception of mes-
sages and not delivery, as in the traditional FIFO order definition.

3.3. Algorithms

This section presents VCube-PS’s algorithms. Due to the lack
of space, proofs are available in an accompanying Technical Re-
port [4].VCube-PS is based on VCube, which organizes nodes in a
logical hypercube-like topology. Note that in VCube-PS nodes do
not fail, VCube-PS thus exploits VCube’s organization but not its
failure detection functionality.

Types of messages, local variables and auxiliary functions: Each
message m is uniquely identified by the source (s) and a sequence
counter (c). It also carries information about the topic t . Messages
can be of type SUB (subscription), UNS (unsubscribe), PUB (publica-
tion), and ACK (acknowledge). The value of the data field depends
on the type of the message: for SUB and UNSmessages, it holds no
information while for PUB or ACK messages, it respectively holds
the published message itself plus causal dependencies (causal bar-
rier). MAX_TOPICS is a constant value that limits how many topics
the system can support. The following local variables are kept by
every node i:

• counter: is a local counter of node iwhich is incremented at every
subscription, unsubscription, or publishing of amessage by node
i;
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• br_queue[MAX_TOPICS]: each br_queue[t] is a set of pending
messages (PUB, SUB, or UNS) related to the topic t waiting to be
broadcast;
• view[MAX_TOPICS]: set of the latest subscription and unsub-

scription operations of which node i is aware. Each entry view[t]
has format ⟨n, o, rc⟩where n is the identity of the node that has
joined or left the topic t; o is equal to SUB or UNS and rc stores
the value of the counter of n at the moment the subscription or
unsubscription took place;
• causal_barrier[MAX_TOPICS]: each causal_barrier[t] keeps infor-

mation on all messages that are predecessors of the next mes-
sage that will be published by node i for topic t; the causal
barrier consists thus of a set of message identifiers of format
⟨s, c⟩ (source and sequence counter).
• acks: set of pending ACK messages for which i waits confirma-

tion. For each message propagation to its nb children in the
spanning tree of amessagem identified by ⟨s, t, c⟩ received from
j, i adds the element ⟨j, nb, ⟨s, t, c,mem⟩⟩ to the acks set. The set
mem gathers membership information sent by ACKmessages;
• msgs: set of messages that are being temporarily kept by node

i because they have not been delivered yet. Upon delivering m,
identified by ⟨s, t, c⟩, the latter can be removed frommsgs;
• not_delvs[MAX_TOPICS]: each not_delvs[t] contains a set ofmes-

sages received by node i for topic t and not yet delivered because
their respective causal barrier has not been satisfied. Each ele-
ment has format ⟨s, c, cb⟩ where s is the identity of the source
node that broadcast the message whose counter is c , and cb
corresponds to the causal barrier of the message.
• last_delvs[MAX_TOPICS]: each last_delvs[t] keeps the identifiers

of the last message from each publisher node delivered by node
i for topic t . Each element of the set is the tuple ⟨s, c⟩ where s is
the source identity of the message whose counter is c;
• first_rec[MAX_TOPICS]: each first_rec[t] keeps the identifiers of

the first message received from each publisher for a topic t . Each
element of the set is a tuple ⟨s, c⟩.

In the algorithms, the symbol⊥ represents a null elementwhile
the underscore (_) is used to indicate any element.

We have defined two auxiliary functions that exploit VCube
organization and are used to dynamically build broadcast spanning
trees:

• Cluster(i, j): function that returns the index s of the cluster of
node i that contains node j, (1 ≤ s ≤ log2 N). For instance,
in Fig. 1, Cluster(0, 1) = 1, Cluster(0, 2) = Cluster(0, 3) =
2, and Cluster(0, 4) = Cluster(0, 5) = Cluster(0, 6) =
Cluster(0, 7) = 3.
• Children(i, t, h): returns a setwith all nodes virtually connected

to node i. A child of i is the first node of cluster ci,s which is also
a subscriber of topic t; or the first node in ci,s in case of no topic
(t = ‘∗’). The parameter h can range from 1 to log2 N . If h =
log2 N , the result set contains the i’s children where each child
is in ci,s, s = 1, .., log2 N . For any other value of h < log2 N , the
function returns only a subset of i’s children, i.e., those children
whose respective cluster number s is smaller or equal to h (s ≤ h)
For instance, in Fig. 1, if t = ‘∗’, Children(0, ∗, 3) = {1, 2, 4},
Children(0, ∗, 2) = {1, 2}, and Children(4, ∗, 2) = {5, 6}. On
the other hand, if only nodes 0, 3, and 4 have joined topic t1,
Children(0, t1, 3) = {3, 4} and Children(4, t1, 2) = ∅.

Application (user interface) functions: VCube-PS offers an in-
terface consisting of functions Subscribe(t), Unsubscribe(t), and
Publish(t,m), all presented in Algorithm 1. A node can publish
a message related to a topic if it is currently a subscriber of this
topic. These functions generatemessages of typesSUB,UNS, orPUB,
respectively, which are sent to all nodes, in case of subscription, or
all subscribers of topic t , otherwise.

