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Abstract—Reliable Broadcast is a classic abstraction for the de-
velopment of fault-tolerant distributed applications. Informally,
reliable broadcast ensures that messages sent to a set of processes
are delivered by all correct processes. Moreover, the source may
require the delivery of all messages in a particular order. In this
case, several different types of orders can be defined, such as the
total order, FIFO (First-In First-Out) order, and causal order. In
practice, the implementation of reliable and ordered broadcast
is not a trivial endeavor. Current solutions are executed by end-
users along with their applications. These solutions are often
complex to maintain and operate, and require user resources
to execute. In this work we propose a strategy to alleviate the
user from this burden. NFV-RBCast is a network function that
allows the network itself to offer reliable and ordered broadcast
services. We employ virtualization technologies to implement the
broadcast services using NFV (Network Function Virtualization)
technology. NFV-RBCast is based on a sequencer that is executed
within the network and establishes message ordering. A commu-
nication interface featuring broadcast and delivery primitives is
employed by applications to use the broadcast service. A proof-
of-concept prototype was implemented and experimental results
are reported showing the latency and overhead of the sequencer
as well as the throughput for a varying number of processes.

I. INTRODUCTION

Reliable broadcast is a classical building block for the
implementation of fault-tolerant distributed applications. In-
formally, reliable broadcast ensures that messages sent to
a set of processes are delivered by all correct processes
[1]. Moreover, the source may require all messages to be
delivered in a particular order. In this case, there are several
different types of orders that can be defined. If all correct
processes have to deliver all the messages in exactly the same
order, the broadcast is called atomic. If the order is that in
which messages were sent by source, the broadcast is called
FIFO (First-In First-Out). Causal broadcast determines that
the messages are delivered in the order that ensures causal
precedence [2].

In [3] the authors argue that the performance of reliable
broadcast algorithms is affected by a trade-off between the
number of communication steps and the number of messages
needed to complete the algorithm. However, in addition to
these performance aspects, it is also necessary to choose an
algorithm that can be implemented in the particular network
environment on which the application will run.

In practice, the implementation of reliable and ordered
broadcast is not a trivial endeavor. If the service is offered
in the application itself, the application developer has to deal

with complex implementation details [4]. Another alternative
is to employ specialized middleware, which is also executed
and managed by end-users themselves.

In this work we present NFV-RBCast, a novel alternative to
implement reliable broadcast that frees the user from having
these burdens: the network itself offers broadcast services
which are implemented in the network, instead of executing on
end-user hosts, either as an application or middleware. NFV-
RBCast provides several types of broadcast: reliable broadcast,
atomic reliable broadcast, atomic FIFO reliable broadcast, and
atomic causal reliable broadcast.

The proposed implementation of broadcast services is based
on Network Function Virtualization (NFV) and Software-
Defined Networking (SDN). NFV-RBCast takes advantage
of virtualization technologies to enable the network itself
to provide reliable and ordered broadcast. In fact, the total
order of messages is ensured through the use of a sequencer
that is also executed within the network. The sequencer is
implemented as a Virtualized Network Function (VNF), called
VNF-Sequencer which implements a moving sequencer in
order to increase availability and performance.

The broadcast and delivery primitives are available through
an API accessed by the distributed application, called RBCast.
The API provides primitives for broadcast and delivery and is
available at end-user hosts. A proof-of-concept prototype was
implemented and results are reported showing the broadcast
latency and the overhead of the VNF-Sequencer, as well as the
throughput while varying the number of processes. In addition,
VNF-Sequencer was evaluated in the presence of crashes and
overhead.

The rest of this work is organized as follows. Section
II describes related work, before presenting basic concepts
related to message broadcasting and also the virtualization
of network functions. Section III describes the reliable and
ordering broadcast algorithms implemented in NFV-RBCast
and the VNF-Sequencer. The experiments are presented in
Section IV and conclusions follow in Section V.

II. BACKGROUND AND RELATED WORK

In this section an overview of definitions related to both
message broadcasting and NFV technology are presented,
followed by a description of relevant related work.
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A. Reliable and Ordered Broadcast

Two processes of a distributed system can communicate
by exchanging messages across a communication channel.
Reliable broadcast allows more: a process transmits a message
that must be reliably delivered by all correct processes of the
system [1]. Reliable broadcast is a fundamental building block
for the development of fault-tolerant distributed applications
[5], [6].

Reliable broadcast can be defined in terms of two primitives
[7]: broadcast(m) and deliver(m), where m is a message.

• The broadcast(m) primitive is invoked by the sender to
broadcast m to all processes.

• The deliver(m) primitive causes the delivery of message
m by each correct process to the application that is the
actual destination of the message.

