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ABSTRACT
This work presents LHABcast, a Leaderless Hierarchical Atomic

Broadcast algorithm that is fully decentralized and allows all pro-

cesses to send messages simultaneously. Processes use autonomic

spanning trees built on top of the VCube overlay network to propa-

gate message timestamps, i.e., local sequence numbers. Processes

can fail by crashing. After each process receives the timestamps,

it can make a decision about the message delivery sequence. The

algorithm is shown to be correct.

CCS CONCEPTS
• Networks→ Network algorithms; • Computing methodolo-
gies→ Distributed computing methodologies; Distributed
algorithms.
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1 INTRODUCTION
Agreement is an essential problem of distributed systems that re-

quire any kind of collaboration between processes. Atomic broad-

cast, also known as total order broadcast, is an alternative agree-

ment strategy that ensures that all processes in the system receive

the same set and order of messages [3]. As a communication prim-

itive, it is used to guarantee strong consistency while tolerating
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faults. Atomic broadcast algorithms typically rely on a leader, in-

cluding the Paxos-based approaches [6] and Raft [8]. A leader can

quickly become a bottleneck, and its failure directly affects the

latency and throughput of the entire system.

Some atomic broadcast algorithms are based on destination

agreement [3]. In this approach, the message delivery order is the

result of an agreement between the destination processes. There are

three variants: (1) agreement on a set of messages; (2) agreement

on the adoption of a proposed message order; and (3) agreement on

a sequence number. Both the first and second variants are imple-

mented using a consensus algorithm, such as Paxos [6], and atomic

confirmation protocols, such as those proposed in [7, 14]. Generally,

they elect a leader who acts as a coordinator and is responsible for

conducting rounds of consensus on the order of message delivery.

The third variant is completely decentralized: Processes agree on

a unique (but non-consecutive) sequence number for each message

and use it to determine the order of delivery. For example, AllCon-
cur [11, 9] and AllConcur+ [10] are leaderless atomic broadcast

algorithms that use a digraph as an overlay network to broadcast

messages. They are fully decentralized and assume perfect failure

detectors 𝑃 and ♦P, respectively. Although a larger number of

messages are required for implementation, the third approach is

distinguished by the fact that it allows all processes to broadcast

messages simultaneously without compromising scalability, since

there is no bottleneck caused by a central coordinator.

In this work, we present a fully decentralized atomic broadcast

algorithm called LHABcast, where all processes send their messages

simultaneously over autonomic, dynamically constructed spanning

trees. All processes execute the same algorithm, no process is dis-

tinguished as a leader. The order of message delivery is determined

by a sequence number (also called a timestamp) defined by the local

logical clock of each process. In addition, the tree is rebuilt when a

process crashes without the need for additional messages. The trees

are created and managed using the VCube virtual topology [4]. The

latter is a hypercube when all processes are fault-free, but it recon-

figures itself when processes fail and maintains several logarithmic

properties.

Several broadcast algorithms have been proposed for the VCube

[13, 12, 5, 2]. The first one [12] defines both a best-effort and a

reliable broadcast algorithm assuming a synchronous systemmodel.

These algorithms also dynamically build autonomic spanning trees
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that connect fault-free processes. VCube includes a failure detection

service. After a process crash is detected, each process seamlessly

redefines its tree edges. In [5], the authors used a similar approach

to develop a reliable hierarchical broadcast algorithm, but assuming

an asynchronous system. In order to ensure message delivery to

those processes that are falsely suspected of having crashed, the

algorithm keeps sending all messages to suspect processes in the

tree. LHABcast stands out from these other broadcast algorithms

as it is the first atomic broadcast proposed for the VCube.

The remainder of this paper is organized as follows. The system

model is defined in Section 2. Section 3 presents the proposed

algorithm and a proof of its correctness. Finally, Section 4 concludes

the paper and discusses future work.

2 SYSTEM MODEL
We assume a distributed system that consists of a finite set 𝑃 of

𝑛 > 1 processes that communicate through message passing. The

network is fully connected: any pair of processes can communicate

with each other without employing intermediates. Processes can

fail by crashing and, once a process crashes, it does not recover.

If a process never crashes during a run, it is considered correct;
otherwise, it is considered to be faulty. Links are reliable, i.e., mes-

sages exchanged between any two correct processes are never lost,

corrupted or duplicated, and FIFO. The system is synchronous,

i.e., relative processor speeds and message transmission delays are

bounded [1].

