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• This work presents parallel strategies for Particle Swarm Optimization (PSO) based on multiple swarms to solve Many-Objectives Problems.
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a b s t r a c t

In this work we present two parallel PSO strategies based on multiple swarms to solve MaOPs (Many-
Objective Optimization Problems). The first strategy is based on Pareto dominance and the other is
based on decomposition. Multiple swarms execute on independent processors and communicate using
broadcast on a fully connected network. We investigate the impact of using both synchronous and
asynchronous communication strategies for the decomposition-based approach. Experimental results
were obtained for several benchmark problems. It is possible to conclude that the parallelization has a
positive effect on the convergence and diversity of the optimization process for problems with many
objectives. However, there is no single strategy that is the best results for all classes of problems. In terms
of scalability, for higher numbers of objectives the parallel algorithms based on decomposition are always
either the best or present comparable results with the Pareto approach. There are exceptions, but only
when the problem itself has discontinuities on the Pareto Front.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Multi-Objective Optimization Problems (MOPs) [15] involve
the simultaneous optimization of two or more objectives. MOPs
present several challenges when the number of objectives is
greater than three and in this case they are called Many-Objective
Optimization Problems (MaOPs) [1]. Optimization problems with
multiple objectives usually do not have a single best solution, as
frequently the objectives present conflicts among themselves. The
goal is thus to find a good set of ‘‘balanced’’ solutions, i.e. a set of
solutions that present a good trade-off taking into consideration all
the objectives.

Particle Swarm Optimization (PSO) [32] has been successfully
applied to solve multi-objective problems [15,31,45]. PSO is a
population-based stochastic optimization technique inspired on
the social behavior of groups of animals. Multi-Objective PSO
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(MOPSO) techniques are based on Pareto dominance, decompo-
sition, indicators, and reference points. In this work we focus
on Pareto dominance and decomposition. Strategies based on
Pareto dominance usually employ an external archive (or repos-
itory) to store non-dominated solutions found throughout the
optimization. As the process evolves and reaches new solutions,
it is checked whether they can be used to update the repository.
A solution can be used if it is non-dominated with respect to the
solutions already in the repository [13].

Strategies based on decomposition follow a different approach.
In order to pursue an approximation to the Pareto front, the MOP
is decomposed into a number of scalar mono-objective subprob-
lems [8,66]. Methods for constructing aggregation functions can
be adopted in which the collective objective is an aggregation of
all functions. In this case, there is a single best individual for each
subproblem. Several PSO approaches based ondecomposition have
been proposed [3,46,47,64]. Although these strategies represent
significant contributions to the field, most do not scale when the
number of objectives grow, i.e. they usually cannot be efficiently
applied to solve problems withmany objectives.
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In this work we propose parallel strategies to solve MaOPs us-
ing multiple swarms that run on independent but interconnected
processors. The multiple swarms co-evolve in parallel and inter-
act by means of policies for migrating solutions. Communication
among swarms is based on broadcast. We propose two parallel
PSO strategies for solving MaOPs: the first is based on the Pareto
dominance and the second on decomposition. The first strategy
employs a set of repositories of solutions (particles), each of which
is kept independently by each swarm. At each step, new nondom-
inated solutions of each swarm are added to the local repository.
Swarms exchange new nondominated solutions asynchronously.
In the second solution each swarm evolves a number of scalar
subproblems and shares best individuals (particles) with the other
swarms. This strategy relies on mechanisms employed by mono-
objective optimization for the migration of individual particles [9].

Experimental results are presented for theDTLZ family ofmany-
objective benchmarking problems [19]. We executed experiments
in which the proposed parallel algorithms were applied to prob-
lems with 2, 3, 5, 10, 15, and 20 objectives. In order to obtain
reference baseline results, each problemwas first solved using two
sequential optimization algorithms, the first based on Pareto dom-
inance and the other on decomposition. The resultswere evaluated
using a set of quality indicators and were statistically analyzed.
We investigated how the proposed methods impact the conver-
gence and diversity of MOPSO search in many objective scenarios.
We also present a comparison with the NSGA-II algorithm [18]
and MOEA/DD. Furthermore, considering the obtained results, we
report an analysis of the overall performance of the algorithms.
Results show that there is no single best solution for every case.
Depending on the characteristics of the problem to be solved,
different optimization strategies present superior performance.

The remainder of this paper is organized as follows. Section 2
presents an overview of particle swarm optimization, including
strategies for solving many objective problems and those based
on multiple swarms. Section 3 describes our proposed strategies
for running multi-swarm PSO to solve MaOPs. Section 4 presents
our empirical evaluation, and includes descriptions of the simu-
lation environment, benchmark functions, parameter settings and
results, including a comparison with the NSGA-II algorithm. Fi-
nally, Section 6 concludes the paper and presents future research
directions.

2. Multi-Objective PSO (MOPSO)

Particle Swarm Optimization (PSO) is a population-based
stochastic optimization technique developed by Eberhart and
Kennedy in 1995 [32]. PSO was developed inspired by the social
behavior of groups of animals, like flocks of birds and schools
of fish. PSO shares many similarities with evolutionary compu-
tation techniques such as Genetic Algorithm (GA): the system is
initialized with a population of random solutions and searches for
optima by updating generations. However, unlike GA, PSO has no
evolution operators such as crossover and mutation. In the PSO
algorithm each individual is called a particle and behaves like a
bird (or fish) in the flock (school) searching for food or fleeing
from a predator. Each particle has a position and a velocity used
to explore the search space of the problem. A position represents
a potential solution to the problem. A particle learns from its own
experiences (cognitive component), and also learns from the group
(social component). Usually, the individual and social components
are called pbest (personal best) and gbest (global best) respectively.
In order to evaluate a solution, PSO iteratively computes the fitness
for each particle.

In the PSO algorithm, at each step after finding the pbest and
gbest, every particle updates its velocity and position. Thus the
particle ‘‘moves’’ in the search space. Each particle i has a position

x⃗(t) ∈ ℜ
n at a given time t . This time t corresponds to an iteration.