Although reliable broadcast ensures message delivery, it
does not impose any restriction on the order in which messages
are delivered. There are actually several types of broadcast
that ensure each a different order that can be applied to the
sequence of messages delivered by the processes, as described
next.

Atomic broadcast [8] ensures that all correct processes
deliver all messages in the same order, called total order. In
general, this type of broadcast guarantees the total order for
a sequence of messages that is globally agreed upon. In other
words, the total order required by atomic broadcast implies
that correct processes eventually deliver the same sequence
of messages. Note that any sequence will do, as long as all
processes deliver all messages in that order.

For some applications, the context of a message depends
on other messages previously received from the same source.
The broadcast that meets this requirement is called FIFO
broadcast, which ensures that messages are delivered by all
correct processes in the order they were sent by the source.
In the present work the FIFO property was implemented with
atomic broadcast, ensuring that total order also follows the
FIFO order. We therefore call this type of broadcast as “FIFO
atomic broadcast”.

Alternatively, a message m may also depend on the mes-
sages that the sender of m had delivered before sending m. In
this case, the FIFO order is not sufficient: an order that takes
into account events with causal precedence is necessary. The
concept of causality in the context of distributed systems was
formalized by Lamport [2]. If an application requires an order
that respects events with causal precedence, it is necessary to
use causal broadcast. In this work we implemented “atomic
causal broadcast” which is a reliable broadcast that satisfies
both causal order and total order.

B. Using a Sequencer to Order Messages

There are several different ways to ensure the total order
of messages in a distributed system. A classic and simple
approach is to use a sequencer, which is a process responsible

for receiving all messages and forwarding them to the receivers
according to some order. As all correct processes receive all
messages from the sequencer, the global total order can be
ensured [1].

The process defined to be the sequencer is thus the entity
responsible for defining the message order, which are con-
structed as follows. To broadcast a message m, a source sends
m to the sequencer. Upon receiving m, the sequencer assigns
a sequence number to m and relays m – with the assigned
sequence number – to the destinations, i.e. all processes. The
correct processes then deliver the messages according to the
sequence numbers assigned by the sequencer.

The sequencer itself can be implemented in different ways:
it can be fixed, or a moving sequencer, also privilege-based,
among other alternatives [1]. In a fixed sequencer algorithm,
only one process is responsible for ordering messages on the
network. On the other hand, a moving sequencer algorithms
allows the role of sequencer to be interchanged between mul-
tiple processes. The advantage of this approach is to distribute
the load among the processes in addition to tolerate failures.
In our solution, the ordering of messages is implemented by a
moving sequencer, which is described in more detail in Section
III.

C. Network Function Virtualization

Network Function Virtualization (NFV) is an emerging
technology that uses software virtualization techniques to
implement network functions that have been usually deployed
as hardware middleboxes. A Virtual Network Function (VNF)
is implemented in software and can be executed on general
purpose hardware (e.g., x86 architecture) [9]. Thus, with
NFV technology it is possible to design, deploy, and manage
network functions in a fraction of the time it often takes to do
the same in non-virtualized settings [10].

Typically, a network function (e.g., firewalls, NAT devices,
routers) can be started on demand, just as it is needed. In
comparison with their traditional equivalents which are usually
implemented using proprietary hardware/software, VNFs are
easier to manage and operate, and are simply destroyed
when they are no longer needed. VNFs can also have their
physical resources automatically adjusted, scaling up or down
according to the demand, making efficient use of system
resources. NFV technology also saves energy and reduces the
requirements in terms of physical space [11]. NFV is often
deployed together with the Software Defined Network (SDN)
technology, with both technologies complementing each other.

D. Related Work

In this subsection we describe some of the most rele-
vant platforms and protocols that provide atomic broadcast
primitives and are thus related to NFV-RBCast. The major
difference between these strategies and our work is where the
broadcast algorithms are executed – our solution enables the
network itself to offer reliable and ordered broadcast services.
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In [12] the authors propose Zab, an atomic broadcast proto-
col defined in the context of Zookeeper1. ZooKeeper provides
multiple coordination services to distributed applications. In
particular, Zookeeper implements a primary-backup replica-
tion strategy in which a primary process executes operations
and uses Zab to propagate the corresponding incremental
state changes to the backup processes. Zab employs a fixed
sequencer, called leader, chosen with leader election algorithm.
Each process that performs an atomic broadcast must send the
message to the leader. For the delivery of the messages to
the other processes, the leader executes an algorithm similar
to two-phase commit, where a request is made, votes are
collected so that the protocol can commit. To ensure FIFO
order, all communications use TCP connections between all
pairs of system processes.

