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Abstract One of the challenges of the Network Functions Virtualization (NFV)
paradigm is to deploy virtualized network functions and services efficiently. In
particular, current solutions for multi-domain service mapping present several re-
strictions regarding the choice of optimization models and metrics. This lack of
flexibility ultimately leads to sub-optimized mappings that do not meet the (often
conflicting) requirements of all the parties involved in the deployment process (e.g.,
network operators, clients, providers). This work proposes GeSeMa (Genetic Service
Mapping), a new intelligent mapping solution based on genetic algorithms. GeSeMa
allows the specification of arbitrary optimization metrics, constraints, and different
evaluation policies. We evaluate GeSeMa through a case study, comparing its results
with the results of a state-of-the-art genetic-based mapping solution.

1 Introduction

Network Functions Virtualization (NFV) is driving a paradigm shift in telecommu-
nications. NFV allows network functions that have been traditionally implemented
as physical appliances in hardware to be implemented as software that runs on vir-
tual machines [9]. Virtual Network Functions (VNF) [5] can be combined to create
virtual network services called Service Function Chains (SFC) [7]. SFCs are compo-
sitions of multiple VNFs connected on a service topology. The deployment of virtual
services on a network requires that it is efficiently embedded in the infrastructure
[6, 16].
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Informally, the problem of mapping a network virtualization service consists of
defining where the network functions that make up the service will be instantiated and
executed. The problem becomes more challenging if the network consists of multiple
administrative domains. Different domains may have restrictions on the number of
services they run and the resource requirements of the respective functions. In
addition, the policies the domain adopts together with business rules adopted by
each domain also have an impact on which alternatives are feasible and their costs.
Moreover, there are network functions that are native to specific domains, to which
they must necessarily be mapped.

In general, there is a choice of where each function should be executed, which de-
pends on the policies and resources available in the domains. Mapping also depends
on the topology of the virtualized service and the multi-domain network topology to
which it will be mapped. In this case, the objective is typically to reduce the amount
of traffic transferred between domains as flows are forwarded through the network
service. Furthermore, other criteria can be defined for each particular mapping pro-
cess, such as maximizing the number of users and maximizing or minimizing the
number of domains used to host the service. It should also be taken into account that
the mapping objectives usually change according to the very nature of the service
being mapped, the type of environment in which they operate, and also the network
technologies involved, such as 5G or earlier cellular networks or even IoT or vehicular
networks.

Traditional solutions for mapping VNFs are based on evaluation setups that are of-
ten static in terms of the set of optimization metrics they employ, as well as objectives
and weights, lacking the flexibility required to customize their execution [9, 10, 15].
Typically, those solutions only allow stakeholders to make simple adjustments of
the weights of pre-configured optimization metrics [8]. Thus, the requirements of
the multiple stakeholders (i.e., clients, providers, and network operators) are hardly
met. A static strategy often leaves stakeholders having to adapt their needs to the
restrictions of the mapping solutions they are using. The limitations can be critical
in multi-domain environments [18, 16, 11, 14]. To the best of our knowledge, no
current virtual service mapping solution allows arbitrary optimization metrics and
objectives to be defined.

In this work, we propose a new multi-domain mapping solution called Genetic
Service Mapping (GeSeMa). GeSeMa allows the evaluation setup to be customized,
providing high flexibility to adapt to the different needs of multiple stakeholders and
considering several features. To do that, the stakeholders describe their needs and
other service features on a standard request document. GeSeMa then uses a multi-
objective optimization metaheuristic based on genetic algorithms to find mapping
candidates in a feasible time. We evaluate GeSeMa through a case study, including
a comparison with a state-of-the-art genetic-based mapping solution [11].

The rest of this work is organized as follows. Section 2 presents related work.
GeSeMa is presented in Section 3. Evaluation results are in Section 4, including
a case study comparing GeSeMa with a state-of-the-art mapping solution. Finally,
Section 5 concludes the paper and presents future work.
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2 Related Work

There are often multiple possible mappings of a given virtualized network service on
a multi-domain environment. However, the performance of those distinct mappings
varies when different policies, constraints, and optimization metrics are employed
[9]. Mapping solutions evaluate the multiple alternatives to guarantee, for instance,
the QoS (Quality of Service) and QoE (Quality of Experience) of the final results.