Algorithm 1 Functions offered as the interface to the application:
node i
1: Init
2: counter ← 0
3: ∀t ∈ MAX_TOPICS : view[t] ← ∅

4: function Subscribe(topic t)
5: if ⟨i, SUB, _⟩ /∈ view[t] then
6: view[t] ← {⟨i, SUB, counter⟩}
7: Co_Broadcast(SUB, t, _)
8: return OK
9: return NOK

10: function Unsubscribe(topic t)
11: if ⟨i, SUB, _⟩ ∈ view[t] then
12: view[t] ← view[t] ∖ {⟨i, SUB, _⟩} ▷ removes subscription for t
13: Co_Broadcast(UNS, t, _)
14: return OK
15: return NOK

16: function Publish(topic t , message data)
17: if ⟨i, SUB, _⟩ ∈ view[t] then ▷ only subscribers of t can publish at t
18: Co_Broadcast(PUB, t, data)
19: return OK
20: return NOK

Propagation of a message: When node i invokes one of the
application functions (Algorithm 1) for topic t , the procedure
CO_Broadcast (line 5 of Algorithm 2) is called, generating a new
message of the corresponding type (PUB, SUB, or UNS) which
is inserted in the queue of t . Then, a task related to t (Task
START_MSG_PROPAGATION) continuously removes the first mes-
sage from this queue and starts the broadcast. The next message
is removed from the queue only after the reception of acknowl-
edge (message ACK) from all current subscribers (per-source FIFO
reception order) to whom node i sent the previous message (line
31). The task associated with t is created when node i becomes a
new subscriber of the group of topic t (line 11).

Task START_MSG_PROPAGATION for topic t starts the propaga-
tion of m, the first message removed from the queue (line 15),
by dynamically building a hierarchical spanning tree, rooted at
i, composed by the nodes which are either the subscribers of t ,
in case of messages of type UNS or PUB or by all nodes, in case
of messages of type SUB (lines 23–28). For this purpose, node i
calls function Children(i, t, log2 N) which renders, for PUB and
UNS messages, the set of the first subscriber nodes of t for each
of its clusters (line 26) or the first node of each of i’s clusters (line
24) in the case of a SUB message (t = ‘∗’). These nodes become
i’s children in the spanning tree and m is sent to them. Upon the
reception of m from a node j, by calling function Cluster(i, j) (line
42 or 44 depending on the type of message), every child of node i’s
sendsm to its own children in the s−1 clusters, in relation to topic
t and the cluster s of i to which j belongs, i.e., ci,s. These nodes then
become j’s children, and so on.

For instance, consider the left side of Fig. 3. All nodes are
subscribers of t1, and node p0, subscriber of t1, publishes amessage
m0 related to t1 (PUB messages). p0 is the root of the respective
spanning tree: m0 will be sent to the log2 N = 3 children of
p0 (Children(0, t1, 3) = {1, 2, 4}). Upon the reception of mes-
sage m0, it is not forwarded by p1 since Children(1, t1, 0) =
∅, while p2 forwards m0 to its child p3, the first subscriber of
cluster c2,1 (Children(2, t1, 1) = {3}). When p3 receives m0, as
Children(3, t1, 0) = ∅, p3 does not forward m0 to any node.
However, in the case of p4 (Children(4, t1, 2) = {5, 6}), it forwards
m0 to its children p5 ∈ c4,1 and p6 ∈ c4,2. Finally, p6 sendsm0 to p7.
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Algorithm 2 Causal broadcast algorithm and delivery executed by node i
1: Init
2: ∀t ∈ MAX_TOPICS: view[t] ← ∅; first_rec[t] ← ∅; not_delvs[t] ← ∅; delv[t] ← ∅; br_queue[t] ← ∅
3: msg ← ∅
4: create task HANDLE_RECEIVED_MSG

5: procedure Co_Broadcast(message_type type, topic t , message data)
6: New(m)
7: m.type← type;m.s← i;m.t ← t
8: m.c ← counter;m.data← data
9: counter ← counter + 1

10: if type = SUB then
11: create task START_MSG_PROPAGATION(t)
12: br_queue[t].insert(m)

13: Task START_MSG_PROPAGATION(topic t)
14: loop
15: m← br_queue[t].first() ▷ block if queue is empty
16: ifm.type = PUB then
17: if ⟨i, _⟩ /∈ first_rec[t] then
18: first_rec[t] ← first_rec[t] ∪ {⟨i,m.c⟩}
19: Co_Deliver(m)
20: last_delvs[t] ← last_delvs[t] ∖ {⟨i, _⟩} ∪ {⟨i,m.c⟩}
21: m.cb← causal_barrier[t]
22: causal_barrier[t] ← {⟨i,m.c⟩}
23: ifm.type = SUB then
24: chd← Children(i, ∗, log2 N)
25: else
26: chd← Children(i, t, log2 N)

27: for all k ∈ chd do
28: Send(m) to pk
29: if chd ̸= ∅ then
30: acks← acks ∪ {⟨⊥,#(chd), ⟨i, t,m.c,∅⟩⟩}
31: wait until (acks ∩ {⟨⊥, _ , ⟨m.s,m.t,m.c, _ ⟩⟩} = ∅)
32: if m.type = UNS then
33: msg ← msg ∖ {m |m.t = t} not_delvs[t] ← ∅
34: first_rec[t] ← ∅; delv[t] ← ∅
35: if br_queue[t] = ∅ then
36: exit

Fig. 3. Broadcast trees for two different sources and topics.