The new position of particle i at time t + 1 (next iteration), is
computed by adding the velocity (v⃗(t) ∈ ℜ

n) to the position x(t),
as shown in Eq. (1).

x⃗i(t + 1) = x⃗i(t) + v⃗i(t + 1) (1)

The velocity of particle i at time t + 1 is updated according
to Eq. (2).

v⃗i(t + 1) = ϖ · v⃗i(t) + C1 · rand() · ( ⃗pbest i(t) − x⃗i(t))
+C2 · rand() · ( ⃗gbest(t) − x⃗i(t)) (2)

In Eq. (2), C1 and C2 are constants that define the learning factor
and rand() is a random number between 0 and 1. v⃗i is the particle
velocity; ⃗pbest i is the best solution found by particle i itself; x⃗i
corresponds to the position of the particle being manipulated, and
gbest is the best solution found by the whole group of particles. w
denotes the inertia weight, i.e. the tendency of a particle to keep
the same velocity. At the end of a number of iterations or some
other stop criterion, the best solution is presented as the result.

Although PSO was originally proposed to solve single objective
problems (also calledmono-objective problems) [6], PSO strategies
to solve multi-objective problems (MOPs) [15] have also been
proposed and are called MOPSO (Multi-Objective PSO). Multi-
objective problems usually do not have a single best solution.
The goal is to find a good set of ‘‘balanced’’ solutions, i.e. a set of
solutions that present a good trade-off taking into consideration
all the objectives. Since problems with multiple objectives have a
set of optimal solutions, in order to solve those problems the PSO
algorithm must be modified by incorporating a selection mech-
anism based on Pareto optimality and also adopting a diversity
preservation mechanism that avoids the convergence to a single
solution [13].

In order to allowMOPSO to obtain balanced solutions a popular
approach is to use an external repository or archive. This repository
stores nondominated solutions found by the optimization process
and keeps Pareto solutions generated up to a certain generation.
As the process evolves, new solutions are devised and considered
for updating the repository: each new solution must be analyzed
for nondominance with respect to the solutions currently in the
repository [13]. Furthermore, each particle in the population must
employ a leader selection method to choose one of the archive
members as its gbest. The sigma distance has been successfully
used to select the global best particle, as has the Crowding Dis-
tance [7] to manage the archive size [10]. A mechanism for con-
straining the accumulated velocity in each dimension can also be
used [13].

Another different strategy is adopted by the dMOPSO algorithm
proposed by Martinez and Coello [64]. This algorithm decomposes
a MOP into N mono-objective optimization problems. These sub-
problems are solved simultaneously by evolving a population of
solutions. In each generation, the population is composed by the
best solution found so far. Thus, a set of approximate solutions to
the Pareto optimal front is reached by optimizing each subproblem
(scalar aggregate function) individually, instead of using the Pareto
dominance relationship. This approach uses a weighted vector to
define a scalar function that defines a search direction. There are
several methods for constructing such functions, dMOPSO uses the
Penalty Boundary Intersection (PBI) approach proposed by Zhang
and Li [66]. For each cycle, the best positions of each particle are
employed to find the best solutions for each subproblem. There-
fore, the set of best global solutions gbest naturally emerges. This
set contains the solution that minimizes each subproblem and is
updated at each cycle accordingly. Reported results [64] indicate
that dMOPSO is a competitive algorithm that outperforms others
in several benchmark tests.
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Fig. 1. Multiple swarms co-evolve in parallel and interact by means of policies for migrating buffers of nondominated solutions.

3. The proposed multi-swarmMOPSO strategies

In this section we describe the proposed parallel strategies
based on multiple swarms that cooperate to solve problems with
many objectives. By adopting multiple processors to run the
swarms independently, the optimization process is executed in
parallel. This represents a feasible strategy for optimizing func-
tions with a high number of objectives [16,57]. We assume that
swarms are running on independent processors on a fully con-
nected network. Thus, each swarm can communicate directly with
any other swarm and there is no need to employ intermediates
in this communication. However, each population independently
performs the optimization process, in an attempt to prevent the
convergence to suboptimal solutions [25,42].

The two MOPSO strategies are presented next. They are based
on (1) the Pareto dominance relationship; and (2) decomposition.

3.1. Multi-Swarm MOPSO based on Pareto dominance

In the proposed strategy based on Pareto dominance the multi-
ple swarms share buffers of newnon-dominated solutions. Swarms
execute Algorithm 1, which calls the procedures specified in Algo-
rithm 2 for all strategies. Each swarm evolves its particles using the
global leader chosen in the local repository. If a swarm improves its
results and updates the local repository then the buffer of solutions
is updated. When this buffer is full, a communication event is
triggered and the buffer is broadcast to the other swarms. Based on
the Pareto theory, the destination swarm compares the received
buffer with its own solutions kept in its local repository. Each
solution in the buffer can be in one of the following situations (also
illustrated in Fig. 1):

1. a received solution dominates a local repository solution
→ the received solution is saved in the repository and all
dominated solutions are deleted from the repository;

2. a received solution is dominated by a local repository solu-
tion → the received solution is ignored;

3. there is no dominance relationship among solutions → if
the destination repository is not full, the received solution is
inserted. If the repository is full, then the Crowding Distance
is used to decide which solutions are kept.

Thus theMOPSO strategy based on Pareto dominance is defined
as follows:

(a) The information exchanged is a ‘‘buffer’’: a buffer of the
nondominated solutions (particles) is kept independently by
each swarm. At each step, newnondominated solutions of the
swarm are added to the buffer. When this buffer is full it is
broadcast to the other swarms and reset as empty.

(b) The communication strategy is asynchronous: the buffer
kept by each swarm is shared only when it is full. Thus, we
avoid excessive messages. In our case we employed a buffer
size that is determined by the swarm population size.

(c) Broadcast is employed to share information: the nondom-
inated solutions (kept in the buffer) are sent from a swarm to
all other swarms through the network.

(d) Updating the repository: a buffer received from another
swarm is evaluated taking into account the set of nondom-
inated solutions kept at the local repository. If the received
particles are nondominated solutions, then the local reposi-
tory is updated.
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The optimization completes when the number of iterations
executes reaches a predefinedmaximum value. The same criterion
was adopted for the baseline executions.