In [4], the authors propose a solution called NOPaxos
(Network-Ordered Paxos) which relies on the network to
establish message ordering that is used to provide strongly
consistent replication without executing distributed consensus.
The purpose is to to provide an efficient service for consistent
replication in data centers. The protocol is only executed when
necessary – in particular as packets are dropped – avoiding
constant synchronization between processes. A sequencer that
is deployed in the network is used to establish the order
of messages. This sequencer is implemented directly on the
switches. The authors show that this strategy allows the
deployment of low-cost replication that presents low latency
and high throughput.

ISIS is the classic distributed middleware proposed a couple
of decades ago [13] which provides consistency guarantees for
distributed processes. The ISIS ABCAST primitive provides
atomic broadcast. Furthermore, it offers a wide range of
consistency levels for applications by employing the virtual-
synchronous model. The system defines groups of processes
and the global order of messages is guaranteed even between
overlapping groups (i.e., one or more processes in different
groups). Since ensuring the total order of messages can be
a costly task, the ISIS system also provides weaker ordering
primitives in exchange for better performance.

In [14], the authors propose primitives for broadcast com-
munication that were integrated with the early Amoeba dis-
tributed operating system. Amoeba was able to provide reliable
and ordered broadcast communication for groups of processes.
The proposed protocol assumes both communication and pro-
cess failures. The protocol was defined within the operating
system kernel. All processes must run on the same hardware,
executing the same kernel and the same application. The
protocol was based on a centralized sequencer, which is one
of the members of the group.

It is possible to conclude that platforms and protocols
of related work mostly run on end-users hosts. Moreover,
while some solutions provide a complete set of primitives for
message ordering, others only provide partial functionality. In
the present work we propose the use of a VNF technology to

1https://zookeeper.apache.org/

implement, in the network itself, several primitives of reliable
and ordered broadcast. We claim that the complexity for
the development of distributed applications is reduced, since
reliable and ordered broadcast are provided as services offered
by the network itself. Finally, our solution does not require any
special hardware or system software modification in order to
run the several types of broadcast.

III. NFV-RBCAST: ARCHITECTURE AND ALGORITHMS

The purpose of NFV-RBCast is to enable the network itself
to offer reliable and ordered broadcast services. Distributed
applications have access to the services by invoking broad-
cast primitives. NFV-RBCast assumes reliable communication
channels – which are for instance implemented in the Internet
with the TCP transport protocol. Several classic algorithms
for ensuring the delivery and order of the messages form the
NFV-RBCast core. The architecture follows a modular, layered
design for service construction e.g., atomic broadcast is built
on top of reliable broadcast.

The basic reliable broadcast algorithm that NFV-RBCast
implements is the one proposed by Chandra and Toueg [15].
This algorithm ensures the delivery of messages as follows:
the source process that starts the broadcast sends message
m to all processes. When a process receives m for the first
time, it delivers m; furthermore if that process detects that the
source has crashed, it sends m to all correct processes. In this
way if the sender fails before completely sending the message
to all processes, a process that receives the message solves
the problem. Thus all correct processes eventually receive and
deliver the message. The header of every message m includes
a field denoted local seq, which contains the identity of the
sender (i.e., the process identifier) and a field with the local
message sequence number. In this way every message can
be uniquely identified and the NFV-RBCast can concurrently
handle multiple messages coming from multiple sources.

Next we provide details on how message ordering is imple-
mented, and present the NFV-RBCast architecture.

A. Message Ordering

NFV-RBCast employs a sequencer to establish the message
ordering. We implemented a moving sequencer which is
described in Section III-C. The sequencer orders messages
according to two criteria, the first is the local order established
at the the source process – which corresponds to the FIFO
broadcast order. The other criterion establishes a global order
that makes it possible to guarantee the atomic delivery of
messages.

Algorithm 1 enforces the atomic delivery of messages by all
correct processes. In the algorithm, processes can assume three
distinct roles: sender, sequencer, and receiver. The sender (pi)
executes the broadcast primitive for message m, and defines
the type of algorithm to be used.