Consider now a second example, on the right side of Fig. 3,
where only p0, p2, p3, p5, and p7 are subscribers of t2 and p2
publishes m2 related to t2. In this case, p2 sends m2 to each of its
child of its log2 N = 3 clusters that are also subscribers of t2:
Children(2, t2, 3) = {3, 0, 7} (p6 is the first node in c2,3 but it
has not subscribed to t2). Upon receiving m0, p3 does not forward
it, because it is already a leaf node in the tree. Node p0 does not
forward it to p1 since the latter is not a subscriber of t2. On the other
hand, p7 verifies that in cluster c7,2 = (5, 4), p5 is a subscriber of
t2 (Children(7, t2, 2) = {5}), and therefore sends m2 to p5 which
on its turn does not send it to p4, because even if p4 is the first and
only node in c5,1, it is not a subscriber of t2. For more details about
how to build spanning trees over VCube, see [37].

After forwarding a message m to a child k, node i waits for an
ACK message from k, which confirms the reception and propaga-
tion ofm by k. A node will send an ACK to its parent node only after
it receives itself ACK messages from all its current children related
to the topic in question (lines 58–61). ACK messages will, thus, be
propagated to the root, the source node ofm. Eventually the latter
receives all the ACK messages it waits for and, in this case, the task
related to t removes the next message to be published from the
queue associated to the topic t , if there is one. These sequences of
SUB, UNS, or PUB and then ACKmessages from/to the source ensure
the per-source FIFO reception order of published messages of the
topic.

Reception and delivery of messages: When receiving a PUBmes-
sage m of topic t from s (lines 63–68), if node i is a subscriber
of t and has not already delivered m, it keeps m in set msgs
and both its identification and causal barrier in set not_delvs[t].
If m is the first message received from s to t , i registers it in
first_rec[t] in order to enforce the causal dependencies even under
the dynamics of subscriptions. Then, node i verifies, based on direct
causal dependencies, which of the previously received messages
can be delivered to the application. To this end, node i invokes
function CheckDelivery(t) (lines 83–89) which, in it its turn, calls
CheckCB(t, cb) in order to check direct dependencies (line 90–94).
A messagem can be delivered to i only when every messagem′ on
whichm causally depends either has already been delivered to i or
will never be received by i becauseVCube-PS has not considered i as
a subscriber of t during the construction of the spanning tree that
broadcast m′. In other words, the first PUBmessage received from
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37: Task HANDLE_RECEIVED_MSG
38: loop
39: upon receive m from pj ▷ block if no message
40: ifm.type ̸= ACK then
41: ifm.type = SUB then
42: chd← Children(i, ∗, Cluster(i, j)− 1)
43: else
44: chd← Children(i,m.t, Cluster(i, j)− 1)
45: if chd = ∅ then ▷ leaf node
46: New(m′)
47: m′.type← ACK ; m′.s← m.s; m′.t ← m.t
48: m′.c ← m.c; m.data← ∅
49: SendACKs(j,m′)
50: else ▷ propagate m
51: acks← acks ∪ {⟨j,#(chd), ⟨m.s,m.t,m.c,∅⟩⟩}
52: for all k ∈ chd do
53: Send(m) to pk
54: else ▷m.type = ACK
55: k, nb,mem← k′, nb′,mem′ : ⟨k′, nb′, ⟨m.s,m.c,m.t,mem′⟩⟩ ∈ acks
56: acks← acks ∖ ⟨k, nb, ⟨m.s,m.c,m.t,mem⟩⟩
57: m.data← m.data ∪mem
58: if nb > 1 then
59: acks← acks ∪ ⟨k, nb− 1, ⟨m.s,m.c,m.t,m.data⟩⟩
60: else if k ̸= ⊥ then ▷ All pending ACKswere received
61: SendACKs(k,m)

62: if ⟨i, SUB, _ ⟩ ∈ view[m.t] then ▷ i is subscribed to m.t
63: ifm.type = PUB then
64: if (∄⟨m.s, _⟩ ∈ first_rec[m.t]) then
65: first_rec[m.t] ← first_rec[m.t] ∪ {⟨m.s,m.c⟩}
66: not_delvs[m.t] ← not_delvs[m.t] ∪ {⟨m.s,m.c,m.cb⟩}
67: msgs← msgs ∪ {m}
68: CheckDelivery(m.t) ▷ received messages may be delivered
69: else ifm.type = ACK then
70: view[m.t] ← Update(view[m.t],m.data)
71: else ▷ SUB or UNS message
72: view[m.t] ← Update(view[m.t], {⟨m.s,m.type,m.c⟩})
73: ifm.type = UNS then
74: first_rec[m.t] ← first_rec[m.t] ∖ {⟨m.s, _⟩}

75: function Update(set1 , set2)
76: for all ⟨n1, _, rc1⟩ ∈ set1 do
77: if (∃ ⟨n1, _, rc2⟩ ∈ set2) then
78: if rc2 > rc1 then
79: set1 ← set1 ∖ {⟨n1, _, rc1⟩}
80: else
81: set2 ← set2 ∖ {⟨n1, _, rc2⟩}
82: return set1 ∪ set2