Processes are organized on a virtual hierarchical topology, the

VCube [4].When all processes are correct, the VCube is a hypercube.

Processes of a 𝑑-dimensional hypercube have identifiers consisting

of 𝑑 bits. Two processes are virtually connected whenever their

binary addresses differ by only one bit. The major advantage of the

VCube is that as processes crash, the virtual topology dynamically

reorganizes itself, keeping multiple logarithmic properties.

VCube is a distributed diagnosis algorithm which organizes pro-

cesses in increasingly large clusters. A diagnosis algorithm is used

to determine which processes in the system are faulty and which are

not. The virtual edges of a VCube correspond to tests that correct

processes execute on each other. VCube allows processes to obtain

diagnostic information from any process tested correct. Diagnostic

information is timestamped to allow processes to distinguish recent

events. A tester process 𝑖 executes tests on a cluster 𝑐𝑖,𝑠 of processes

of size 2
𝑠−1

, such that 𝑠 = 1... log
2
𝑛. Function 𝐶𝑖,𝑠 (Equation 1)

returns the ordered list of processes of each cluster:

𝑐𝑖,𝑠 = {𝑖 ⊕ 2
𝑠−1, 𝑐

𝑖⊕2𝑠−1 , 1
, ... , 𝑐

𝑖⊕2𝑠−1 ,𝑠−1} (1)

where ⊕ is the bitwise exclusive or operator (xor). Table 1 shows
the 𝑐𝑖,𝑠 function for 8 processes. In order to determine the edges of

the virtual topology, for each node 𝑖 , there is an edge ( 𝑗, 𝑖), such that
𝑗 is the first fault-free node in 𝑐𝑖,𝑠 , 𝑠 = 1... log

2
𝑛. After a process

detects that any other process has crashed, the set of edges (tests)

is recomputed. For instance, in the example shown in Figure 1,

process 𝑝4 originally tests process 𝑝0, but after it has crashed, the

tester of process 𝑝0 in the cluster with 𝑠 = 3 is 𝑝5.

Table 1: The 𝐶𝑖,𝑠 table for 8 processes

s 𝐶0,𝑠 𝐶1,𝑠 𝐶2,𝑠 𝐶3,𝑠 𝐶4,𝑠 𝐶5,𝑠 𝐶6,𝑠 𝐶7,𝑠

1 1 0 3 2 5 4 7 6

2 2,3 3,2 0,1 1,0 6,7 7,6 4,5 5,4

3 4,5,6,7 5,4,7,6 6,7,4,5 7,6,5,4 0,1,2,3 1,0,3,2 2,3,0,1 3,2,1,0

21 4

653

7

C0,1

C0,2

C0,3

FAULTY

0

Figure 1: Clusters of a VCube with dimension 𝑑 = 3.

3 THE LHABCAST ALGORITHM
Atomic Broadcast ensures reliable broadcast while keeping the

total order of messages delivered, i.e., all correct processes deliver

the same set of messages in the same order. For this purpose, the

following properties must be fulfilled [3]:

• Validity: if a correct process broadcasts a message𝑚, then it

eventually delivers𝑚;

• Integrity: each message𝑚 is delivered once and only if it was

previously broadcast (no creation);

• Agreement: if one correct process delivers𝑚, then all correct

processes deliver𝑚;

• Total order: if two correct processes 𝑝 and 𝑞 deliver two

messages𝑚1 and𝑚2, then 𝑝 delivers𝑚1 before𝑚2 if and

only if 𝑞 delivers𝑚1 before𝑚2.