3.2. Multi-swarm MOPSO based on decomposition

The proposed strategy is based on decomposition sharing the
best particles for each subproblem. Swarms execute Algorithm 1
and the procedures in Algorithm 2. Swarms evolve their particles
using the global leader (gbest). The global leaders in turn are up-
dated taking into account the best particles. Two communication
policies are employed. In the synchronous communication policy,
at each iteration every swarm shares its local gbest with the other
swarms. In the asynchronous policy, at each iteration each swarm
checks whether the local current gbest has been modified (im-
proved) and in this case the communication occurs. Thus, at each
iteration, a communication event occurs only if the best solution
associatedwith each subproblem is new. This strategy is illustrated
in Fig. 2 and is described next.

Algorithm 1 Parallel Multi-Swarm Algorithm
for each swarm i do
run Initialize-swarm; // in Algorithm 2
repeat
for each swarm i do in parallel
run Swarm-Update // in Algorithm 2
run Swarm-Exchange // in Algorithm 2
end for

until until the maximum number of iterations is reached
run Output-Solutions // in Algorithm 2

The MOPSO strategy based on decomposition is defined as
follows:

(a) The information exchanged among swarms consists of
the set of best solutions from each swarm: each swarm
maintains a gbest for each subproblem. At each step, new
solutions are generated from the evolution of the particles.
For each subproblem, the particle with the best fitness value
is defined as the corresponding gbest for the subproblem.

(b) Communication strategies: (a) synchronous: at each iter-
ation the set of best solutions (one gbest associated with
each subproblem) is shared with the other swarms; (b) asyn-
chronous: the gbest of each subproblem is sent only if it has
improved.

(c) Broadcast is employed to share information: the set of
gbest’s is sent from each swarm to all other swarms through
the network;

(d) The gbest of each subproblem is updated: the set of solu-
tions received from other swarms is evaluated by checking
each gbest associated with each subproblem. If the incoming
particles represent solutionswith better fitness, then for each
subproblem, the corresponding gbest is updated.

The next section presents experimental results of the perfor-
mance of the proposed multi-swarm optimization strategies to
solve MaOPs.

4. Empirical evaluation

This Section presents the evaluation of the proposed paral-
lel PSO strategies. In the first subsection we present the quality
indicators and statistical tests employed. In the next subsection
parameters and the methodology we adopted are described. The
comparison between the sequential and parallel approaches is

Algorithm 2 The Procedures Defined for All Strategies
Initialize-Swarm:
Strategy Based on Pareto Dominance

Initialize particles, pbest, the repository, and the buffer;
Strategy Based on Decomposition

Initialize particles, pbest, gbest, and the weight vectors for the
subproblems;

Swarm-Update:
Strategy Based on Pareto Dominance

select the gbest from repository i;
given the gbest, update the particle;
evaluate the particle;
update pbest;
depending on the Pareto dominance:

update the repository and the buffer;
Strategy Based on Decomposition

update particle;
evaluate particle;
update pbest and gbest for each subproblem;

Swarm-Exchange:
Strategy Based on Pareto Dominance

if buffer of swarm i is full
then a communication event is triggered:

broadcast(buffer i)
empty buffer i

when a buffer is received:
depending on the Pareto dominance

update the repository
Strategy Based on Decomposition and Asynchronous

if gbest was improved
then a communication event is triggered:

broadcast(gbest)
Strategy Based on Decomposition and Synchronous

at each iteration
share one gbest from each subproblem with the other

swarms
when a gbest if is received:

if incoming particles represent solutions with better
fitness

then update the local gbest
Output-Solutions:
Strategy Based on Pareto Dominance

return all repositories
Strategy Based on Decomposition

return the gbest of all subproblems

presented in the third subsection. Finally, we compare the parallel
strategies with the NSGA-II algorithm.

Five algorithms are compared, these algorithms are referred to
as follows:

1. RefPar: sequential reference algorithm, based on dominance
among solutions;

2. RefDec: sequential reference algorithm, based on MOP de-
composition into single-objective subproblems;

3. BPar: parallel algorithm, based on dominance among solu-
tions;

4. BDec: synchronous version of the parallel algorithm, based
on MOP decomposition into single-objective subproblems;

5. AsBDec: asynchronous version of the parallel algorithm,
based onMOPdecomposition into single-objective subprob-
lems.

In order to evaluate the performance of the proposed algo-
rithms we employed the full set of seven benchmark problems
of the well-known DTLZ MaOPs family [19]. These benchmark
problems present several features that allow a comprehensive
evaluation ofMOEAs. Among these featureswe can highlight: their
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Fig. 2. Multiple swarms co-evolve in parallel and interact by means of policies for migrating best solutions.

design is clear and simple; they present scalability both in terms of
the number of decision variables (n) and the number of objectives
(M); and it is also possible to adjust the level of difficulty to obtain
the true Pareto front. The algorithms were used to solve problems
with 2, 3, 5, 10, 15 and 20 objectives.

The DTLZ family is composed of seven problems with distinct
properties.1 For each problem, the true Pareto front is known and
the search complexity is expressed by variable k. The size of the
vector solution is n = M + k − 1, where M is the number of
objectives. DTLZ problems are minimization functions in the form
min f (

−→
X ). In these problems,

−→
XM is a vector with size |

−→
XM | = k

containing the last values of
−→
X . Results must be evaluated using

quality indicators both in terms of convergence and diversity.
The implementation of PSO with multiple swarms for solving

MaOPs from the DTLZ family was done using the SMPL (SiMulation
Programming Language) [43]. SMPL is a simulation library for
the C programming language based on events. In the following
subsection we describe the quality indicators and statistical tests
adopted.

1 Actually, the number of DTLZ problems varies according to different authors.
For instance, Huband et al. [28], state that there are nine DTLZ problems specified
in the original technical report. A more recent conference paper version of the
technical report only specifies seven problems. Namely, problems DTLZ6, DTLZ7
and DTLZ8 from the original technical report are renamed as DTLZ5, DTLZ6 and
DTLZ7, in the conference paper (DTLZ5 and DTLZ9 from the original report were
dropped).