83: procedure CheckDelivery(topic t)
84: while (∃ ⟨s, c, cb⟩ ∈ not_delvs[t] : CheckCB(t, cb) = true) do
85: Co_Deliver(m),m ∈ msgs: m.s = s, m.t = t , andm.c = c
86: not_delvs[t] ← not_delvs[t] ∖ {⟨s, c, cb⟩}
87: msgs← msgs ∖ {m}
88: last_delvs[t] ← last_delvs[t] ∖ {⟨s, _⟩} ∪ {⟨s, c⟩}
89: causal_barrier[t] ← causal_barrier[t] ∖ cb ∪ {⟨s, c⟩}

90: function CheckCB(topic t , causal barrier cb)
91: for all ⟨s, c⟩ ∈ cb do

92: if
(

(∃ ⟨s′, c′⟩ ∈ last_delvs[t]: s = s′ and c′ ≥ c)
or (∃ ⟨s′, c′⟩ ∈ first_rec[t]: s = s′ and c′ > c)

)
then

93: cb← cb ∖ {⟨s, c⟩}
94: return (cb = ∅)

95: procedure SendACKs(j, m)
96: if (⟨i, SUB, _ ⟩ ∈ view[m.t] and ∄⟨m.s, _⟩ ∈ first_rec[m.t]) then
97: m.data← m.data ∪ {⟨i, SUB, c⟩ : ⟨i, SUB, c⟩ ∈ view[m.t]}
98: Send(m) to pj
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s on topic t by i has a higher sequence number than the sequence
number of m′. Such a detection of the first message is possible
thanks to the first_reci[t] set and the fact that, for the same source,
publications of messages of the same topic respect per-source FIFO
order.

After delivering m, node i removes it from its pending mes-
sages (lines 85–88) and updates its local causal barrier variable
(line 89). Note that, since the delivery of onemessagem can enable
the delivery of other messages that causally depend on m, all
remaining non delivered messages are rechecked.

Membership management: In VCube-PS, distributed spanning
trees are also used to notify membership changes. When a node
i subscribes (resp., unsubscribes) to (resp., from) a topic t , a broad-
cast SUB (resp., UNS)messagewill be received by all (resp., current)
subscribers of t . Upon receiving either a SUB our UNS message,
a subscriber of t updates its view of the membership related
to t (line 72) by calling function Update(set1, set2) (lines 75–82)
which merges two membership sets, keeping only the current
subscribers.

When a node i subscribes to a topic t , the ACK messages re-
lated to the SUB messages will also gather information about t ’s
membership. Function SendACKs (lines 95–98) is responsible for
sending ACKmessages. Before forwarding a received ACKmessage
to its parent, each subscriber of t includes in themessage its current
view of t ’s membership (line 97) merged with the partial mem-
bership information coming from its own children (line 57). When
receiving all ACK messages from its children, the new subscriber i
is aware of t ’s membership.

If node i unsubscribes from topic t , it no longer delivers mes-
sages related to the topic (line 33). On the other hand, node i can
continue to forward messages related to t to the other subscribers
of t in the spanning tree if one of the following situations occurs:
(1) there exist subscribers of t that are not aware of i’s unsubscrip-
tion, i.e., they have not received the corresponding UNS message
from i yet or (2) there are messages queued in i’s br_queue[t]
waiting to be forwarded. Node i also sends ACK messages to its
parent node in the respective spanning tree. These ACK messages
are related to published messages that i received and forwarded
before leaving t or to messages that satisfy the above-mentioned
situations. However, eventually all ACKmessages will be sent and,
thereafter, node i will no more take part in the broadcast of mes-
sages related to t . When a subscriber of t receives an UNSmessage
related to node i, it removes i from its view of t ’s membership (line
72) as well as the information about the first message received
from i with regard to t (line 74). The latter will be renewed if i
rejoins t later.

4. Experimental results

In order to assess the performance of VCube-PS with differ-
ent configuration scenarios, we conducted experiments with the
event-driven PeerSim [30] simulator. In most of the experiments
we compare VCube-PS to SRPT . For each topic, SRPT selects a node
to act as the root of the broadcast tree for the respective topic.

We consider that each message exchanged between two nodes
consumes tpc + tq + tt + tpp + td units of time (u.t.). Apart from td
which represents the time necessary for a subscriber to satisfy all
causal dependencies, all other components are based on a packet-
switched network delaymodel [24]: tpc accounts for the processing
time of a message by a node; tq is the time a message must wait
in the queue before being transmitted; tt is the time necessary to
transmit all bits of themessage into the link; and tpp expresses how
long it takes for a message to traverse the link and reach the next
hop. Assuming that there is no broadcast feature available in the
system, if a message is sent to multiple destinations, a copy of the

message is queued for each of the destinations. Based on [35], we
set tpc = tt = 1 u.t. and tpp = 100 u.t. (1/100 ratio).

For most experiments, the number of nodes N varies from 8 up
to 4096, always a power of two, and each experimentwas executed
40 times.