Message m is broadcast with information about the sender
identifier, local message counter (local seq), the type of
broadcast algorithm that will be used, and the payload. The
global counter is inserted by the sequencer into the message
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Algorithm 1 Algorithm to totally order messages.
sender:

1: Init:
2: RBtype := AtomicRB {Choose the algorithm}

3: local seq := 1
4: upon broadcast(m) do
5: broadcast(m, local seq, RBtype)
6: local seq := local seq + 1

sequencer:
7: Init:
8: global seq := 1 {Global counter used to deliver m}

9: upon receive (m, local seq, RBType) do
10: broadcast(m, global seq)
11: global seq := global seq + 1

receiver:
12: Init:
13: nextMsg := 1
14: pendingMsg := ∅
15: upon receive (m, global seq) do
16: pendingMsg := pendingMsg ∪ {m}
17: while (∃ (m′ ∈ pendingMsg ∧ global seq = nextMsg))

do
18: deliver(m′)
19: pendingMsg := pendingMsg \ {m′}
20: nextMsg := nextMsg + 1
21: end while

and incremented after the message is sent. Each process
that receives m adds the message to the list of pending
messages (pendingMsg). Then a check is run to verify
whether message m′ with local counter equal to that of the
next message (nextMsg) is already in the pendingMsg list.
Note that nextMsg implicitly identifies the source, so that
the sequencer can handle multiple concurrent broadcasts from
multiple senders. When the required conditions are satisfied,
message m′ and all other pending messages that satisfy the
selected order are delivered to the application.

In case the application requires not only the atomic order
but also the FIFO order, the sequencer implements the delivery
according to Algorithm 2. In the FIFO broadcast algorithm,
it is necessary to verify that the local counter of message m
sent by process pi, is that of the next message expected. If it
is not, the message has to be classified as pending and it must
wait to be delivered to guarantee the FIFO order. Thus m is
added to the pending list (F pendingMsg).

For example, if pi broadcasts mpi

3 and mpi

4 (where for
instance mpi

3 is a message sent by process pi and 3 is the
local seq number) and the sequencer first receives m4, then

this message will be stored in the F pendingMsg list and
will remain there until m3 is received. In this example, when
the expected message (m3) is received, the sequencer forwards
m3 as well as m4. The sequencer also adds the global counter
number before forwarding messages ms

m′ and ms
m′′ , where

m′ < m′′ (in the example, m′ = m3 and m′′ = m4). Finally,
the correct processes receive the messages from the sequencer
and deliver those messages as shown in Algorithm 1 (receiver).

As long as there are pending messages in pendingMsg and
the global counter number of a pending message corresponds
to that of the next message expected (nextMsg), then that
message is delivered together with others according to the
order being used.

Note that the FIFO order is being used and some process
pj broadcasts message mpj

1 (the first message from pj), the
sequencer forwards this message immediately after its receipt,
since mpj

1 is independent of any other message transmitted by
any other process.

Algorithm 2 Atomic FIFO order algorithm.

sender:
1: Init:
2: RBtype := AtomicFIFO

3: local seq := 1
4: upon broadcast(m) do
5: broadcast(m, local seq, RBtype)
6: local seq := local seq + 1

sequencer:
7: Init:
8: nextMsg := 1
9: F pendingMsg := ∅ {List of FIFO pending messages}

10: upon receive (m, local seq, RBType) do
11: if (RBtype = AtomicFIFO) then
12: if (local seq = nextMsg) then
13: broadcast(m, local seq)
14: nextMsg := nextMsg + 1
15: while (∃ (m′ ∈ F pendingMsg ∧ local seq =

nextMsg)) do
16: broadcast(m′, local seq)
17: nextMsg := nextMsg + 1
18: F pendingMsg := F pendingMsg \ {m′}
19: end while
20: else
21: F pendingMsg := F pendingMsg ∪ {m′}
22: end if
23: end if

Hadzilacos and Toueg [16] describe the causal order as a
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generalization of the FIFO Order. In fact, it is possible to
transform the FIFO broadcast into the Causal Broadcast by
proving that the algorithm satisfies both the FIFO order and
local order. That is exactly how NFV-RBCast provides causal
atomic broadcast.

B. NFV-RBCast Architecture

The NFV-RBCast architecture is shown in Fig. 1. The sys-
tem is assumed to run in an SDN network. A key component
of NFV-RBCast is the sequencer, which is implemented as a
VNF (called VNF-Sequencer). Module RBCast offers an API
that consists of a set of primitives so that applications can
execute the broadcast services. This module is run on the end-
user hosts, at the end-points of the communication channel, the
hosts running applications that use the broadcast services.

In this work, the VNF-Sequencer is implemented taking
advantage of SDN network. SDN technology has several facili-
ties to deploy policy-based message routing. Note however that
using SDN is not a strict requirement of NFV-RBCast, as the
VNF-Sequencer can be easily adapted to run on a traditional
network without major changes. As it is, NFV-RBCast relies
on an OpenFlow SDN Controller to create the rules for the
communication between the distributed applications that make
use of the broadcast services and the sequencer. When a
process sends a message using reliable and atomic broadcast,
the total order is constructed in two steps described next,
Process-to-Sequencer and Sequencer-to-Process.