LHABcast is a leaderless hierarchical atomic broadcasts that

disseminates all messages over the VCube topology described in

Section 2. When process 𝑝 broadcasts a message 𝑚, it becomes

the root of a spanning tree over which𝑚’s timestamp will be sent

and used to order messages. The tree is built dynamically and

autonomously. Each correct processes 𝑝 determines its edges, as

described in the previous section. As soon as each process detects

the failure of another process, the tree is reconfigured without any

additional messages.
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3.1 Algorithm Description
Briefly described, the LHABcast algorithm works as follows. A pro-

cess 𝑖 (source) broadcasts a timestamped message𝑚 to its neighbors

(its children in the tree). Upon receiving𝑚, each process 𝑗 , which

is not a leaf, becomes itself the root of a subtree and forwards𝑚

to its children. When a leaf of the tree receives𝑚, it sends an ac-

knowledgment message (𝐴𝐶𝐾) back to the process that sent𝑚 to

it (its parent). Every process, except the leaves and the source, after

receiving an 𝐴𝐶𝐾 from all of its children, sends an 𝐴𝐶𝐾 back to

its parent. Thus, when a process receives 𝐴𝐶𝐾 from all its child

processes, all correct processes in that cluster have surely received

𝑚 too. When a process receives𝑚 for the first time, it updates𝑚’s

timestamp before forwarding it. Message𝑚 is considered deliver-

able by a process provided it has received all timestamps assigned

to it by the correct processes and there is no received message with

a lower timestamp than𝑚’ highest timestamp (𝑠𝑛(𝑚)). Message𝑚

will be delivered respecting the total order (𝑠𝑛(𝑚), 𝑠𝑜𝑢𝑟𝑐𝑒).
Each process 𝑖 that executes the LHABcast algorithm keeps the

following local variables:

• 𝐿𝐶𝑖 : local logical clock that uniquely identifies messages

broadcast by 𝑖 . It is used to keep track of which messages

have already been delivered by a particular source process;

• 𝑇𝑆𝑖 : timestamp used to establish the total order;

• 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 : set of processes that are considered correct by pro-

cess 𝑖;

• 𝑙𝑎𝑠𝑡𝑖 [𝑛]: the last ordered message delivered from each source

process;

• 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 : the set of pending ACKs. For each message

𝑇𝑅𝐸𝐸⟨𝑚,𝑇 ⟩ (re)-transmitted by 𝑖 from a process 𝑗 to a pro-

cess 𝑘 , an element ⟨ 𝑗, 𝑘,⟨𝑚,𝑇 ⟩⟩ is added to this set where 𝑇

is a set of timestamps;
• 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 : set of messages received by process 𝑖 that cannot

be delivered yet to the application. Each element in this set

contains ⟨𝑚, 𝑡𝑠𝑘 (𝑚)⟩, i.e., the message𝑚 to be ordered and

the timestamp 𝑡𝑠𝑘 (𝑚) associated with𝑚 by each process 𝑘 ;

• 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 : set ofmessages𝑚 forwhich all 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠 𝑡𝑠𝑘 (𝑚)
have been received, but cannot be delivered yet because they

are out of order with respect to the other messages𝑚′ ≠𝑚.

Message in the algorithm can be of the following types:

• 𝑇𝑅𝐸𝐸⟨𝑚,𝑇 ⟩, which contains the message𝑚 to be transmit-

ted and the set 𝑇 of timestamps 𝑡𝑠𝑘 (𝑚). 𝑇 has 1 to 𝑙𝑜𝑔2𝑛

timestamps (the longest path in the tree).

• 𝐴𝐶𝐾 ⟨𝑚,𝑇 ⟩, used to acknowledge the receipt of a message

𝑇𝑅𝐸𝐸⟨𝑚,𝑇 ⟩.
Each message 𝑚 has two parameters: (i) the identifier of the

source process𝑚.𝑠𝑟𝑐; and (ii) a sequence number𝑚.𝑠𝑒𝑞, set from

the local logical clock 𝐿𝐶𝑖 of the source process 𝑖 , which is used

to uniquely and sequentially identify the messages sent by each

process.

Algorithm 1 presents the pseudo-code of the proposed solution.

Broadcasts start with the A-Broadcast(𝑚) function (line 7), which

adds the source and the local logical clock 𝐿𝐶𝑖 to the message. The

Forward function is used to send𝑇𝑅𝐸𝐸 messages to the neighbors

of process 𝑖 . The parameters of this function are the number of

clusters 𝑠 of 𝑖 to which the message𝑚 and the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑡𝑠𝑖 (𝑚)
must be forwarded. In this case, 𝑠 = log

2
𝑛, which is the dimension

of the hypercube and corresponds to the number of clusters of the

system In the Forward function, the message𝑚 is forwarded to

the neighboring processes of 𝑖 based on the value of 𝑠 (line 15).