We consider the following metrics for comparison: (1) Latency:
the time that a published message takes to be received and deliv-
ered by all subscribers; (2) Number of messages: overall number of
PUB messages; (3) Number of messages to be processed by a node:
size of each node’s queue; (4) Size of PUB messages: characterizes
the number of direct causal dependencies that PUBmessages hold;
and (5) Number of false positives: number of messages received by
nodes that act as forwarders of messages of type PUB.

4.1. A single publisher

This experiment evaluates the impact of the logarithmic prop-
erties of VCube-PS. A single publisher publishes a single message.
Hence, when a subscriber receives the message, there is no delay
for delivery. Fig. 4(a) shows the delivery latency when the number
of nodes of the system varies and either 25% or 100% of them are
subscribers. The set of subscribers is randomly chosen following
a uniform distribution. In the case of 4096 nodes with 25% of
subscribers uniformly distributed, the latency of VCube-PS is on
average 533 units of time, 26% less compared to the latency of SRPT
in the same scenario (720 u.t.) We remark that when 100% of the
nodes are subscribers, SRPT has no forwarder and, therefore, the
latency of both Pub/Sub systems is always proportional to log2 N .
The only difference in this case is that SRPT has an additional hop
as the message to be published must be first sent to the root of the
only tree that is employed.

The average number of PUBmessages follows the same behav-
ior as shown in Fig. 4(b). In the figure, for the two approaches
with 25% of the nodes as subscribers, VCube-PS always presents the
same number for PUBmessages, since there is no forwarder in the
tree. On the other hand, forwarders in SRPT are responsible for up
to 2.7 timesmoremessages (for 8 nodes) compared to VCube-PS. As
the number of nodes increases, this difference is reduced, although
VCube-PS generates, on average, at least 43% fewer messages than
SRPT (4096 nodes).

A more detailed analysis of the impact of the number of sub-
scribers in VCube-PS and SRPT performance is given in the Techni-
cal Report [4].

4.2. Multiple publishers

In these experiments, all nodes are subscribers of a single
topic and the number of publishers varies. Each publisher i sends
one message at time ti which is uniformly distributed between
[0, 1000] units of time. By having multiple publishers of the same
topic, differences in latency will arise from the distribution of the
load among the nodes when using one root per publisher (VCube-
PS) or one root per topic (SRPT ).

Fig. 5 shows in logarithmic scale the average reception latency
when the number of nodes of the system varies and either 25% or
100% of them are publishers. Since the ratio between the process-
ing time (tpc) and the propagation time (tpp) has an impact on the
load contention, we consider the ratio 1/100 (Fig. 5(a)), which is
used in all other evaluations of this work, but also a propagation
timewhich is ten times greater, (tpp = 1000 u.t.), leading to a ratio
1/1000 (Fig. 5(b)).

We can observe in Fig. 5(a) that VCube-PS presents a maximum
increase of 38.8% of the load distribution (4096 nodes and 100% of
publishers) when compared to VCube-PS with 4096 nodes and 25%
of publishers. This happens because even though there are 4 times
more messages, they traverse different paths in the network. On
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Fig. 4. Latency and number of messages with a single publisher.

Fig. 5. Reception latency with 25% and 100% of publishers (log. scale).

the other hand, in SRPT , if several messages arrive at the root of
the tree at the same time they will be queued before transmission,
increasing, thus, the reception latency. For up to 128 nodes, SRPT
latencies are on average one hop in time higher compared to
VCube-PS, because in these cases the arrival and output rates of
messages are very similar, which avoids contentions. Beyond this
number of nodes, the root receives more messages than it can
process and transmit per interval of time and starts to saturate. For
instance, in comparison with VCube-PS with 256 nodes and 100%
of publishers, SRPT has an average latency 2.48 times greater, and
this ratio grows linearly after this point.

Comparing Fig. 5(a)(b), the average reception latency increases
less in SRPT in relation to VCube-PS because, with a 1/1000 ratio, it
takes longer to receive messages, although the output throughput
remains the same.

Table 1 shows the distribution of nodes according to the average
size of their sending queues, in a scenario with 1024 nodes, 1/100
ratio, and where all nodes are publishers and subscribers.

The load distribution on the nodes in SRPT is uneven when
compared to VCube-PS: 98% of the nodes in VCube-PS have an
average load between (4, 16] messages, while 44% of the nodes
in SRPT have on average between (0, 2]messages in their buffers.
In SRPT , 50% of the nodes simply do not participate in the routing
of any message, because they are leaf nodes of the single tree of

Table 1
Average size of the queue per group of nodes.
# of messages # of nodes (VCube-PS) # of nodes (SRPT )

0 0 512
(0, 2] 0 448
(2, 4] 0 60
(4, 8] 495 3
(8, 16] 510 0
(16, 32] 19 0
(32, 4096] 0 0
(4096, 8192] 0 1

the topic and one node (the root) has an average load of 9240
(σ = 4617) messages, which incurs in high reception latencies.