• Process-to-Sequencer: Once the application defines the
order type to be applied to the messages, the source
broadcast the message on the network and the messages
are forwarded to an SDN switch from the RBCast in-
terface. Note that in the case of reliable (not atomic)
broadcast, it is not necessary to use the sequencer and the
messages are delivered after they are received. Otherwise,
if the broadcast is ordered, the messages follow the
standard operation of the OpenFlow protocol [17]: every
message that does not have an entry in the switch flow
table (i.e. packet-in) is forwarded to the controller. For
each packet-in received, the controller checks whether
the message is an ordered broadcast message, in case it
is, the next action is to install an OpenFlow rule in SDN
switches to forward all similar messages coming from the
RBCast to the VNF-Sequencer. For the next messages of
the same flow no additional rules need to be created: the
messages are directly sent to the VNF-Sequencer. This
strategy has an advantage as the source does not need
to know the IP address of the sequencer or even that a
sequencer is being used.

• Sequencer-to-Process: When message m is received
by the VNF-Sequencer, it selects the type of broadcast
defined in the Process-to-Sequencer step, and executes the
corresponding broadcast algorithm (described in Section
II-B). When m is forwarded from the VNF-Sequencer
to the destinations, it receives a global sequence value

assigned by the sequencer. Message m is sent following
the same procedure described in the Process-to-Sequencer
step. If m does not have a corresponding rule in the
flow table of the SDN switch, that message is forwarded
to the SDN controller which installs a OpenFlow rule
to forward all traffic from the VNF-Sequencer to all
destination processes. Finally, the processes deliver m
taking into account the sequence number determined by
the VNF-Sequencer.

An alternative to implement the sequencer as a VNF would
be to do that directly in the SDN controller. However, we
do not employ this strategy for two reasons. The first is for
performance issues, since adding ordered broadcast modules
to the controller would result on extra load (i.e., packet
processing and message ordering), possibly compromising
its performance and availability. Moreover, executing the se-
quencer as a VNF reduces the complexity of development
and management, since implementing and deploying broadcast
algorithms in the controller implies in several modifications of
the controller itself.

Fig. 2 shows the cost of one execution of the broadcast
algorithm using the sequencer strategy. The example is based
on the model proposed in [18]. In the figure, there is two
processes P1 and P2. The transmission of a message from a
sending process P1 to a destination process P2 requires two
types of resources: CPU and network. The VNF-Sequencer is
placed inside the network. When message m is transmitted in
the network, the VNF-Sequencer selects the type of broadcast
defined by the sender and executes the corresponding broad-
cast algorithm forwarding m to the destinations. The CPU
resources represent the processing produced by the commu-
nication layers, throughout the emission and the reception
of a message. Each process has assigned one CPU. The
transmission end-to-end delay corresponds to the following
steps:

1) Process sends or receives a message: m leaves or enters
the CPU resource. In this latter, m waits for CPU to be
available.

2) Message is performed by the CPU resource: m uses the
resources CPU for λ time units.

3) Message enters the network or in a queue: m waits until
the network or CPU is available.

4) Message is performed by the network: m uses the
network resource for some time (e.g., 1-time unit).

The measure of the cost of one execution of the broadcast
algorithm is given by (4λ + 2). This cost denotes that the
sequencer is a good strategy as illustrated in the studies
performed by the authors [18].

C. VNF-Sequencer

There are several ways to implement a sequencer, which can
be a fixed, moving, privileged-based, among other alternatives
[1]. Although the fixed sequencer is the simplest to implement
and manage, a major drawback is that it becomes a single
point of failure, affecting availability and performance, since
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Fig. 1. NFV-RBCast architecture.
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Fig. 2. End-to-end delay to broadcast a message.

only a single node is responsible for the task. As the load on
the fixed sequencer increases, there can also be an impact on
throughput and latency. In order to avoid this problems, the
VNF-Sequencer was implemented as a moving sequencer. The
main advantages of this approach is twofold: (i) it tolerates
sequencer crashes and thus increases the availability and; (ii)
the load can be balanced among sequencer nodes, improving
the performance.

Fig. 3 shows the VNF-Sequencer architecture. As it is a
moving sequencer, it is deployed on a pool of nodes, each
of which executes a VNF instance. Each VNF instance can
assume the role of sequencer and all instances execute the
same algorithms described in Section III-A. The number of
VNFs is customizable, according to the required availability
and performance levels. We note that using NFV technology
makes it easier to change the size of the pool.

At any time instant, only one of the VNF instances performs
the role of sequencer. A token is employed, so that the instance
that holds the token is responsible for messages ordering.
The token consists of a message (node id, counter) where
node id is the node identifier and counter corresponds to
the latest value of the global message counter. The counter
consists both of the global sequence number employed by the

atomic broadcast algorithm and the local sequence number for
each sender used to enforce the order of the FIFO broadcast
algorithm. In Fig. 3, the sender is node S1 that sends messages
to the VNF-Sequencer. The token is hold by Node 2, which
establishes message ordering, and sends the ordered messages
to the receivers.