On receiving a message 𝑇𝑅𝐸𝐸, process 𝑖 checks whether 𝑗 is

in the set of correct processes (line 19). If it is not, the message is

ignored. Otherwise, 𝑖 updates its local timestamp 𝑇𝑆𝑖 based on the

received timestamp from process 𝑗 (line 21). If the message was

received for the first time, i.e., is not included in either the delivered,

the received nor the stamped sets, the message is sent with 𝑡𝑠𝑖 (𝑚)
to those processes in the tree of 𝑖 that do not overlap with the tree

of process 𝑗 (line 25). To the others,𝑚 is forwarded with timestamp
𝑇 (line 30), so that when𝑚 is first received, 𝑡𝑠𝑖 (𝑚) is aggregated to

𝑇 (line 24).

Considering a three-dimensional VCube, Figure 2 shows the

flow of sent messages from process 𝑝0 in its spanning tree (see dark

blue arrow), i.e., the forwarding of message𝑚 to 𝑝0’s neighbors in

clusters 1, 2 and 3. The Figure 2a shows the behavior of process 𝑝1
when it receives message𝑚 for the first time. Process 𝑝1 recognizes

through {𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 (0) − 1 = 0} that it is in the last level of the 𝑝0
tree (leaf). Therefore, 𝑝1 broadcasts its timestamp to the processes

{0, 3, 5} (represented in the arrows by 𝑡𝑠1). Figure 2b highlights

process 𝑝2, which is a branch in 𝑝0’s tree (𝑐𝑙𝑢𝑠𝑡𝑒𝑟2 (0) − 1 = 1).

Therefore, 𝑝2 forwards𝑚 with it timestamp to processes {0, 6}. In
the 𝑝0 tree, 𝑝2 adds its own timestamp to 𝑚 and forwards it to

process 𝑝3. Thus,𝑚 now contains the timestamps of 𝑝0 and 𝑝2.
Upon receiving the message 𝑇𝑅𝐸𝐸 and forwarding the mes-

sages to the next process of the respective (sub)tree(s), process

𝑖 adds each timestamp contained in 𝑇 to the list of received times-
tamps of𝑚 (line 29) and calls the function CheckDeliverable(𝑚).

This function checks if the timestamps of all correct processes for

𝑚 (line 39) have been received. If it is the case, 𝑖 computes the

highest timestamp of𝑚 (line 40), denoted 𝑠𝑛(𝑚), and the function

Deliver(𝑚, 𝑠𝑛(𝑚)) is called (line 41). Then, 𝑖 updates the register

of delivered messages 𝑙𝑎𝑠𝑡𝑖 and all timestamps associated with𝑚

are removed from the set 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 .

In the Deliver function, message𝑚 is added to the set of stamped

messages (𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 ) with the highest received timestamp – 𝑠𝑛(𝑚)
(line 47). On the other hand, a message𝑚′ in 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 is added
to the deliverable set (𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑖 ) only if there is no received

message𝑚′′ in 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 whose timestamp is lower than𝑚′ (line 49).
Otherwise, 𝑚′ should be delivered after 𝑚′′ (line 49). Messages

marked for delivery (𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒) are ordered by the timestamp
associated with𝑚 and the identifier of the originating process of𝑚

(𝑚.𝑠𝑟𝑐) (line 52). In this way, messages are delivered in order and

then removed from 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 .

Confirmation of receipt of the message is performed by the

CheckAcks function. The tuple ⟨𝑝, ∗,⟨𝑚,𝑇 ⟩⟩ represents the waiting
𝐴𝐶𝐾s for message𝑚with timestamp received from 𝑝 and forwarded

to any process (∗) (line 54). For example, in Figure 2a, as 𝑝1 is a leaf

in 𝑝0’s tree, it has not forwarded a message with 𝑝0’s timestamp.

Therefore, an𝐴𝐶𝐾 can be sent to 𝑝0 immediately. The same happens

with 𝑝3 relative to 𝑝2. Nevertheless, after receiving the 𝐴𝐶𝐾 from

𝑝3, 𝑝2 removes the message from the set of pending messages and

notify 𝑝0, which originally sent the message with timestamp𝑇 , with
an 𝐴𝐶𝐾 .