Dietrich et. al. [3] propose a solution that optimizes the multi-domain mapping by
relying on four static metrics: (i) minimization of financial costs; (ii) minimization
of the number of different providers and domains; (iii) minimization of resource
usage; and (iv) maximization of suitability weights. In [13], a multi-domain map-
ping solution recovers information about financial costs, transmission delays, and
resource usage to evaluate and optimize (with a minimization objective) the candi-
date mappings. Finally, in [16], a multi-domain mapping strategy is proposed that
considers hybrid scenarios where private and public domains provide optical net-
work resources. The objective of that solution is to minimize financial costs and the
usage of frequency slots of the optical channels connecting the domains.

The solution proposed in [18] consists of a multi-domain mapping technique based
on a vertex-centric algorithm. The solution triggers rounds of message exchanges
among providers to find candidate mappings iteratively. The mapping algorithm uses
a mechanism to avoid the concentration of the entire service on a single provider.
However, it does not optimize any specific metric, only returning for the user a
set of candidate mappings that fulfill the allocation and instantiation constraints of
the requesting service. With a method similar to [18], DistNSE [1] finds candidate
mappings and employs a process based on message exchanges among providers.
This solution evaluates two optimization metrics: minimization of financial costs
and stabilization of inter-domain load.

In [11], a multi-domain mapping technique based on a mono-objective genetic
algorithm is proposed. The objective of that solution is to allocate the network
functions of a network service chain on a multi-domain environment based on a
single indicator (𝐸). This indicator represents multiple domain metrics, such as link
availability, bandwidth, and the number of network functions that each domain can
host, among others.

The solution proposed in [14] employs a mono-objective genetic algorithm to
map virtualized network services on physical substrate nodes. The solution aims to
optimize the consumption of computing and networking resources by the network
services. In this way, the authors propose an objective function that minimizes the
residual capacity of nodes to host functions and links to handle their communication,
given the mapped services.

Despite the fact that most of these solutions evaluate multiple optimization met-
rics, they do not enable stakeholders to customize the evaluation setup (i.e., it is not
possible to define/select neither the metrics employed by the optimization process,
nor the objectives/weights). This lack of customization makes it difficult to model
and evaluate policies that are closely related to the deployment process (e.g., max-
imum delay, maximum geographical distance). Furthermore, solutions in [13] and
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[16] present limitations in terms of the specification of domain dependencies (i.e.
they do not allow the specification of which functions should be allocated to which
particular domains). Thus, for example, these solutions are not suitable to embed hy-
brid services (i.e., those in which physical network functions coexist with virtualized
network functions along a service topology) in multi-domain environments.

3 Genetic Service Mapping

In this section we present GeSeMa (Genetic Service Mapping), a solution that
employs genetic algorithms to map virtualized network services across multiple
administrative domains. GeSeMa enables stakeholders to define service and net-
work topologies, function and domain dependencies, and the evaluation setup (op-
timization metrics, objectives, weights, and constraints). This custom information
is specified in a request document written in the YAML Ain’t Markup Language
(YAML).

3.1 GeSeMa’s Request Model

GeSeMa’s request model presents three main objects that define (i) the service
topology and the network functions (SERVICE); (ii) the optimization metrics and
objectives (METRICS); and (iii) the domains and their characteristics (DOMAINS).
A string specified according to the rules of the Service ChAin Grammar (SCAG)
[6] represents the service topology in the SERVICE object. Furthermore, for each
network function defined in the service topology, there is a corresponding entry in
the FUNCTIONS sub-object. This entry, identified by the function ID, specifies the
minimum resource requirements, including memory, virtualized processing cores,
and virtualized network interfaces, all defined as integer values.

The METRICS object defines metrics and objectives used by the genetic algorithms
of GeSeMa to search, evaluate, and optimize candidate mappings. Metrics are of
two categories: local or transition. Local metrics are used to evaluate the alloca-
tion of network functions to domains, which correspond to the vertices of a graph
representing the infrastructure on which the service is to be mapped. Local metrics
include, for instance, the financial cost to allocate a function, and the domain load,
among others. Transition metrics are related to inter-domain connections – which
correspond to the edges of the infrastructure graph. Examples of transition metrics
include delay, distance in hops, and geographical distance. The metrics and their cat-
egories are defined in the request model using LOCAL and TRANSITION sub-objects,
respectively. Each of these sub-objects can define multiple metrics. A metric must be
uniquely identified (by its ID), besides having two mandatory attributes: OBJECTIVE
and CONSTRAINTS. The objective attribute shows the evaluation criteria for a particu-
lar metric, which can be either MAXIMIZATION or MINIMIZATION. The last attribute
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(CONSTRAINTS) consists of a list of strings, each of which refers to the constraints of
an optimization metric. Constraints define acceptance thresholds for the evaluation
results of optimization metrics. In order to check results with respect to thresh-
olds, relational operators (”<”, ”>”, ”<=”, ”>=”, ”==” and ”! =”) are employed to
compare numerical values with the corresponding thresholds.