The VNF-Sequencer contains two additional modules: a
Monitor Module (MM) and a Token Manager Module (TMM).
The MM implements two components, a Failure Detector (FD)
based on the heartbeat strategy and a performance monitor
(PM). The TMM also implements two components, a load
balancer and an election module. Each component is described
below.

1) Failure Monitoring: Unreliable failure detectors were
proposed by Chandra and Toueg [15] as abstractions that,
depending of their properties, can be used to solve consensus
in asynchronous systems with crash faults. A failure detector
is defined as an “oracle” that can be accessed by a node to
obtain information about the state of the other nodes of the
distributed system. Failure detectors are said to be unreliable
as they can make mistakes, i.e. report an incorrect state. For
example, a monitored node can be incorrectly suspected to
have crashed, but later the suspicion can be raised if the the
failure detector learns that the node is alive.

A common approach to implement failure detectors is to
monitor the message exchange pattern. As mentioned before,
the strategy employed by our FD is classified as a heartbeat-
based. Using a heartbeat FD, the monitored nodes (i.e., moving
sequencer pool) sends heartbeat messages at periodic time
intervals to the monitor. Based on the observed message arrival
pattern, the failure detector computes a timeout interval. If a
message is not received by the monitor within this timeout
interval, the monitored node is suspected to have crashed. If
the sequencer is suspected, the TMM elects a new sequencer.

2) Performance Monitoring: In addition to monitoring fail-
ures, the PM (Performance Monitor) module of the MM
monitors the performance of the pool of sequencer nodes. For
this purpose, the PM periodically collects metrics from each
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node and stores this information in a local database. Metrics
include CPU, memory, and bandwidth usage, among others.

With these metrics, the TMM can prevent network per-
formance degradation by identifying overloaded nodes and
performs load balancing among the pool nodes. Multiple
node-selection policies can be applied in this context. For
the experiments reported in the next section, the policy used
verifies if the CPU usage is above a predefined threshold (e.g.,
above 90%). Based on the collected metrics, if the values for
the node that is currently serving as sequencer matches the
threshold, the TMM will elect a new sequencer.

3) Token Manager Module: The TMM (Token Manager
Module) is responsible for managing the token and for the
election of sequencers. Note that a sequencer in charge main-
tains a global message counter that increases monotonically.
As another sequencer is elected, the TMM has to ensure that
it receives the correct, up-to-date global message counter. In
order to ensure the smooth transition from one sequencer to
another, the counter has to be properly monitored.

As described previously, the FD periodically monitors each
node using heartbeat messages. To minimize the number of
messages, the token synchronization task – which consists
of obtaining the updated global message counter from the
sequencer in charge can be piggybacked on each heartbeat
message.

Two steps are required to change the sequencer from a node
to another. The first step consists of the decision itself that a
new sequencer has to be elected. The second step consists of
the election itself. The two steps are described below.

Deciding on a new election. The decision that a new
sequencer has to be elected starts with the TMM detecting
that the sequencer in charge node is either overloaded or
has crashed. Monitoring resource consumption can be used
to assess that a sequencer is overloaded. In this case, the
TMM sends a message to the sequencer currently in charge

requesting the global message counter and, at the same time,
informs the node that it no longer has the token. In the case
in which the FD detects that the sequencer has crashed, the
TMM can not obtain the updated global counter, furthermore
the token itself is lost and messages may have been lost for
a period of time. In this case, the TMM performs a rollback
to the last received counter, which it stores locally. In both
situations, after detecting that it is necessary to change the
sequencer, the election begins.

Electing a new sequencer. To elect a new sequencer, the
TMM selects among the nodes in the moving sequencer pool
the one that has presented the lowest CPU utilization. In order
to avoid making a poor decision due to utilization peaks, an
average of the latest 10 utilization samples is employed. Once
the elected node is decided, the TMM broadcasts the token to
the moving sequencer pool containing the identifier of the new
sequencer (node id) and the updated global message counter
(global seq). All nodes receive this message and check if the
node id in the token is equal to its own node id. If it is, the
node assumes the role of sequencer in charge.

The next section describes a proof-of-concept prototype and
experimental results executed for evaluating the performance
of VNF-Sequencer in several scenarios.