4.1. Quality indicators & statistical tests

The purpose of the empirical evaluation is to investigate the
performance of the proposed strategies in terms of convergence
and diversity, as well as the scalability with respect to the number
of objectives. It is not trivial to choose metrics to evaluate and in
particular to compare results obtained from the execution of algo-
rithms for solving MaOPs [1]. We employed a set of indicators that
encompass different aspects of the behavior of the algorithms [70].
These quality indicators are described next.

The Generational Distancep(GDp) [52] measures the conver-
gence of the solution set and determines how far the Pareto-
obtained front is from the Pareto-optimal (real Pareto) front. The
Inverse Generational Distancep (IGDp) [52] measures how far the
Pareto-optimal front is from the Pareto-obtained front (this is use-
ful when the points obtained are good solutions but do not cover
the entire front). Spacing [51] gives a measure of the range of the
variance betweenneighboring solutions in the front (zero indicates
that all solutions are equally distributed in the objective space).
Finally, the hypervolume proposed by Zitzler [68] considers the
volume of the covered area by the solutions in the objective space.
Results with lower values are better for GDp, IGDp and the spacing
indicators; for the hypervolume, higher values are better.

There are several statistical tests that can be employed to eval-
uate the performance of MOEAs [14]. In this work, we employed
the Friedman statistical test [20] and the Wilcoxon test [24].

Friedman is a nonparametric test employed to assess differ-
ences among several related samples. The null hypothesis for the
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Fig. 3. Average results for the GDp and IGDp metrics for the DTLZ1 problem. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Friedman test is that there are no differences between the results.
If the calculated probability is lower than the significance level,
the null-hypothesis is rejected. In this case, it can be concluded
that at least two of the results are significantly different from each
other. If the null-hypothesis is rejected, post-hoc tests for pairwise
multiple comparisons are employed to determinewhich algorithm
presents better performance. Using this test it is possible to ensure
that differences observed in the data are not casual.

Wilcoxon also is a nonparametric test. However it is a test that
compares two paired groups. The test essentially calculates the
difference between each set of pairs and analyzes these differ-
ences. We use this test specifically to compare the obtained results
between synchronous and asynchronous versions of our parallel
version of MOPSO based on decomposition. The hypothesis test
examines two opposing hypotheses about the values: the null-
hypothesis states that there is no statistical difference between the
performance of the two versions. On the other hand, the alternative
hypothesis states the opposite.

4.2. Parameters & methodology

All algorithms were compared: the proposed parallel strategy
based on Pareto dominance, the parallel versions of the
decomposition-based strategy (synchronous and asynchronous)
and the sequential algorithms. We employed the sigma method
for selecting leaders [45] and repository management was based
on the CD (Crowding Distance) [50].

For all configurations, each particle consisted of n randomly
initialized values in the scope of each function. The total number of

variables is n+ k = M −1, whereM is the number of objectives, 2,
3, 5, 10, 15 and 20 objectives were evaluated. As suggested by Deb
et al. [19], for DTLZ1, we set k = 5. For all other problems, k = 10.
The other parameters were set as traditionally recommended in
the literature [21]. The inertia weight (w) was initialized at 0.9
and was gradually lowered to 0.4. Constants C1 and C2 were set
at 2. The pbest is updated only when a better solution is found,
following [45].

The sequential algorithms (Pareto MOPSO and dMOPSO) em-
ployed 256particles forDTLZ1 andDTLZ3 and128particles to solve
the other problems. Although 128particles proved to be enough for
most of the problems, for the DTLZ1 and DTLZ3 problems it was
necessary to use a larger number of particles to better represent
the obtained Pareto fronts.

Each parallel algorithm was executed with eight swarms. In a
previous work [9] we have shown that this number of swarms
produced the best results. The total number of particles was dis-
tributed among the 8 swarms as follows: 32 particles per swarm
for the DTLZ1 and DTLZ3 functions; 16 particles per swarm for the
other functions. In both sequential and parallel versions the size of
the repository for the algorithm based on Pareto dominance was
constant, equal to the number of particles employed to solve each
problem. For the algorithms based on decomposition, the number
of subproblemswas constant, also equal to the number of particles
employed to solve each function.

The weights are initialized as follows:

• S is the number of swarms, N the number of particles on each
swarm, M is the number of objectives of the MOP;
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Fig. 4. Average results for the GDp and spacing metrics for the DTLZ3 problem.

• W = S ∗ N uniformly distributed weights are generated:
Wi = (wj, . . . , wM ), for i = 1, . . . ,W and j = 1, . . . ,M .
Satisfying the restrictions wj ≥ 0 and

∑M
j=1 wj = 1;

• The weight vectors are sorted in ascending order consider-
ing the objective M. After, every swarm receives N different
weight vectors. Observe that the weights used by the swarms
are different.

When the communication strategy is asynchronous, the buffer
is updatedwhenever a better solution is found; however, instead of
sending messages every time this happens, a message is sent only
when the buffer is full. Thus, we avoid excessive messages. In our
case the buffer size is equal to the swarm population size.

Both parallel and sequential algorithmswere executed for up to
100 iterations. The number of iterations was selected according to
earlier results that confirm the quick convergence of PSO [9,12,54].
Other parameters, including the population sizes, were also chosen
based on those earlier results.

Table 1 summarizes the parameters.
Next, we present and discuss the results for each benchmark

function and compare the results obtained by the five algorithms.
Each algorithm was executed for 30 independent runs for each
number of objectives. 30 different seeds were employed for the
30 independent runs, thus minimizing the possibility that the
algorithms produce good or bad results due to the initial state.
For each execution the final content of the repository or the set of
gbest was stored. As shown below, we have computed the average
(A) and standard deviation (SD) computed from samples obtained
from 30 runs of each function. In order to compare the results, the

Friedman test was applied with a significance level of 5%. The R
toolkit2 for statistical computing was employed. When the test
shows a significant statistical difference, after post-hoc tests for
pairwise multiple comparisons, the best averages are highlighted
in bold.