The VCube diagnostic algorithm performs the detection and

notification of process failures. For all processes, when 𝑖 receives
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Algorithm 1 LHABcast Atomic Broadcast at Process 𝑖

1: procedure Initialization( )
2: 𝐿𝐶𝑖 ← 𝑇𝑆𝑖 ← 0

3: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← {0, .., 𝑛 − 1}
4: 𝑙𝑎𝑠𝑡𝑖 [𝑛] ← {⊥, ..,⊥}
5: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ← ∅
6: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ← 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 ← ∅

7: procedure A-Broadcast(𝑚)

8: 𝑚.𝑠𝑟𝑐 ← 𝑖;𝑚.𝑠𝑒𝑞 ← 𝐿𝐶𝑖

9: 𝑡𝑠𝑖 (𝑚) ← 𝑇𝑆𝑖

10: 𝐿𝐶𝑖 ← 𝐿𝐶𝑖 + 1
11: 𝑇𝑆𝑖 ←Max(𝑇𝑆𝑖 , 𝐿𝐶𝑖 )

12: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ∪ {⟨𝑚, 𝑡𝑠𝑖 (𝑚) ⟩ }
13: Forward(𝑖 , log

2
𝑛,𝑇𝑅𝐸𝐸 ⟨𝑚, {𝑡𝑠𝑖 (𝑚) }⟩)

14: procedure Forward(𝑓 𝑟𝑜𝑚, 𝑠 ,𝑇𝑅𝐸𝐸 ⟨𝑚,𝑇 ⟩)
15: for all 𝑝 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖 (𝑠) do
16: Send(𝑇𝑅𝐸𝐸 ⟨𝑚,𝑇 ⟩) to 𝑝
17: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ∪ {⟨𝑓 𝑟𝑜𝑚, 𝑝, ⟨𝑚,𝑇 ⟩⟩ }

18: upon receive𝑇𝑅𝐸𝐸 ⟨𝑚,𝑇 ⟩ from 𝑝 𝑗

19: if 𝑗 ∉ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 then
20: Return

21: 𝑇𝑆𝑖 ← max(∀𝑡𝑠𝑘 (𝑚) ∈ 𝑇,𝑇𝑆𝑖 + 1)
22: if (𝑙𝑎𝑠𝑡𝑖 [𝑚.𝑠𝑟𝑐 ] =⊥ or𝑚.𝑠𝑒𝑞 > 𝑙𝑎𝑠𝑡𝑖 [𝑚.𝑠𝑟𝑐 ])

and𝑚 ∉ {𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ∪ 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 } then
23: 𝑡𝑠𝑖 (𝑚) ← 𝑇𝑆𝑖

24: 𝑇 ← 𝑇 ∪ {𝑡𝑠𝑖 (𝑚) }
25: for all 𝑝 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖 (log2 𝑛)∖

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ( 𝑗) − 1) do
26: Send(𝑇𝑅𝐸𝐸 ⟨𝑚, {𝑡𝑠𝑖 (𝑚) }⟩) to 𝑝
27: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ∪ {⟨𝑖, 𝑝, ⟨𝑚, 𝑡𝑠𝑖 (𝑚) ⟩⟩ }
28: for all 𝑡𝑠𝑘 (𝑚) ∈ 𝑇 do
29: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ∪ {⟨𝑚, 𝑡𝑠𝑘 (𝑚) ⟩ }
30: Forward(𝑗 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ( 𝑗) − 1,𝑇𝑅𝐸𝐸 ⟨𝑚,𝑇 ⟩)
31: CheckDeliverable(𝑚)

32: CheckAcks(𝑗 , ⟨𝑚,𝑇 ⟩)

33: upon receive 𝐴𝐶𝐾 ⟨𝑚,𝑇 ⟩ from 𝑝 𝑗

34: 𝑝 ← 𝑥 :⟨𝑥, 𝑗, ⟨𝑚,𝑇 ) ⟩⟩∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖
35: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖∖ ⟨𝑝, 𝑗, ⟨𝑚,𝑇 ) ⟩⟩
36: CheckDeliverable(𝑚)

37: CheckAcks(𝑝 , ⟨𝑚,𝑇 ⟩)

38: procedure CheckDeliverable(𝑚)

39: if received ⟨𝑚, 𝑡𝑠𝑘 (𝑚) ⟩ from all 𝑘 ∈ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖
and 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ∩ ⟨∗, ∗, ⟨𝑚, ∗⟩⟩ = ∅ then