4.3. Message order

Besides the published message itself, every PUB message con-
tains its causal barrier, i.e., a list of the direct causal dependencies of
the message. Thus, the size of a PUB message increases depending
on the number of elements in this list. In order to evaluate the size
of the list and the latency due to message ordering, we consider
that one node s, chosen randomly, publishes a first message ms.
Upon receiving this message, each node k waits a random interval
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Fig. 6. Distribution of causal dependencies for VCube-PS with 256 nodes.

of time (tw) before broadcasting message mk. This situation corre-
sponds to all members of a message discussion group answering a
question posted by one of themembers. ForN nodes, the number of
messages isN2

−N messages. Additionally, we extend this scenario
to evaluate the case in which a node k has to wait for at least p
messages before broadcasting its own message. To this end, there
are p ≥ 1 nodes that independently broadcast a message each, all
in the beginning of the experiment. Just after receiving all these
initial messages, any node can publish a message.

Fig. 6 groups messages according to the size interval of their
causal barriers for VCube-PS. When it is necessary to wait for just
one message before a node broadcasts its own message, 51.6%
of the messages generated in the system have less than 5 pre-
ceding messages. More precisely, 19.9% of them have just one
causal dependency. On the other hand, if a node waits for more
messages (10 in the case of the figure) before broadcasting its
own, a larger number of nodes will have 10 or more direct de-
pendencies. In this case, 35.2% of the messages have size 10 (10
direct dependencies) and 79.7% of themhave sizes smaller than 15.
However, in both cases, the number of direct dependencies keeps
reasonable.

We also evaluated the additional delay imposed by causal barri-
ers before delivering a message. When a node waits for 1 message
before broadcasting its own, about 95.1% of the messages are
delivered in less than 10 u.t. after the message is received (87.2%
are deliveredwith no delay). Only 81messages (out of 65280) have
a delay higher than 50 u.t., with an upper limit of 150 units of time.
Increasing the number of thewaitingmessages to 10,457messages
wait more than 50 u.t. to be delivered (maximum 187), although
the number of messages with no delay remains high (84.2%).

4.4. Multiple topics

As discussed in [38], in real world applications like Twitter, a
few topics are related to most of the messages. The authors show
that in Twitter, roughly 60% of the topics have only one message
published, 83% of them have no more than 5, only 0.15% of the
topics are related to more than 1000 messages each. This behavior
follows a Zipf-like distributionwith a coefficient of 0.825 according
to the data provided in the reference. We evaluated VCube-PS
and SRPT with multiple topics. Messages are assigned following
both the Zipf-like and uniform distributions. Fig. 7 shows results
for 256 nodes, 128 topics, and a varying number of messages.
Each node publishes a new message on average every 500 u.t.
for a topic, randomly chosen. Therefore, messages are uniformly

Fig. 7. Average reception latency with 256 nodes and 128 topics.

distributed among the publishers, but not necessarily among the
topics.

No matter the distribution of messages among the topics,
VCube-PS always relies on the same root for a given publisher,
while SRPT does not. This is the reason why the behavior of SRPT
is the same as VCube-PS’s for a uniform distribution of messages.
However, when the number of messages sent per node increases
beyond a threshold, VCube-PS increases the latency due to con-
tention at the source of the messages, i.e., the root of the tree. On
the other hand, for the Zipf distribution, SRPT has an average re-
ception latency 30.6% higher compared to the uniform distribution
(for 214 messages). VCube-PS increases latency, on average, only
9.2%.

These results confirm that VCube-PS is scalable in terms of pub-
lishers, while SRPT is scalable in terms of topics. However, as noted
above, in real scenarios most of the messages are concentrated on
a small number of topics.

4.5. Churn evaluation

In this set of experiments, we evaluate how SRPT and VCube-
PS tolerate membership changes. The parameters used for the
evaluation are those proposed by [36], which considers that the
time a node keeps connected to a P2P system is heterogeneous
(session time) and that the average time ranges froma fewminutes
up to hours, following a Poisson process. For every node that
leaves a given topic, another randomly selected node joins that
topic, thus, always keeping the number of subscribers equals to Ns
nodes.1

For the experiments, we consider one topic and each unit of
time represents 1ms. Every 500ms, a newmessage is published by
a randomly selected node (uniform distribution). Each simulation
corresponds to 120 min. Fig. 8 presents the average reception la-
tency and standard deviation. It is worth reminding that in VCube-
PS, every membership change (subscription or unsubscription)
generates a new message which is broadcast to all nodes of the
system, similarly to a publishing message, while SRPT needs to
rebuild its per topic single trees. Furthermore, SRPT trees often
have forwarders (non-subscriber nodes) while in VCube-PS, when
a node i unsubscribes, it can still receive and forward publica-
tions related to the topic for a while (temporary forwarder, see
Section 3.3).

1 Ns is smaller than the total number of nodes of the simulation in order to
have some extra nodes in the churn process while keeping the same hypercube
dimension.
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Fig. 8. Average reception latency under churn.

Fig. 8(a) summarizes the results with 500, 1000, 2000, and
4000 subscribers. The dynamics of subscriptions were simulated
for three different average session times (tmed): 1, 30, and 60 min.
For baseline comparison sake, alongwith the scenarioswith churn,
the figure also shows results with static membership. Standard
deviation values, although small, are also depicted.