IV. EXPERIMENTAL EVALUATION

In this section we report the results of experiments executed
in order to evaluate the performance of proposed in-network
broadcast services. The experiments were executed on a proof-
of-concept prototype, implemented with the Ryu [19] SDN
controller, Open vSwitch [20], and using OpenFlow 1.3 for
the communication between the switch and the controller.
The prototype was executed on a physical machine based on
an Intel Core i5-7200U@2.50GHz processor with 4 cores, 8
GB RAM and running Ubuntu 18.04. We developed a client
application responsible for generating data flows. This appli-
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cation broadcasts messages continuously. Each node of the
VNF-Sequencer pool and the Ryu controller are deployed on
containers running on the Docker platform [21]. Experiments
are presented to evaluate the overhead and the throughput of
the VNF-Sequencer.

A. Evaluation of VNF-Sequencer Overhead

In Section III, we mentioned that the purpose of the VNF-
Sequencer is to guarantee the atomic delivery of messages
and that it is implemented within the SDN network. Using a
sequencer is actually the most efficient way to guarantee the
total order of messages. On the other hand, there is a cost
in terms of the overhead as the sequencer has to process all
messages that are sent through the ordered broadcast service.
In this way, the first experiment aims to measure the impact
of the sequencer on the latency of atomic broadcast which
is compared with reliable broadcast, which does not use a
sequencer.

In the experiment shown in Fig. 4, the topology consists of a
switch, an SDN controller and a varying number of processes
that take part of the reliable broadcast instance. One of the
participating processes implements a client application respon-
sible for broadcasting messages that are initially forwarded to
the local RBCast interface. When other processes receive the
message from their RBCast interfaces, messages are delivered
to the application. In this experiment, we measured the mes-
sage delivery latency which corresponds to the time elapsed
from the moment the message was transmitted by reliable
broadcast until the instant that all processes have completely
delivered the message to the application. In this experiment,
each value shows the mean of 10 samples and each sample
consists of 1000 broadcasts of 1KB messages.
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Fig. 4. Comparison of the latency for message delivery.

Fig. 4 shows the results of the comparison of the communi-
cation with (VNF-Sequencer curve) and without a sequencer
(No Sequencer curve). As expected, we can note that in most
cases the latency is higher with the use of the VNF-Sequencer.

In quantitative terms, we observed that the average latency
when the sequencer is used is approximately 32.1% higher
than without the sequencer. It is also possible to notice that
the latency increases in both cases as the number of processes
grows. Up to 20 processes, the latency increases by about
20%. It is possible to conclude that in a system with up to 20
processes, the cost to guarantee the total order of messages
with the sequencer is a fair price to pay. Above 20 processes,
the latency overhead can increase from 34% til up to 56%.

We also evaluated the influence of the message size on the
performance. In this experiment, we measured the latency for
50 processes that broadcast messages with sizes varying from
1KB to 16KB. Fig. 5 shows the mean taken from 10 samples
each of which consisting of 1000 broadcasts.

Fig. 5. Comparison of the latency for 50 processes for different message
sizes.

Considering these results, the average latency increases by
15.7% with the sequencer. It is also important to note that
the latency decreases as the message size increases. For 1KB
messages, the latency overhead is about 31.7% larger with
VNF-Sequencer. On the other hand, for 16KB messages, the
difference drops to only 3.8%. Therefore, it is possible to
conclude that as the message size increases the impact of
the sequencer on the latency diminishes. It is also possible to
observe that without the VNF-Sequencer the latency increases
by 224ms, whereas with the VNF-Sequencer it increases by
198ms, i.e. it is just 11.6% lower. In other words, as we
increase the size of the messages, the rate in which the latency
grows reduces when the VNF-Sequencer is employed.

It is important to remember that the VNF-Sequencer intro-
duces an overhead in terms of latency, but this is expected as
it is the component that establishes the total order required for
atomic broadcast.

B. Evaluation of the Throughput

The next experiment was executed with the purpose of
evaluating the throughput of the VNF-Sequencer, varying
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the number of processes performing the broadcast. In this
experiment, each execution lasts three minutes and results
are the average of three executions. The average number
of messages handled per second by the VNF-Sequencer is
computed. In this way, we measured the maximum number
of messages that were broadcast. Up to 50 processes were
evaluated, one of which is the sender. The algorithm used in
this experiment was the atomic broadcast.
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Fig. 6. VNF-Sequencer throughput as the number of processes increases.

In Fig. 6 we show the variation of the throughput as the
number of processes increases. In this scenario the processes
are running multiple broadcasts. Since the sender process
sends messages to VNF-Sequencer at its maximum rate, the
throughput of the VNF-Sequencer is determined by the time
required to broadcast a message to all destination processes.
Thus, the time to broadcast a message to a small number of
processes is less than the time to do that to a larger group of
processes. As a result, the throughput decreases as we increase
the number of processes participating in the broadcast. In
particular, we highlight that for up to 50 processes, the VNF-
Sequencer was never the bottleneck, reaching a throughput of
approximately 15000 messages per second.