40: 𝑠𝑛 (𝑚) ← max(𝑡𝑠𝑘 (𝑚) | ⟨𝑚, 𝑡𝑠𝑘 (𝑚) ⟩ ∈ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 )
41: Deliver(𝑚, 𝑠𝑛 (𝑚))
42: for all ⟨𝑚′ =𝑚, 𝑡𝑠 (𝑚) ⟩ ∈ 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ) do
43: if 𝑙𝑎𝑠𝑡𝑖 [𝑚.𝑠𝑟𝑐 ] =⊥ or𝑚′.𝑠𝑒𝑞 = 𝑙𝑎𝑠𝑡𝑖 [𝑚.𝑠𝑟𝑐 ] + 1 then
44: 𝑙𝑎𝑠𝑡𝑖 [𝑚.𝑠𝑟𝑐 ] ←𝑚′

45: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖∖{ ⟨𝑚′, ∗⟩ }

46: procedure Deliver(𝑚, 𝑠𝑛 (𝑚))
47: 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 ← 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 ∪ {⟨𝑚,𝑠𝑛 (𝑚) ⟩ }
48: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒 ← ∅
49: for all ⟨𝑚′, 𝑠𝑛 (𝑚′) ⟩ ∈ 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖

| ∀ ⟨𝑚′′, 𝑡𝑠 (𝑚′′⟩ ∈ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖
: 𝑠𝑛 (𝑚′) < 𝑡𝑠 (𝑚′′) do

50: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒 ← 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒 ∪ {⟨𝑚′, 𝑠𝑛 (𝑚′) ⟩ }
51: Deliver all messages in 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒 at order (𝑠𝑛 (𝑚),𝑚.𝑠𝑟𝑐)
52: 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 ← 𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑖 ∖ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒

53: procedure CheckAcks(𝑝 , ⟨𝑚,𝑇 ⟩)
54: if 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖∩ ⟨𝑝, ∗, ⟨𝑚,𝑇 ⟩⟩ = ∅ then
55: if𝑚.𝑠𝑟𝑐 ≠ 𝑖 and {𝑝 } ∈ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 then
56: Send(𝐴𝐶𝐾 ⟨𝑚,𝑇 ⟩) to 𝑝

57: upon notifying crash(𝑗 )
58: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∖ { 𝑗 }
59: for all 𝑝 = 𝑥,𝑚 = 𝑦 :⟨𝑥, 𝑗, ⟨𝑦,𝑇 ⟩⟩

∈ 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 do
60: if {𝑝 } ∈ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 then
61: if 𝑘 = 𝐹𝐹_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖 (

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ( 𝑗)) ≠ ∅ then
62: Send(𝑇𝑅𝐸𝐸 ⟨𝑚,𝑇 ⟩) to 𝑝
63: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖∪ ⟨𝑝, 𝑘, ⟨𝑚,𝑇 ⟩⟩
64: 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 ← 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖∖ ⟨𝑝, 𝑗, ⟨𝑚,𝑇 ⟩⟩
65: CheckAcks(𝑝 , ⟨𝑚,𝑇 ⟩)
66: for all ⟨𝑚, ∗⟩ ∈ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 do
67: CheckDeliverable(𝑚)

notification that 𝑗 crashed (line 57), 𝑗 is removed from the list of

correct processes. Thus, for each message 𝑚 forwarded to 𝑗 not

confirmed, i.e., there is𝑚 sent to 𝑗 in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑠𝑖 (line 59), this

message𝑚 must be forwarded to the next correct process in the

cluster to which 𝑗 belongs, if it exists (the 𝐹𝐹_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖 (𝑠) function
determines this information, where 𝑠 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ( 𝑗)) ( line 61). For
example, consider the three-dimensional hypercube in Figure 2c

where 𝑝0 is the source of the message. If 𝑝4 fails during the broad-

cast, 𝑝0 will not receive a confirmation from that cluster. When

𝑝0 detects the failure, it forwards its timestamp to the next correct

process of this cluster (𝑝5). If there are no more correct processes

in the cluster, the CheckAcks function is called to check if there

are any pending messages to be forwarded from the 𝑝 process that

sent𝑚 to the 𝑖 process (line 65). Also, the process 𝑖 may not have

received the timestamp from 𝑗 . In this case 𝑖 will keep waiting un-

til the timestamp is received or 𝑗 is detected as faulty. Therefore,

for each𝑚 message in 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 , the function CheckDeliverable

(line 67) is called to check if𝑚 can be delivered, since the timestamp
of 𝑗 is no longer needed.