Comparing VCube-PS with churn to the static baseline, the
former presents average latencies up to 10% higher. In otherwords,
to some extent, VCube-PS is sensitive to churn since static mem-
bership does not induce false-positives while, with churn, VCube-
PS has temporary forwarders, responsible for the 10% latency
increase. On the other hand, except for 4000 subscribers, SRPT
latencies vary only up to 1.4% compared to the corresponding
static baseline. This stable behavior can be explained as, even in
scenarios with no churn, SRPT trees have usually non-subscribers
(forwarders) and, therefore, the size of their branches does not vary
with churn. However, these forwarders are also responsible for the
longer SRPT tree brancheswhen compared to VCube-PS ones, justi-
fyingwhy, for a given churn rate, SRPT presents higher latency than
VCube-PS, independently of the number of subscribers. The highest
impact of the churn is observed in SRPT with 4000 subscribers and
tmed = 1 min, with approximately 46 unsubscriptions and 46 new
subscriptions perminute. In this case (high churn rate), the average
latency is much higher than the static one (3.56 times), not only
because of the presence of false-positives (2.74% of all received
PUBmessages), but also due to contention caused by SUB and UNS
messages. A last interesting observation is that, except for SRPT
with 4000 subscribers and tmed = 1 min, average latency values
of both approaches keep the same behavior and close values for
both static and dynamic scenarios.

For the results presented in Fig. 8(b) with Ns = 1000, the
churn rate increases beyond usual values, i.e., it varies from 1% up
10% of the subscribers per minute. In this case, tmed varies from
69 s to 7 s. Note that for the experiments shown in Fig. 8(a) with
Ns = 1000 and tmed = 1 min, the churn rate is approximately
1.1% of the subscribers per minute. Although the higher the churn
rate, the greater the number of messages over the network, we
can observe in Fig. 8(b) that, even if latency increases, VCube-PS
tolerates quite well the increase in the number of messages: when
the churn rate increases 10 times, latency grows in average 2.55
times, false positives represent in average 2.2% (σ = 0.15%) of
the PUB messages, and, in average, messages wait in queue no
more than 28.36 ms (σ = 0.66 ms) before being forwarded. On
the other hand, when the churn rate increases, SRPT ’s single tree

is not able to treat and send all the messages in time in order
to avoid contention. With churn rate of 4% per minute (tmed =

17 s) and 1000 subscribers, the overall number of sent messages
is slightly smaller than that of the scenario with 4000 subscribers
and tmed = 1 min (Fig. 8(a)). In both cases, this is the point where
SRPT ’s reception latency starts to suffer from contention. Beyond it,
SRPT ’s single root is unable to treat and forward messages without
queuing them for long periods. For 5% churn rate per minute,
messages are kept in queue, in average, 468ms (σ = 185ms)while
for 10% churn rate up to 10 s (σ = 451 ms).

4.6. Broker-based SRPT

For the results presented in this section, we consider a SRPT
Pub/Sub systembased on brokers (e.g., DYNATOPS [43], see Section
5).We call it SRPT -B and the previous SRPT systemwas renamed as
SRPT -S. In SRPT -B, the single broadcast tree per topic is composed
of nodes that are either brokers (instead of subscribers) or for-
warders. Subscribers are directly connected to brokers, according
to their locality and/or interests. Each published message for a
topic is transmitted over the corresponding tree and each broker,
directly sends each received message to the subscribers to which
it is connected.

Fig. 9 shows the average reception latency for SRPT -S, SRPT -
B, and VCube-PS. Publishers are randomly chosen among the sub-
scribers of the topic and send a new message on average every
500 u.t., up to 128 messages.

We defined 3 configurations for SRPT -B with different number
of brokers: 32, 256, and 2048. The other nodes are subscribers
evenly distributed among the brokers: 127, 15, and 1 subscribers
per broker. Note that for both SRPT -B and SRPT -S, forwarders
were not employed, i.e., trees are composed only by the respective
numbers of brokers or by 4096 subscribers, respectively.

The reception latency of SRPT -B is composed of the time to send
a message to the brokers (Tree in the figure) plus the time for the
broker to send the message to the connected subscribers (B-S in
the figure). On one hand, we observe that the fewer the number
of brokers, the lower the Tree reception latency. On the other
hand, the fewer the number of brokers, the higher the number of
messages per broker forwarded to subscribers, inducing broker-
level contention (much like the roots of SRPT ) and, therefore, the
higher the B-S reception latency.With 32 brokers, the average B-S
latency is 4 times higher than the other SRPT -B’s B-S latencies due
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Fig. 9. Average reception latency for different approaches and 4096 nodes.

to high broker-level contention while, with 256 nodes, the load is
better distributed.

We also point out that even if VCube-PS builds trees with larger
heights compared to SRPT -B’s, it presents lower average reception
latency than all SRPT -B configurations (22% better for SRPT -B with
256 brokers) since it avoids contention by exploiting multiple
paths. A last observation is that SRPT -B with 2048 brokers has
lower reception latency than SRPT -S since the latter presentsmore
contention in the root of the tree, which is composed by 4096
subscribers.

5. Related work

Basically, there exist two models of Pub/Sub systems: topic-
based [12,44,20,43] and content-based [15,9]. In the first model,
subscribers share a common knowledge on a set of available
topics and every published message is labeled with a topic. In
a topic-based Pub/Sub system, a subscriber can register its in-
terest in one or more topics, and then it receives all published
messages related to these topics (e.g., Scribe [12], Bayeux [44],
DYNATOPS [43], Dynamoth [20], BeaConvey [13], etc.). In the
content-based model [18], messages are structured based on mul-
tiple attributes, and subscribers express their interests by specify-
ing constraints over the values of these attributes (e.g., SIENA [11],
JEDI [15], BlueDove [26], etc.). This approach offers more flexibility
to subscribers for defining their interests, but at the expense of
more complex user interfaces and the need for filtering. On the
other hand, topic-based systems provide simpler and more effi-
cient implementations and they are usually deployed in contexts
where efficient and fast notifications are required.