Finally, the DOMAINS object defines the physical and virtual environments avail-
able and their transitions (connections). The domains are represented by a directed
graph 𝐺 = (𝑉, 𝐸). The set of vertices 𝑉 corresponds to the set of domains, and
the set of edges 𝐸 represents the logical connections between domains. The model
keeps the information about LOCALmetrics of each domain (vertex) and TRANSITION
metrics associated with the edges. A particular domain is thus defined with three
sub-objects: RESOURCES, LOCAL, and TRANSITION. The RESOURCES sub-object con-
tains information about memory (MEMORY), virtual processing cores (VCPU), and
virtual network interfaces (IFACES) made available by the domain. The LOCAL and
TRANSITION sub-objects, in turn, define the metrics associated with domains and
their connections obtained either with benchmarking or from catalogs; this is used
by the optimization process. These sub-objects are also related to the METRICS ob-
ject, and there must be a correspondence between metric identifiers and benchmark
identifiers for both the LOCAL and TRANSITION sub-objects. In special, each entry of
the TRANSITION sub-object determines to which domain the transition corresponds
(using the domain unique identifier) and then defines the values of the optimization
metrics for the transition.

3.2 The Proposed Genetic Multi-domain Mapping Method

GeSeMa executes two well-known genetic algorithms: NSGAII [2] and SPEA2 [19].
Those algorithms have been successfully applied to solve networking problems,
including fault diagnosis [4, 12]. Note that the system can be extended to include
other algorithms. The stakeholders can choose the genetic algorithm taking into
account their characteristics, features of the requested service, and the domains, plus
the evaluation setup provided. The genetic algorithms model the virtualized service
mapping problem as follows:

Individuals: an individual’s chromosome is modeled as a vector with 𝑁 > 1
genes (i.e., positions), where each gene corresponds to a network function of the
service topology (i.e., each function is mapped to a position in the vector). Genes
contain alleles, represented by integer values in the range [0, 𝑀−1] which correspond
to the 𝑀 > 0 domains available to map the network functions. Note that, in GeSeMa,
a valid individual is a candidate mapping.

Population: the initial population is created randomly or using a greedy-based
strategy. The initial population must not violate any function to domain dependencies,
if there is any (i.e., for instance, if a domain must host some function, the index
corresponding to the specific domain is fixed to the allele of the constrained gene).
The population size 𝑃 > 0 is a parameter defined by the stakeholders.
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Objectives and constraints: GeSeMa evaluates objectives (with the evaluation
setup) and constraints (e.g., policies, network topology, computational resources,
and dependencies) for all individuals of each generation. We use a taboo list to
keep invalid individuals and avoid re-evaluations in case of new occurrences; If it
happens, three actions are possible: (i) discard the individual (a standard action); (ii)
replace the individual with a new random individual (in case policies or network
topology constraints are violated); or (iii) reduce domain redundancy (in case of
computational resources constraints are violated).

Selection: the selection chooses individuals of a generation to crossover. GeSeMa
uses a tournament mechanism that randomizes 𝐼 individuals and returns the one
that is the most fitted among them (i.e., the one on the best Pareto frontier). The
tournament size 𝐼 > 1 is defined by the stakeholders.

Crossover: GeSeMa provides four crossover operators: Simulated Binary Crossover,
Half Uniform Crossover, Partially Mapped Crossover, and Subtour Selection Crossover.
The crossover operator and ratio (i.e., operator application probability) are also de-
fined by the stakeholders.

Mutation: the proposed solution employs two mutation operators: replacement
and swap. Replacement chooses a random gene and replaces its allele with a new
random value. Swap chooses two random genes and exchanges their alleles. Genes
with domain constraints are never mutated. Similar to crossover, the stakeholders
can define the mutation operator and its ratio.