C. Throughput with Failures and Overhead

As seen in Section III-C, the VNF-Sequencer is a moving
sequencer which raises the availability and performance of
the solution in comparison with the simpler fixed sequencer.
In this experiment we evaluate the VNF-Sequencer throughput
in the presence of crash faults as well as in the presence of
overloaded sequencer nodes.

Fig. 7 shows the VNF-Sequencer throughput for one minute
of execution (x-axis). In this experiment, a client continually
sends atomic broadcast messages. The moving sequencer pool
has been configured with 3 nodes while 1 VNF instance runs
on each one. Moreover, the system consists of 20 processes
that deliver the broadcast messages.

At time instants 20 and 40, either a crash fault was injected
(VNF-Sequencer with Failures curve) or the sequencer became
overloaded (VNF-Sequencer with Overhead curve). The crash
fault was injected by deleting the container hosting the se-
quencer in charge. Analogously, in order to cause a significant
overhead on the sequencer, we spawn multiple jobs that consist
of a sequence of operations that are CPU-intensive.

0  

5 k

10 k

15 k

20 k

25 k

30 k

35 k

40 k

0 5 10 15 20 25 30 35 40 45 50 55 60

T
h
ro

u
g

h
p
u

t 
(m

e
s
s
a
g

e
s
/s

)

Time (s)

VNF−Sequencer with Failures
VNF−Sequencer with Overhead

Fig. 7. VNF-Sequencer throughput under crashes and an overloaded se-
quencer.

After a process crashes, it is possible to note that the VNF-
Sequencer throughput is reduced to zero for an interval of 2
to 3 seconds. This is the time interval from the instant the
process has crashed to the instant at which the FD starts to
suspect that process. Meanwhile, the FD performs the rollback
to the last global message counter, and elects a new sequencer.

As the overhead of the sequencer increases, the throughput
only decreases, instead of simply going down to zero as in
the case of crashes. The recovery interval is also in 2 to 3
seconds range, which corresponds to the time required by the
TMM to detect the situation, after which it obtains the updated
global message counter, and elects a new sequencer. In this
case, the TMM does not perform any rollback operation, since
no messages were lost.

These experimental results allow the conclusion that NFV-
RBCast is both effective – by enabling the network itself to
offer reliable and ordered broadcast services – and robust –
as it ensures the correct delivery of messages even when after
sequencer crashes or becomes overloaded.

V. CONCLUSION

A very large number of distributed applications employ
reliable and ordered broadcast services. Systems that im-
plement those services are usually deployed on end-hosts,
either in the application or as underlying middleware. In this
work we presented a different alternative: we employ NFV
technology to enable the network itself to provide reliable
and ordered broadcast services. Thus applications can simply
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invoke the service available from the network, and users
not need to install/maintain/run the services on their own
end-hosts. NFV-RBCast provides several types of broadcast
services to ensure reliable and ordered delivery of messages
to distributed applications: reliable broadcast, atomic reliable
broadcast, atomic FIFO reliable broadcast, and atomic causal
reliable broadcast. The system is based on a moving sequencer
which is implemented as a VNF. The VNF-Sequencer manages
message transmissions and establishes the required ordering of
the messages. Moreover, the strategy used to implement the
VNF-Sequencer tolerates failures and allows load balancing
among the pool of sequencer nodes. In addition, the VNF-
Sequencer features other modules that perform several other
tasks, such as reverting the system to a previous state (roll-
back).

A proof-of-concept prototype was implemented and results
show that the VNF-Sequencer meets the performance expec-
tations. The cost in terms of the latency and overhead was
presented for different scenarios, both varying the number of
broadcast participants and the size of the messages transmitted.
Furthermore, the throughput was measured by increasing the
number of processes. In the experiment, it was observed
that for up to 50 processes the sequencer did not become
a bottleneck. Finally, the VNF-Sequencer was evaluated in
terms of the overhead it represents, including in the presence
of failures. The VNF-Sequencer was able to mitigate the
consequences of node failures as well as of overloaded nodes
within an interval of 2 to 3 seconds.

Future work includes the adaptation of NFV-RBCast to the
NFV-MANO reference architecture (NFV Management and
Orchestration)2. Besides being a standard, NFV-MANO would
also improve the scalability of the VNF-Sequencer: the size of
the moving sequencer pool could be autonomically adjusted to
adapt to the current requirements and conditions. Yet another
alternative is to investigate effective strategies to implement
the total order of messages in a distributed fashion using a
consensus algorithm.
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