Similarly to VCube-PS, many Pub/Sub systems use tree-based
overlays (e.g., Scribe [12], Bayeux [44], Marshmallow [19], DR-
Tree [9], DYNATOPS [43], Magnet [23], DRScribe [25], etc.). The
advantage of using trees is mainly due to logarithmic guaran-
tees as, for example, reception time of messages with respect
to the number of nodes that compose a tree. However, different
from VCube-PS, most solutions often implement a single multi-
cast tree (usually one per topic in topic-based systems), statically
constructed from the start or rebuilt/updated as nodes join the
system. Consequently, every publication should be broadcast from
the root of this tree that can become a bottleneck. Moreover, the
paths of many of these multicast trees include nodes that are not
subscribers but have to forward messages in which they are not
interested, thus, the problem of false positives and the need of
message filtering (e.g. DR-Tree [9] and Scribe [12]). We also point

out that maintenance cost is usually high, specially in presence
of churn. Many topic-based Pub/sub systems (e.g. Scribe [12], DY-
NATOPS [43],Magnet [23], DRScribe [25], etc.) buildmulticast trees
on top of Distributed Hash Table (DHT) overlays (e.g Pastry, CAN).
They adopt the rendezvous point approach, where a node, respon-
sible for the hash key of a topic name, becomes the rendezvous
point, i.e., the root of themulticast tree related to the topic. In order
to join this tree, a node seeks a DHT path that leads to the root.
Hence, nodes in the tree are either subscribers/brokers of the topic
or merely forwarders, which are added to the tree because they
are there: in the path towards the root. HOMED is a content-based
system proposed in [14] that maps nodes to a logical hypercube.
However, contrarily toVCube-PS, spanning tress are not necessarily
rooted at the publisher.

Few Pub/Sub systems ensure message ordering [6,15,27,42],
and when they do it is usually total order. Authors in [6] propose a
topic-based Pub/Sub system where messages published on differ-
ent topics are either delivered in the same order to all subscribers
or tagged as out-of-order (weak total order); while in [27], the
task of ordering messages is distributed across sequencer nodes
which totally order messages for the same topic. Considering FIFO
links, [42] presents a distributed total order protocol for a content-
based Pub/Sub system where a broker can decide if a message
can be delivered immediately or some consistent delivery order
is required. The approach proposed in [29] measures the varia-
tions of end-to-end delay of messages, which cause out-of-order
messages. Based on the measurements, nodes delay or not the
delivery of a message aiming at reducing FIFO delivery order vi-
olations. JEDI [15] is a Pub/Sub system that ensures per topic
causal order. The latter is implemented by using a return value,
a message for the receiver to notify the producer that a message
was delivered, unlike VCube-PS, which does not require these extra
messages since causal dependencies of a message are included
in the message itself (causal barriers). The articles [31,41] exploit
message causal order in Pub/Sub systems. However, neither of
them provide a mechanism for assuring causal delivery order of
messages for the same topic, as VCube-PS. The first one proposes to
causally ordermessages fromdifferent topicswhile the second one
claims to ensure causal orderwhen network partitions aremerged,
assuming that messages published in each partition are already
causally ordered.

6. Conclusion

In this work we presented VCube-PS, a distributed topic-based
Pub/Sub system. VCube-PS propagates information aboutmember-
ship changes and disseminates published messages to the sub-
scribers of a topic using dynamic spanning trees built on top
of a hypercube-like topology that presents multiple logarithmic
features.Whilemost other Pub/Sub approaches use static trees and
rendezvous points, VCube-PS creates a new spanning tree rooted
on the source of every message that is published, without any
extra cost, due to VCube’s properties. As the spanning trees contain
only subscribers of a specific topic, the trees have a shorter height
when compared to a per-topic single root tree and, therefore,
present lower latencies and employ less messages. Furthermore,
VCube-PS enforces the causal delivery of messages using causal
barriers adapted to cope with the dynamics of the system. Exper-
imental results from simulations on PeerSim confirm benefits of
the logarithmic properties of VCube-PS. Compared to an approach
with one single root per topic, our solution presents the best
results under a high publication rate per topic since it intrinsically
provides load balancing. Furthermore, VCube-PS does not employ
permanent forwarders which induce false positives and employs
decentralized message broadcast which is efficient in terms of
time.



J.P. de Araujo, L. Arantes, E.P. Duarte, Jr. et al. / Journal of Parallel and Distributed Computing 125 (2019) 18–30 29

Future directions of our work include adapting the proposed
strategy to tolerate node faults. Furthermore, VCube’s inference
rules and causal history, provided by causal barriers, can be ex-
ploited in order to combine, without any extra cost, causal related
broadcast messages within a single message, reducing, therefore,
the number of sent messages and contention over the network, as
shown in our paper [5].
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