4.3. Results

In this section we present results obtained from the execution
of all algorithms for DTLZ1 (Table A.4), DTLZ2 (Table A.5), DTLZ3
(Table A.6), DTLZ4 (Table A.7), DTLZ5 (Table A.8), DTLZ6 (Table
A.9), andDTLZ7 (Table A.10). Asmentioned above, the performance
indicators consisted of the following metrics: GDp, IGDp, spacing
and hypervolume.3 The figures that show the hypervolume were
normalized based on the maximum hypervolume value for each
number of objectives. These Tables are presented in Appendix A.

The DTLZ1 problem is characterized by having a large number
of local Pareto fronts. These tend to attract suboptimal solutions
before they reach the real Pareto front.

For 2 and 3 objectives, the RefDec algorithm is the one that
stands outwith the best results for all indicators. However, accord-
ing to the statistical tests for all cases, at least one parallel version
has shown competitive results. For 5, 10, 15 and 20 objectives,

2 http://www.r-project.org/.
3 According to Yang and Ding [61], the runtime of this metric is exponential on

the dimension of the objective space. Hence, due to time constraints, for DTLZ’s
[1,2,3,4,6], we obtained hypervolume indicators from 2 to 15 objectives, while for
DTLZ’s [5,7] we obtained hypervolume indicators from 2 to 10 objectives.

http://www.r-project.org/
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Table 1
Empirical evaluation: parameters (NA: does Not Apply).

DTLZ1 (k=5) and DTLZ3 (k=10) DTLZ[2,4,5,6,7] (k=10)

Algorithm Particles Rep. size Subproblems Particles Rep. size Subproblems

RefPar 256 256 NA 128 128 NA
RefDec 256 NA 256 128 NA 128
BPar 32/swarm 32 NA 16/swarm 16/swarm NA
BDec 32/swarm NA 32/swarm 16/swarm NA 16/swarm
AsBDec 32/swarm NA 32/swarm 16/swarm NA 16/swarm

Fig. 5. Average results for the GDp and spacing metrics for the DTLZ4 problem.

parallel versions of the algorithms based on decomposition present
both good convergence and diversity, according to the GDp and
IGDp metrics. The same happens to the hypervolume metric for
the BDec algorithm.

Fig. 3 illustrates the average results obtained by the algorithms
with respect to the GDp and IGDp indicators. Considering the
scalability of algorithms, it is possible to observe that the parallel
versions based on decomposition (green and brown lines) are the
only strategies that have the best average performance for both
metrics. A first look at the results obtained for DTLZ1 leads to the
conclusion that no algorithm is clearly superior to the others for all
performance indicators and every number of objectives. However,
it is possible to claim that algorithms based on decomposition
perform better than those based on dominance relationships.

The DTLZ2 problem is suitable for assessing the convergence of
the algorithms as the number of objectives increases. The indica-
tors show that the parallel versions based on decomposition have
good scalability, especially the BDec algorithm. For any number

of objectives, this algorithm presented good results for GDp, IGDp
and hypervolume, simultaneously. Results for the spacing metric
should be taken with caution, as this metric can produce good
diversity results for approximation fronts that are far from the
true front. The sequential version based on dominance relationship
(RefPar) showed the lowest results for nearly all indicators for
every number of objectives.

By combining the characteristics of both DTLZ1 and DTLZ2, the
DTLZ3 problem is a good choice to investigate the ability of the
algorithms converge to the real Pareto front. For two objectives,
both the BPar and RefDec algorithms stand out for all indicators.
However, as the number of objectives increases, algorithms based
on decomposition present superior performance in terms of both
convergence and diversity. It is evident that for this problem the
perceived superiority of this type of algorithm is due to the decom-
position of the MOP into subproblems each of which is solved by a
single large swarm.

In Fig. 4 it is possible to observe that the RefDec algorithm
presents good scalability, as its performance remains good as the
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Fig. 6. Average results for the IGDp and hypervolume metrics for the DTLZ5 problem.

number of objectives increases. Results present not only good con-
vergence according to the GDp metric and also feature
well-distributed solutions along the front, as indicated by the
spacing metric.

The DTLZ4 problem tends to generate points in a particular
region of the Pareto front. For this reason, it is a good choice
to evaluate the distribution of the solutions. For two objectives,
the parallel and synchronous algorithm based on decomposition
(BDec) performs well for all indicators. A similar performance is
observed for the sequential algorithm based on decomposition,
although the spacing metric indicates that the solutions do not
show good diversity. As the number of objectives increases, the
versions based on decomposition yield the best results in terms of
convergence and distribution (according to the GDp and spacing
metrics, respectively). The performance of these parallel versions
is shown in Fig. 5.

For the dominance-based algorithms, the parallel version (BPar)
is superior than the sequential version (RefPar) for the hyper-
volume metric for two objectives. However, as the number of
objectives increases, this relationship is inverted.

For the DTLZ5 problem, the real Pareto front is characterized
as the border of a spherical unit, a densely populated curve in a
M-dimensional space of objectives. Considering the GDp indicator,
it is evident that the parallel algorithm based on Pareto dominance
(BPar) is superior, this is confirmed by the statistical test. A similar
conclusion can be drawn for the spacing metric. The RefPar algo-
rithm presents good results in some cases.

Considering the IGDp indicator, the performance of the parallel
algorithms based on decomposition proved to be good, although
the parallel algorithm BPar also presented good results for 2, 15
and 20 objectives. Fig. 6(a) shows that the performance achieved
by the parallel versions is the best of all alternatives, even as the
number of objectives increases.

In terms of the convergence (Table A.8), for this problem the
parallel algorithms are clearly superior. For GDp, BPar presents the
best results. Considering the hypervolume metric, it can be seen
from Fig. 6(b) that the parallel algorithms based on decomposition
present good performance for many objectives.

The DTLZ6 problem is a variation of the previous problem and
prioritizes the evaluation of the convergence of the algorithms.
Considering the GDp, IGDp and spacing metrics it is evident that
the algorithms based on decomposition are superior, in particular
the sequential version.

For this problem, we note that the strategy of decomposing the
MOP into subproblems, butmaintaining a single and large swarm is
a good alternative. In termsof thehypervolumemetric, it is difficult
to pick an algorithm that stands out in relation to the others,
especially as the number of objectives increases. The statistical
test showed that for this metric, all algorithms have equivalent
performance for 10 and 15 objectives.