3.2 Proof of correctness
In this section, we will prove that Algorithm 1 ensures the valid-

ity, integrity, agreement, and total order properties of an atomic

broadcast algorithm.
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Figure 2: Message forwarding – illustrative examples.

Lemma 3.1 (Validity). Algorithm 1 ensures that if a correct process
A-Broadcast a message𝑚, then it eventually delivers𝑚.

Proof. When process 𝑖 broadcasts a message 𝑚, it includes

{⟨𝑚, 𝑡𝑠𝑖 (𝑚)⟩} into the set 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 (line 12) and forwards 𝑚 to

all correct neighbors in the VCube topology (line 15). For each pro-

cess 𝑗 to which 𝑖 sent𝑚, 𝑖 added a pending ack in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 . If

𝑗 is correct, it responds with an 𝐴𝐶𝐾 message (CheckAcks proce-

dure) and 𝑖 removes the pending ack in 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 on line 35. If 𝑗

is faulty, 𝑖 will eventually detect the crash and remove the pending

ack in line 35.

As a result, all outstanding acks for𝑚 will eventually be removed

from 𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑎𝑐𝑘𝑖 and, after receives the timestamps to𝑚 from all

correct process (line 39), 𝑖 will deliver𝑚 on line 41. □

Lemma 3.2 (Integrity). Algorithm 1 ensures that each message𝑚
is delivered at most once and only if it was previously A-Broadcast

by a sender process 𝑖 .

Proof. A process only delivers amessage𝑚 if it either has broad-

cast𝑚 itself (Lemma 3.1) or if𝑚 is in its 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 set (line 41). Mes-

sages broadcast by the sender are added to 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 in line 12. Mes-

sages received from other processes are included into the 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖
in line 29. Since links are reliable and do not generate messages, a

message is delivered only if it was previously sent (no messages

are generated).

To show that there is no duplication of messages, let us consider

two cases:

• source(m) = i. Process 𝑖 called A-Broadcast broadcasting

𝑚. As proved in Lemma 3.1, 𝑖 will deliver𝑚 on line 41. Since

the procedure A-Broadcast is called only once for any given

message, the only way that 𝑖 could deliver𝑚 a second time

would be on executing line 41. Since 𝑙𝑎𝑠𝑡𝑖 [𝑖] was set to𝑚 in

line 44 after the deliver on𝑚, it follows that𝑚 will never be

qualified to pass the test again.

• source(m) ≠ i. The process 𝑖 is not the source of the message

𝑚, and did not call the procedure A-Broadcast with 𝑚.

Therefore, the only way for 𝑖 to deliver𝑚 is in line 41. Before

𝑖 delivers 𝑚 for the first time, it sets 𝑙𝑎𝑠𝑡𝑖 [𝑚.𝑠𝑟𝑐] to 𝑚 in

line 44. Thus, 𝑚 will never pass the test again, and 𝑖 may

therefore deliver𝑚 at most once.

□

Lemma 3.3 (Agreement). Algorithm 1 ensures that if a correct
process delivers a message𝑚, all correct processes eventually deliver
𝑚.

Proof. Let𝑚 be a message broadcast by process 𝑖 . We consider

two cases:

• 𝑖 is correct. It can be shown by induction that every correct

process receives𝑚.

As a basis for induction, consider the case that 𝑛 = 2 and

𝑃 = {𝑖, 𝑗}. It follows that 𝑐𝑖,1 = { 𝑗}. Therefore, 𝑖 will send
𝑚 to 𝑗 on line 15. If 𝑗 is correct, it will eventually receive

𝑚 since the links are reliable, and will deliver𝑚 on line 41.

Process 𝑖 will also deliver𝑚 due to the validity property.

We now need to prove that if every correct process receives

𝑚 for 𝑛 = 2
𝑘
, this is also the case for 𝑛 = 2

𝑘+1
. The system of

size 2
𝑘+1

can be seen as two subsystems 𝑃1 = {𝑖}∪
⋃𝑘
𝑥=1 𝑐𝑖,𝑥

and 𝑃2 = 𝑐𝑖,𝑘+1 such that |𝑃1 | = |𝑃2 | = 2
𝑘
.

