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ABSTRACT
Within the context of NFV, the VNF architecture block has
not yet been tackled by the research community. Further-
more, a key component of VNFs, VNF Component (VNFC), is
not well defined, with definitions ranging from a small piece
of code with a specific network purpose to an entire virtual
machine running this component. In this paper, we present
a flexible architecture for VNFs, where key components can
be swapped by other best suited to the operator needs, in
order to create tailored VNFs for each infrastructure.

1 INTRODUCTION
Computer networks typically rely on dedicated hardware
(middleboxes) to perform common network functions, due to
their packet processing performance and reliability. However,
middleboxes present many limitations regarding the high
CAPital and OPerational EXpenditures (CAPEX and OPEX),
the lack ofmanagement andmaintenance flexibility. Network
Function Virtualization is a paradigmwhich aims to decouple
those network functions from their underlying proprietary
hardware. To do that, virtualization technologies, based in
off-the-shelf equipment, are employed in order to mitigate
the middleboxes issues.

One of the main blocks of the NFV architecture is the Vir-
tualized Network Function (VNF), defined by the ETSI as the
implementation of a Network Function (NF) which can be
deployed on an NFV Infrastructure [10]. Since there is not
a standardized architecture for developing VNFs, different
approaches are being adopted by the community. For exam-
ple, ClickOS [8] deploys a VNF as a single Virtual Machine
(VM) running a unique NF, while OpenNetVM [14] deploys a
VNF as a set of containers, each one with a particular NF and
lifecycle management, connected through an umbrella NF
Manager. These approaches structural differences, however,
violate one of the key NFV paradigm benefits, where VNFs
should be interoperable between themselves and between
the NFV Infrastructure [9].

Another important definition from ETSI is that of VNF
Components (VNFC) [10]. Components are internal opera-
tional elements of a single VNF that must be mapped to an
individual virtual instance (e.g., process virtualization, virtual
machines or containers). While this definition is appropriate
for the development of interoperable internal building blocks
of a VNF, the VNFCs have often been overlooked by the re-
search community. Currently, VNFs are released without any
documentation of their internal modules and connections,
effectively resulting in proprietary virtualized functions.
In this paper, we present an overview of a generic and

flexible VNF platform architecture. Besides foreseeing the
adoption of Network Service Header (NSH) [11] and Element
Management System (EMS) [7], the architecture also enables
the definition and execution of multiple VNFCs connected
by an internal manager. These characteristics facilitate the
development of modular VNF platforms, where internal mod-
ules can be easily swapped in order to create a tailored VNF
to specific deployment needs. It is a work in progress, but the
authors believe this architecture can ease the development
of new NFV enablers, fostering the evolution of the NFV
paradigm.

2 ARCHITECTURE
The proposed VNF platforms architecture, depicted in Figure
1, consists of six main modules deployed on a host operat-
ing system (called here VNF Core): (i) Virtual Network Sub-
system, (ii) Internal Router, (iii) NSH Processor, (iv) Packet
Processing Subsystem, (v) Management Agent, and (vi) Ex-
tended Agents. Each module performs specific operations
within the VNF and can process network packets from both
the data and control planes (depicted by solid lines) and the
management plane (depicted by dashed lines). External in-
terfaces to the VNF Core are also defined in the architecture
to enable the use of virtualized resources (available in the
NFVI) and to support both management and orchestration
operations (by using EMS and VNFM systems).

Each module of the architecture is designed to be loosely
coupled and with well-defined access interfaces. In this way,
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Figure 1: VNF Platforms Architecture

the modules can be redesigned or replaced as new software
becomes available. Modules are described below:

• VNF Core: it consists of a virtualized instance (e.g.,
Virtual Machine and Container) controlled by a hyper-
visor or container manager. The VNF Core provides the
necessary computational resources and software envi-
ronment, such as memory, virtualized CPU cores, vir-
tualized network interfaces, programming languages,
and frameworks, for the other modules execution.

• Virtual Network Subsystem (VNS): this module is
responsible for accessing the Virtual Network Interface
Controllers (VNICs) – provided by the hypervisor – for
sending/receiving network packets. The VNS can be
deployed using L2 Sockets, to packet acceleration tools
such as Intel DPDK [5], NetMap [12], PacketShader
[2], PF_RING/DNA [4], and OpenOnload [13].

• Internal Router (IR): once the network packets are
captured by the VNS, they are forwarded internally to
the VNF Core by the Internal Router. Once the Internal
Router is initialized, it uses communication channels
(e.g., using shared memory, pipes, sockets) to forward
the network packets between the VNS, the Packet Pro-
cessing Subsystem, and the NSH Processor.

• NSH Processor (NSHP): despite the advantages of
using NSH to steer traffic across multiple VNF [11], it
is optinal. In order to support both cases, we define

the NSH Processor, which provides an abstraction for
the network functions regarding the existence of NSH
packets. Specifically, when the Internal Router detects
a NSH packet, it forwards the packet to be processed
by the NSHP.

• Packet Processing Subsystem (PPS): this module
corresponds to the development frameworks used to
implement network functions. These frameworks in-
clude applications e.g., Click Modular Router [6] and
Vector Packet Processing [1]), programming languages
(e.g., C, Python), libraries (e.g., Scapy, libtins), or even
single routines that support the construction and han-
dling of network packets.

• Management Agent (MA): the primary goal of a MA
is to monitor and control the execution of VNFs. Fur-
thermore, it is also responsible for coordinating the
execution of all internal modules of the VNF platform.
MA provides five main operations: request, retrieve,
start, stop, andmonitor. The request operation receives
a VNF Package (VNFP) [3] from the network operator
and deploys the specified VNF instance. Once a VNF
is executing, retrieve operations can be used to gather
information about the VNF instance (e.g., VNF ID, net-
work interfaces). The start and stop operations are
responsible for the VNF lifecycle management. Finally,
the monitoring operation is responsible for measuring
performance indicators from the VNF Core (e.g., CPU,
memory, and network usage) and providing informa-
tion retrieved from the extended agents deployed in
the VNF platform.

• Extended Agent (EA): this module is controlled by
the Management Agent and is used to monitor/control
each network function or component. It is supposed
to be developed by the creator of the VNF/VNFC, as
it acts on the individual management data of those
implementations (e.g., number of discarded packets
by a firewall). This module must provide at least one
standard operation which we call "list". This operation
is used by MA to discover all the management data
that can be accessed by network operators.

3 CONCLUSION
In this paper, a brief overview of a modular VNF platform
architecture was presented. Although this is still a work in
progress, a prototype platform, fully compliant with the pre-
sented architecture and based on technologies such as DPDK,
Click Modular Router and Python 3, is currently being devel-
oped. As for the next steps, the developed prototype will be
deployed on a test bed reflecting a common network scenario,
in order to gather performance measurements and identify
possible bottlenecks and optimizations in the architecture.
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