GeSeMa executes two main procedures: (i) validation and configuration of the
genetic algorithm; and (ii) creation and evolution of the population. The first pro-
cedure uses the model specified in Subsection 3.1 to validate the provided service
request, thus mapping high-level structures to iterable elements (i.e., dictionaries,
and lists). Next, the procedure checks previously defined genetic parameters (i.e.,
population size, tournament size, crossover operator/ratio, mutation operator/ratio,
and the number of generations) and, if valid, it configures the genetic algorithm.
Finally, the first procedure generates a set of software elements employed for the
creation and evolution of individuals by the second procedure.

Figure 1 summarizes the second procedure of GeSeMa. At first, the network
service, encoded as a string according to the SCAG grammar, is converted to a format
that is processed by the genetic algorithms (Figure 1: A and B). The initial population
is generated with valid individuals in terms of the network topology (network domain
transitions) and domain dependencies (constrained network functions pinned to their
respective domains). Next, the individuals are evaluated (Figure 1: C) considering the
availability of computational resources in the chosen domains and other constraints.
In this way, each candidate is evaluated iteratively, gene by gene for all metrics.
Results of all genes are aggregated to define the overall result for each metric. Finally,
GeSeMa executes selections (Figure 1: D) in addition to the crossover and mutation
genetic operations (Figure 1: E and F, respectively) to evolve the population. All the
stages depicted in Figure 1 C, D, E, and F represent the processing done to create
a generation of individuals (Figure 1: G). Finally, after each generation has been
created, the genetic algorithm saves the best-fitted results (local Pareto frontier) for
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Fig. 1: Summary of the GeSeMa Workflow

reusing in future generations. After a predetermined number of generations, GeSeMa
returns the last Pareto frontier found as the final result (Figure 1: H).

In particular, the evaluation stage (Figure 1: C) produces information that is rel-
evant for the next stages. Local optimization metrics are computed with the current
gene’s allele. Transition optimization metrics, in turn, are processed when a domain
transition occurs. The transition metrics use the current gene’s allele and the alleles
of previously related genes. Besides the allele, for each gene, there is a so-called rela-
tion array with indexes of previously related genes (i.e., previous network functions
that have a connection with a particular network function in the requested service
topology). In this way, linear chromosomes can represent branched service topolo-
gies. The set of partial evaluation results (i.e., by gene/allele) are jointly processed,
and the individuals are classified in terms of Pareto frontiers.

4 Experimental Evaluation

In this section, we present an empirical evaluation of GeSeMa1. For the experi-
ments, we employed the topology that corresponds to the Amazon AWS network,
consisting of 114 domains [17]. All the experiments were executed 30 times with a
confidence level of 95%. Preliminary experiments were run to determine values for
the parameters of the genetic algorithms.

GeSeMa is compared with GA+LCB, which is a mapping solution based on
a mono-objective genetic algorithm [11]. In addition to the traditional mapping
process (mapping the main network functions of a network service), GA+LCB
includes a backup mapping mechanism that creates a backup schema for the
requested network service. However, as GeSeMa does not create backups, for
comparison purposes, GA+LCB is executed to map the main functions, not the

1 The implementation is available at https://github.com/ViniGarcia/NFV-FLERAS
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backups. The GA+LCB objective function was configured to maximize the mod-
ified domain importance (𝑖𝑚𝑝𝑘 from [11]), which consists of the maximiza-
tion of three metrics – link availability (𝑑𝑎𝑘), bandwidth availability (𝑑𝑐𝑘), and
the availability factor (𝐴𝑘) – and the minimization of a single metric – inter-
domain delay (𝑑𝑑𝑘). The GA+LCB solution computes this evaluation setup as
𝐸 = 𝑤1 ∗ 𝑛𝑜𝑟 (𝑑𝑎𝑘) + 𝑤2 ∗ 𝑛𝑜𝑟 (𝑑𝑐𝑘) + 𝑤3 ∗ 𝑛𝑜𝑟 (𝐴𝑘) + 𝑤4 ∗ (1 − 𝑛𝑜𝑟 (𝑑𝑑𝑘)), where
𝑛𝑜𝑟 indicates a normalization function and 𝑤𝑛 the metric weight (

∑4
𝑛=1 𝑤𝑛 = 1).