Finally, the DTLZ7 problem shows the ability of algorithms to
maintain individuals in different regions of the real Pareto front.
For this problem, the algorithms based on dominance
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Fig. 7. Average results for the IGDp and Hypervolume indicators for the DTLZ7 problem.

Table 2
Wilcoxon test for communication strategies based on decomposition (HV=Hypervolume).
DTLZ1 DTLZ2

Indicator p-value Better Indicator p-value Better

GDp 0.84 Async GDp 0.56 Async
IGDp 0.43 Sync IGDp 0.56 Async
Spacing 0.21 Async Spacing 0.15 Sync
HV 0.12 Async HV 0.18 Sync

DTLZ3 DTLZ4

Indicator p-value Better Indicator p-value Better

GDp 0.15 Async GDp 0.15 Sync
IGDp 0.68 Sync IGDp 0.84 Sync
Spacing 0.03 Async Spacing 0.03 Async
HV 0.81 Sync HV 0.06 Sync

DTLZ5 DTLZ6 DTLZ7

Indicator p-value Better Indicator p-value Better Indicator p-value Better

GDp 0.56 Async GDp 0.31 Async GDp 0.03 Async
IGDp 0.56 Sync IGDp 0.43 Async IGDp 0.31 Sync
Spacing 0.31 Sync Spacing 0.06 Async Spacing 0.03 Async
HV 0.12 Sync HV 0.31 Sync HV 0.87 Sync

relationships proved to be the best. Both the parallel version (BPar)
and the sequential version (RefPar) have the best values for all
metrics.

The performance of the algorithms for the DTLZ7 problem is
shown in Fig. 7. This figure depicts the results obtained for the IGDp
and hypervolume indicators. In both situations, it is noticeable

that the performance of the BPar parallel algorithm is the best,
especially for the hypervolume andwhen the number of objectives
increases.

For this problem, it is clear that to decompose a MOP into
subproblems that are solved by a single sequential swarm is a poor
strategy.
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Influence of the communication policy for MOPSO based on decompo-
sition

We employed theWilcoxon test with significance level equal to
5% and using the R statistics toolkit4 to compare the performance
of two communication policies.

Table 2 shows the obtained p-value reported by toolkit for each
benchmark considering each indicator. Based on indicator results,
the best communication strategy is selected. For instances that
had a significant statistical difference according to the test, the
communication strategy is highlighted in bold.

For DTLZ {1,2,3,5} problems, the test did not accuse any dif-
ference between communication strategies for any indicator. For
DTLZ 3, 4, only the Spacing indicator showed significant advan-
tage for the asynchronous communication method. For DTLZ 7,
the asynchronous communication method outperforms the syn-
chronous method for the GDp and Spacing indicators.

Table 3 summarizes the results. In this table, each time that the
algorithm outperforms or equals the performance of the others ac-
cording to one indicator, the corresponding cell value is increased
by one. Thus, for instance if the value is equal to 4, this means that
the algorithmhas better values for all four indicators: GD, IG, Space
and Hypervolume.

4.4. Comparison with NSGA-II and MOEA/DD

In this subsection, we compare our parallel approaches to
NSGA-II and MOEA/DD algorithms. The same methodology pre-
sented in the last sectionwas employed. The specific parameters of
NSGA-II were set as follows. Crossover probability: 0.9, crossover
distribution index: 20.0, crossover: SBX mutation probability: (1.0
/ (number of variables)), mutation distribution index: 20.0, muta-
tion: polynomialmutation and selection: binary tournament selec-
tion. For MOEA/DD the specific parameters were set as: Crossover
probability: 1.0, crossover distribution index: 30.0, crossover: SBX
mutation probability: (1.0 / (number of variables)), mutation dis-
tribution index: 20.0, mutation: polynomial mutation as described
in [33].

The obtained results from the comparison with NSGA-II are
shown for each problem: DTLZ1 (Table A.11), DTLZ2 (Table A.12),
DTLZ3 (Table A.13), DTLZ4 (Table A.14), DTLZ5 (Table A.15), DTLZ6
(Table A.16), and DTLZ7 (Table A.17). The best averages are high-
lighted in bold.

For the DTLZ {1,2,3,5,6} problems, observing the results ob-
tained (Figs. 8–10), it is possible to point out that NSGA-II pre-
sented better results for up to five objectives. But, when the
number of objectives increases the parallel versions outperform
NSGA-II. The only exception is DTLZ7 (Table A.17), where NSGA-II
is the best algorithm for all numbers of objectives.

The obtained results from the comparison with MOEA/DD are
shown in Table A.18 and Figs. 11 to 24. It can be seen that for
the GDp metric, our algorithms are competitive for all problems,
from DTLZ1 to DTLZ7. For the IGDp metric, our algorithms present
competitive results for 4 of the DTLZ problems: DTLZ2, DTLZ3,
DTLZ5 and DTLZ6. These results confirm that the parallel algo-
rithms proposed are a competitive approach for solving many
objective problems.

4.5. Discussion

The first conclusion that we can draw from the observation
of the empirical results is that there is no single strategy that
produces the best results for all classes of problems. Thus, it is
important to evaluate in which situations specific approaches gave
the good or poor results in relation to the others. These cases are
summarized below:

4 http://www.r-project.org/.

Table 3
Summary of the comparison results — sequential vs. parallel approaches.
Test DTLZ1