The procedure Forward ensures that for each 𝑠 ∈ [1, 𝑘 + 1],
𝑖 will send𝑚 to at least one process in 𝑐𝑖,𝑠 . Let 𝑗 be the first

process in 𝑐𝑖,𝑘+1. If 𝑗 is correct, it will eventually receive𝑚.

Process 𝑖 will continue to do so until it has sent the 𝑇𝑅𝐸𝐸

message to a non-suspect process in 𝑐𝑖,𝑘+1.
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If 𝑗 is faulty and if 𝑖 detects the crash only after the broad-

cast, the 𝑆𝑒𝑛𝑑 procedure will be called again in line 61, which

ensures once again that 𝑖 sends the message to a not faulty

suspicious process in 𝑐𝑖,𝑘+1. As a result, unless all the pro-
cesses in 𝑐𝑖,𝑘+1 are faulty, at least one correct process in

𝑐𝑖,𝑘+1 will eventually receive 𝑚. This correct process will

then broadcast𝑚 to the rest of the subsystem 𝑃2 on the line.

Since a correct process broadcasts𝑚 over both subsystems

𝑃1 and 𝑃2, the two of them have size 2
𝑘
, it follows that every

correct process in 𝑃 will eventually receive𝑚.

• i is faulty. If 𝑖 crashes before𝑚 is sent to any process, then

no correct process delivers𝑚 and the agreement property

is verified. If 𝑖 crashes after having broadcast 𝑚 to all its

neighbors, then the broadcast of𝑚 happens as if 𝑖 was cor-

rect. On the other hand, if 𝑖 crashes while sending𝑚 and a

correct process 𝑗 receives𝑚, then 𝑗 will eventually detect

the failure of 𝑖 . If 𝑗 detects the crash before receiving𝑚, it

waits to receive𝑚 from other correct processes because𝑚

is forwarded with local timestamp to all correct processes

on lines 25 and 30. Since 𝑗 is correct, each correct process

will eventually receive𝑚.

□

Lemma 3.4 (Total Order). Algorithm 1 ensures that if two correct
processes 𝑝 and 𝑞 both deliver messages𝑚 and𝑚′, then 𝑝 delivers𝑚
before𝑚′, if and only if 𝑞 delivers𝑚 before𝑚′.

Proof. We prove from Lemma 3.3 that all correct processes

receive all broadcast messages. If we consider two messages𝑚 and

𝑚′, we have two possible scenarios:

• 𝑚.𝑠𝑟𝑐 =𝑚′.𝑠𝑟𝑐 . If both messages are from the same source

process and𝑚 was sent before𝑚′, so𝑚.𝑠𝑒𝑞 < 𝑚′.𝑠𝑒𝑞 and

𝑡𝑠 (𝑚) < 𝑡𝑠 (𝑚′). By agreement, both messages and their

respective timestamps are included in 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑖 by all correct

processes. Finally, both messages are delivered in the same

order in line 52.

• 𝑚.𝑠𝑟𝑐! = 𝑚′.𝑠𝑟𝑐 . When𝑚 and𝑚′ are sent by different pro-

cesses, there is no direct precedence between their times-

tamps. Each correct process receives the messages in any

order and assigns the timestamp according to the local order.

Once all correct processes have received all timestamps from

each message, both messages are delivered in the same order

in line 52.

□

Theorem 3.5. Algorithm 1 implements an atomic broadcast.

Proof. The proof follows directly from Lemmas 3.1, 3.2, 3.3

and 3.4. □

4 CONCLUSION
This paper has presented a hierarchical, autonomous and fully de-

centralized atomic broadcast algorithm. It uses a scalable strategy

that allows processes to deliver messages in the same order without

the need for a leader. In the event of a process failure, the hierar-

chical approach relies on the properties of VCube to automatically

reorganize non-faulty processes into a new tree.

In the future, we will investigate optimizations aimed at reducing

the number of messages required to fully order application mes-

sages, thereby improving performance. Other research directions

include evaluating the impact of changing the LHABcast system
model when the synchrony assumption is relaxed, and experimen-

tally comparing LHABcast with other solutions such as AllConcur
and AllConcur+.
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