Both GeSeMa and GA+LCB are employed to map a network service with 9
generic network functions. Two restrictions have to be guaranteed by both solutions:
the result mapping of network functions should not exceed the computational re-
source limits of the domains, and no more than two network functions should be
mapped to each domain. Furthermore, both solutions were configured to obey both
maximum delay and minimum availability constraints. The values for metrics 𝑑𝑐𝑘
and 𝐴𝑘 are defined randomly in the intervals [100, 500] and [0.95, 0.99], respec-
tively; the value of 𝑑𝑎𝑘 is 114 for all the domains (the network topology is a complete
graph); and the value of 𝑑𝑑𝑘 is defined considering the geographical distance be-
tween pairs of domains 𝑔𝑑𝑘,𝑘+𝑛 in the curve 𝑔𝑑𝑘,𝑘+𝑛 ∗ (1 − 𝑒𝑛𝑜𝑟 (𝑔𝑑𝑘,𝑘+𝑛 )∗−4) ∗ 0.05.
As required by GA+LCB, the initial domain and the final domain are specified in
the mapping request document.

The genetic parameters of GeSeMA were configured to be as similar as possi-
ble to GA+LCB. GA+LCB includes a crossover of half of the population using a
personalized algorithm. Thus, we configured GeSeMa with a crossover ratio of 0.5
using the SBX algorithm (SBX has similar behavior to the GA+LCB crossover algo-
rithm). The mutation ratio is set to 0.05, GA+LCB uses a specific, simple mutation
algorithm; GeSeMa uses a replacement mutation algorithm. GA+LCB executes a tra-
ditional roulette selector; GeSeMa employs a binary tournament selector. GA+LCB
creates the initial population based on a k-shortest path algorithm; GeSeMa creates
the initial population randomly. GA+LCB uses a self-designed mono-objective ge-
netic algorithm with elitism features; GeSeMa adopts SPEA2. The population size
of 50 was the same for both solutions, as well as the execution of 20000 generations.
Finally, we removed the parameter weighing of GA+LCB and evaluated the Pareto
Frontiers of the returned results for both solutions.

The first experiment compares the quality of the candidates returned by GeSeMa
and GA+LCB. We use the mean of the relative Pareto frontiers for the comparison
(smaller numbers are better). Figure 2 shows the mean frontiers of candidates re-
turned for two cases: “complete” (frontiers of all candidates from all executions are
used to compute the mean value) and “top 10” (frontiers of top ten candidates of all
executions are used to compute the mean value). The GA+LCB solution presented
a better mean of the relative frontiers in the “complete” case. However, GeSeMa
surpasses the GA+LCB results in the “top 10” experiment. This behavior occurs due
to the number of candidates returned from GA+LCB at each execution: precisely
one. Thus, GA+LCB returns a total of 30 candidates with the best 𝐸 value achieved
in each execution of the solution. GeSeMa, in turn, returns the entire Pareto frontier,
which typically contains multiple candidates. In this experiment, GeSeMa provided
approximately 49 candidates per execution, from a total of 1463 candidates evalu-
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ated in the “complete” case. Some of these candidates are not better fitted than the
ones returned by the GA+LCB, but, as demonstrated by the “top 10” case, the best
candidates of GeSeMa are more fitted than the best candidates of GA+LCB.

The second experiment compares the mean execution times of GA+LCB and
GeSeMa to map the service in the AWS network topology. Figure 3 shows the results.
GeSeMa presented a better mean execution time: 104% faster than GA+LCB. These
results can be explained as follows. First, GeSeMa employs a lightweight random
initial population strategy, while GA+LCB uses a k-smallest path heuristic to create
a possibly more fitted initial population. Thus, the GA+LCB strategy requires the
execution of shortest path algorithms that take quite a lengthy amount of time to
run in large network topologies. Second, the evaluation of multiple optimization
metrics with a mono-objective genetic algorithm requires an aggregated index (in
GA+LCB, called 𝐸). The creation of this index imposes extra time to process the
normalization and weighting required by each generation. Third, GA+LCB does not
have any mechanism to avoid the evaluation of candidates which have been already
discarded but reappear during the execution of the genetic algorithm. GeSeMa, in
turn, uses a taboo list to ignore those candidates.

5 Conclusion

The deployment of virtualized network functions and services depends on proper
resource allocation while guaranteeing that restrictions are respected. In this con-
text, multi-domain mapping allows embedding a network service across a distributed
environment consisting of multiple administrative domains. Current multi-domain
mapping solutions do not enable the stakeholders to customize their evaluation se-
tups. In this paper, we presented Genetic Service Mapping (GeSeMa), an intelligent
mapping solution that uses genetic metaheuristics to execute a customizable mapping
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of service topologies across multi-domain environments. We evaluated the feasibil-
ity and performance of GeSeMa compared with another state-of-the genetic-based
alternative. The results confirm that GeSeMa produced mappings of superior quality
with lower execution times.
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