# Obj. RefPar RefDec BPar BDec AsBDec

2 1 4 3 0 2
3 1 4 1 3 2
5 1 2 0 2 3

10 2 2 0 2 2
15 1 3 0 3 2
20 0 2 0 2 2

Test DTLZ2

# Obj. RefPar RefDec BPar BDec AsBDec

2 0 1 1 3 1
3 0 1 1 3 2
5 2 0 0 3 2

10 0 1 0 3 2
15 0 1 0 3 2
20 0 2 1 2 2

Test DTLZ3

# Obj. RefPar RefDec BPar BDec AsBDec

2 0 4 4 0 0
3 0 4 0 0 2
5 1 4 0 0 0

10 0 4 0 1 0
15 0 4 0 0 0
20 0 3 0 0 0

Test DTLZ4

# Obj. RefPar RefDec BPar BDec AsBDec

2 0 3 1 4 2
3 2 3 2 2 2
5 1 2 0 2 2

10 0 2 0 2 2
15 0 3 0 2 2
20 0 3 1 2 2

Test DTLZ5

# Obj. RefPar RefDec BPar BDec AsBDec

2 0 0 3 2 2
3 0 1 2 1 2
5 1 0 2 2 1

10 1 0 2 2 2
15 1 0 3 1 1
20 1 0 3 1 1

Test DTLZ6

# Obj. RefPar RefDec BPar BDec AsBDec

2 0 4 1 0 2
3 0 4 0 0 3
5 1 4 0 0 0

10 1 4 1 1 2
15 1 4 1 2 2
20 0 3 0 1 1

Test DTLZ7

# Obj. RefPar RefDec BPar BDec AsBDec

2 3 1 3 0 0
3 3 1 2 2 2
5 3 1 3 0 0

10 2 1 3 1 1
15 2 0 2 0 1
20 2 0 2 0 1

• For up to 3 objectives, keeping a single population proved
to be a good strategy. However, for more objectives, parallel
strategies show superior performance.

• In terms of the scalability of a MOEA, for most problems the
parallel algorithms based on decomposition should produce
the best results, because algorithms based on decomposition
are more able to ‘‘escape’’ from local optima. This affirmation
is supported by the comparison between parallel algorithms
based on Pareto and those based on decomposition. The

http://www.r-project.org/
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Fig. 8. Average results for the Hypervolume indicator for the DTLZ’s {1,2,3} problems.

results for this comparison are shown in Tables A.19 to A.25
(Appendix A), obtained with the same methodology used
along the research. From these results, it is possible to observe
that for higher numbers of objectives the decomposition
approach is always either the best or presents comparable
results with the Pareto approach. The only exception is for
DTLZ7, where the decomposition approaches do not present
good results due to the discontinuity of the Pareto Front.

• Problems investigating the ability of the algorithm to gener-
atewell distributed solutions show that the parallel strategies
presented the best results. However, when the focus is on the
convergence of the solutions – for instance, for the DTLZ4 test

– the sequential strategy based on decomposition appears to
be the best choice.

• Changes based on the same problem can have different ef-
fects on different strategies. Sequential strategies presented
superior performance for the DTLZ3 problem, while parallel
strategies were the best for DTLZ5. Note that both are based
on the DTLZ2 problem, where the scalability of algorithms is
evaluated in terms of the convergence.

• In general, algorithms based on decomposition presented
competitive results for most problems. However, strategies
based on dominance relationships are the best to keep indi-
viduals in different regions of a disjoint Pareto front.
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Fig. 9. Average results for the IGDp indicator for the DTLZ’s {4,5} problems.

• For problems where the Pareto front is known to be discon-
nected, using parallel particles in different swarms proved to
be the best strategy. The DTLZ7 problem clearly illustrates
this case.

• Considering the communication policies for the model based
on decomposition, statistical tests show no significant differ-
ence. However, in the experiments, it was possible to observe
thatmost of the time therewas useful information to commu-
nicate.

5. Related work

MOPSO has been widely used to solve several multi-objective
optimization problems. Different Multi-Objective Evolutionary Al-
gorithms (MOEAs), including algorithms based on MOPSO, have
been shown to be notably effective, addressing MOPs in a suitable
way and providing sets of good solutions for the problems.

However, in spite of the good results of MOEAs, these algo-
rithms scale poorly when the number of objective functions in-
creases, and the algorithms usually encounter difficulties with
more than3 objective functions [29,53]. One of themain challenges
that are faced by MOEAs with many objectives is the deterioration
of the searching ability. This deterioration mainly occurs because
of an increase in the number of non-dominated solutions with
the number of objectives, and consequently, there is no pressure
towards the Pareto front. The Many-Objective Optimization field
is a research area that has a focus on overcoming these limitations
[2].

There are various algorithms for MaOPs in the literature, that
use different strategies to deal with the challenges of this kind of

problems. These MOEAs can be divided into different classes [35],
described next.

The first class covers algorithms that use Pareto-based domi-
nance as the first criteria and adopt customized diversity-based
approaches to weaken the adverse impact of diversity mainte-
nance. In [36], the authors propose the shift-based density esti-
mation (SDE) strategy, this strategy has been efficiently applied
to three popular Pareto-based algorithms. The SDE strategy has
been found to be very promising in dealing with various many-
objective problems [34,35]. In the recently proposed, knee point-
based algorithm (KnEA) [67], a secondary selection scheme based
on the knee point is used to enhance the selection pressure.
Other approaches use reference points, for example NSGA-III [17]
employs a set of reference vectors to assist the algorithm to select
solutions which are close to those points. Several refinements of
these ideas behind NSGA-III have been proposed such as in [55,63]
and [11]. VaEA [60]. Among these, the Vector angle based many-
objective Evolutionary Algorithm (VaEA) [60] uses the maximum-
vector-angle-first principle to keep a good distribution among
solutions. Furthermore, another principle calledworse-elimination
is adopted to conditionally replace bad solutions in terms of the
convergence.

The second class covers indicator-based algorithms that use
the value of a performance indicator to guide the search process,
such as the IBEA algorithm [69]. For instance, several MOEAs
based on the hypervolume (HV) metric have been proposed, such
as the SMS-EMOA and the fast hypervolume based evolutionary
algorithm (HypE) [4] [5], however their major disadvantages are
the high overhead for computing the HV values especially for
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Fig. 10. Average results for the IGDp indicator for the DTLZ’s {6,7} problems.

Fig. 11. Average results for the GDp indicator for the DTLZ1 problem (MOEA/DD vs. parallel approaches).

solving MaOPs. Recently, an Inverse Generational Distance Plus
(IGD+) indicator-based evolutionary algorithm (IGD+- EMOA) was
proposed in [41] for addressing MaOPs with no more than 8
objectives.

The third class covers the algorithms thatmodify the traditional
dominance relation to enhance the selection pressure towards
the Pareto front. Many algorithms have been proposed like the
ϵ-dominance method [27], the fuzzy dominance methods [26].
Recently, an effective θ-dominance based evolutionary algorithm
was proposed based on the so called θ-dominance relation [63].

The fourth class covers indicator-based algorithms that use
the value of a performance indicator to guide the search pro-
cess, such as the IBEA algorithm [69]. For instance, several MOEAs
based on the hypervolume (HV) metric were proposed, such as
the SMS-EMOA and the fast Hypervolume based Evolutionary al-
gorithm (HypE) [4] [5], however their major disadvantages are the
high overhead for computing the HV values especially for solving
MaOPs. Recently, an Inverse Generational Distance Plus (IGD+)
indicator-based evolutionary algorithm (IGD+- EMOA) was pro-
posed in [41] for addressingMaOPswith nomore than 8 objectives.
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Fig. 12. Average results for the GDp indicator for the DTLZ2 problem (MOEA/DD vs. parallel approaches).

Fig. 13. Average results for the GDp indicator for the DTLZ3 problem (MOEA/DD vs. parallel approaches).

Fig. 14. Average results for the GDp indicator for the DTLZ4 problem (MOEA/DD vs. parallel approaches).

The fifth class covers MOEAs based on preference [49] and
mainly includes three categories: a priori algorithms where the
preference information is specified before the search; interactive
algorithms where the decision maker provides the information in-
teractively. In posteriori algorithms the information is introduced
after the search. PICEA-g [59] is awell-known posteriori algorithm.

Finally, the last class covers hybrid strategies. For instance, the
TwoArch2 [58], HEA-DP [65] and BCE [38] share similar character-
istics for combining multiple strategies. All of them keep multiple
populations (or archives) that are updated using different criteria

based on quality measures. Furthermore, the algorithms select
parents from different populations. The MOEA/DD [33] algorithm
combines advantages of dominance and decomposition-based ap-
proaches. Other related methods include: MnRP-BILDE [48] based
on objective reduction; SPEA/R [30] based on reference direction;
and RPEA [39] based on reference points-based approach.

There are also algorithms that do not fit on these classes like
the AnD [40] algorithm which only makes use of two strategies,
the angle-based selection strategy and the shift based density
estimation strategy for the environmental selection process. The
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Fig. 15. Average results for the GDp indicator for the DTLZ5 problem (MOEA/DD vs. parallel approaches).

Fig. 16. Average results for the GDp indicator for the DTLZ6 problem (MOEA/DD vs. parallel approaches).

Fig. 17. Average results for the GDp indicator for the DTLZ7 problem (MOEA/DD vs. parallel approaches).

GrEA algorithm [62] introduces grid-dominance and three grid-
based criteria that are applied to maintain both the convergence
to and diversity of the solutions. The Bi-Goal Evolution (BiGE)
algorithm [37] converts a givenmulti-objective optimization prob-
lem into a bi-goal (objective) optimization problem regarding con-
vergence and diversity, and then handles this problem using the
Pareto dominance relation in the bi-goal domain.

The research onMOPSO follows the ideas presented forMOEAs,
thus, there are MOPSO based on: Pareto dominance [13,56],
decomposition [3,46,47,64], indicators [23] and reference points
[22]. In addition to these algorithms,multi-swarm techniques have
been also applied to MaOPs. In [44] a multi-swarm approach is
proposed that combines different swarms executing separately
using different archiving methods.
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Fig. 18. Average results for the IGDp indicator for the DTLZ1 problem (MOEA/DD vs. parallel approaches).

Fig. 19. Average results for the IGDp indicator for the DTLZ2 problem (MOEA/DD vs. parallel approaches).

Fig. 20. Average results for the IGDp indicator for the DTLZ3 problem (MOEA/DD vs. parallel approaches).

Despite the existence of different strategies that address Many-
Objective Optimization, it is possible to say that no single MOEA
can outperform the others for all problems [35]. Furthermore,
algorithms perform differently depending on the problem charac-
teristics and the number of objectives.

In the present work, we join the strengths of several MOEAs in
a collaborative framework exploring parallel strategies.

6. Conclusion

In thisworkwe proposed two parallel strategies for the solution
of MaOPs using multiple independent swarms that communicate
using broadcast. In the first parallel strategy particles are grouped
into independent subsets and each swarm keeps a repository
with the best individuals of each subpopulation. Asynchronous
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Fig. 21. Average results for the IGDp indicator for the DTLZ4 problem (MOEA/DD vs. parallel approaches).

Fig. 22. Average results for the IGDp indicator for the DTLZ5 problem (MOEA/DD vs. parallel approaches).

Fig. 23. Average results for the IGDp indicator for the DTLZ6 problem (MOEA/DD vs. parallel approaches).

communication methods were defined that are triggered by the
improvement of the particles. This strategy allows the swarms to
share individuals that help explore promising regions of the search
space. The second parallel strategy involves the use of the decom-
position technique to solve problemswithmultiple objectives. The
multi-objective problems are divided into several single-objective
subproblems, which allows the fitness to be evaluated for each
subproblem. The two strategies were evaluated under both the
synchronous and asynchronous communication models.

We employed the traditional DTLZ benchmark problems and
results were with those of a sequential version. The conclusion
is that the parallel algorithms have a positive effect on the con-
vergence and diversity of the optimization process for problems
with many objectives. Depending on the characteristics of each
problem, different optimization strategies presented the best per-
formance. Nevertheless, as the number of objectives increases, the
parallel algorithmsbased ondecomposition frequently outperform
the Pareto approach. However, it is important to highlight that
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Fig. 24. Average results for the IGDp indicator for the DTLZ7 problem (MOEA/DD vs. parallel approaches).

specific problem features such as discontinuities of the Pareto
Front reverse the situation so that the Pareto approach becomes
the best choice.

Future work includes allowing different swarms to employ
different optimization strategies. Swarms will still cooperate in
order to solve the problem as a whole. The cooperation should
employ different communication schemes for running parallel and
distributed optimization, such as peer-to-peer networks, paral-
lel computing platforms including GPU and multicore processors.
Moreover, the design can focus on specialized swarms to cover
part of the Pareto front, promoting convergence and resulting in
an effective combination to exploit the whole Pareto front. Finally,
future work should also include the investigation of other criteria
besides the crowding distance for maintaining the diversity of the
population.
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