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ABSTRACT
Despite the many advantages of Network Function Virtualization
(NFV) technology, the dependability of virtual services must be
carefully addressed so that NFV can meet the requirements of com-
mercial carriers. In particular, it is essential to provide mechanisms
to ensure their correct and continuous operation. In this work
we propose NHAM: an NFV High Availability Module designed
within the NFV-MANO (NFV Management and Orchestration) ref-
erence model. NHAM allows the creation and management of fault-
tolerant virtual network services consisting of stateful VNFs (Vir-
tualized Network Functions) and SFCs (Service Function Chains).
The proposed architecture provides fault management, including
a choice of recovery mechanisms that can be applied depending
on the specific needs of each service. The solution is holistic in the
sense that it does not require any modifications of the source code
of VNFs/SFCs to make them fault-tolerant. The strategy is based
on SFC buffer management coupled with VNF checkpoint/restore,
providing high availability in a transparent way. A prototype was
implemented and experimental results are presented.
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1 INTRODUCTION
Virtualization is perhaps the single most important technology that
can lead to a solution to the “Internet ossification” problem: when
decades-old Internet protocols were designed it was hard to antic-
ipate the extraordinary growth that has since taken place. With
virtualization technologies, the network becomes programmable
and can evolve along multiple directions. Network Function Vir-
tualization (NFV) is one of those technologies, which allows the
replacement of hardware-based middleboxes by software that runs
on off-the-shelf hardware [19]. Network services are implemented
with Virtual Network Functions (VNFs), which can be further com-
bined in complex Service Function Chains (SFCs), that consist of
multiple VNFs connected in a predefined order [6, 7, 9]. With NFV
technology, network services that were previously available from
a handful of vendors can now be downloaded from Internet mar-
ketplaces [1]. The adoption of NFV technology represents a major
impact in terms of improving network flexibility and management.
In order to standardize the execution and management of NFV-
based services and to allow the interoperability of a broad range of
VNFs, the European Telecommunications Standards Institute (ETSI)
has proposed the NFV-MANO architecture [22].

Despite its many advantages, it is undeniable that network ser-
vices executed as virtualized software are more prone to failures

than traditional alternatives available as specialized hardware [11].
The shift from hardware devices to virtualized platforms brings
several challenges in terms of dependability [17, 26]. The complex-
ity to integrate multiple software systems in different layers, the
interoperability of hardware and software components provided
by different vendors, and the lack of experience on operating virtu-
alized network environments are some of the factors that make it a
challenge to ensure the dependability of NFV-based networks.

On the other hand, middleboxes implemented on specialized,
often proprietary hardware are typically designed with strict re-
silience goals. which corresponds to slightly more that 5 minutes of
downtime per year. In order to ensure the adoption of NFV technol-
ogy, it is essential to guarantee carrier-grade availability (five nines,
99.999%). The ETSI has defined a number of resiliency requirements
for services running in virtualized environments [11, 16].

Several proposals have been made to increase the availability of
network functions in virtualized environments [8, 14, 15]. However,
all those solutions present limitations, such as the use of particular
technologies or the requirement to modify VNF code. Some do
not incorporate all the mechanisms needed to ensure end-to-end
availability. The challenges soar by taking into account that most
network functions are stateful (i.e., they require fine-grained func-
tion state management). Finally, none of the existing solutions is
fully compliant with the NFV-MANO reference architecture defined
by the ETSI [22].

In this work we propose a high availability architecture for NFV-
based services, including both stateful VNFs and SFCs. The architec-
ture, called NHAM (NFV High Availability Module), is integrated
as a module to the NFV-MANO reference architecture, being fully
compliant with the specifications defined by the ETSI. The strategy
adopted by NHAM is defined on the virtualization level, so that
any VNF or SFC instantiated on the NFV platform can inherit the
high availability and resiliency properties in a transparent way.

NHAM performs fault management, while also managing the
internal state of VNFs and providing multiple mechanisms to en-
sure high availability. A set of operations is proposed to monitor
and control the internal state of VNFs with techniques based on
checkpoint/restore. In this way, NHAM ensures that after a VNF
fails it can be recovered preserving the internal state as it was be-
fore the failure occurred. NHAM offers a choice of four different
resiliency mechanisms, used to configure and update VNF repli-
cas. The resiliency mechanisms vary in terms of computational
resources and recovery time, allowing different types of VNFs with
different availability requirements to recover after failures.

NHAM was designed to be agnostic to the implementation: any
NFV-based service becomes highly available without the developer
having to make any changes to the VNF source code. As VNFs are
executed in virtualized environments, checkpoints can be taken



efficiently by saving the network function instance. This is a generic
approach that can be used to preserve the service state without
requiring VNF code modifications.

Furthermore, NHAM addresses the availability of stateful SFCs,
presenting a strategy to build resilient SFCs. The strategy couples
checkpointing with buffer management, allowing the synchroniza-
tion of the traffic processed by each VNF with the corresponding
checkpoints. As a consequence, NHAM ensures complete and cor-
rect end-to-end service recovery, tolerating multiple VNF failures
while also preventing packet losses and duplications due to failures.

A prototypewas implemented, and experimentswere executed to
assess the performance and availability of NFV-based services with
the support of NHAM. We show that, depending on the strategy
and the parameters, it is possible to reach carrier-grade availability.

The rest of this work is organized as follows. Section 2 presents
an overview of NFV and the NFV-MANO architecture, also describ-
ing SFCs. Section 3 presents an overview of the NHAM architecture,
while the SFC fault-tolerance strategy is described in Section 4. Sec-
tion 5 presents the implementation and experiments. Section 6
presents related work. Finally, Section 7 concludes the paper.

2 VIRTUAL FUNCTIONS AND SERVICES: AN
OVERVIEW

This section presents a brief overview of NFV technology including
the NFV-MANO reference model, and the IETF SFC architecture.

2.1 NFV: Network Function Virtualization
Network Function Virtualization (NFV) was proposed as an alter-
native based in software to implement network middleboxes, such
as firewalls, Network Address Translation (NAT) devices, Intrusion
Detection Systems (IDS) among others. Middleboxes have been tra-
ditionally implemented as specialized hardware [25], and are often
hard to manage and troubleshoot [27]. These services represent a
significant fraction of the capital expenditures (CAPital EXpendi-
tures - CAPEX) and operating expenses (OPerational EXpenditures -
OPEX) of a network [2]. NFV reduces the cost, improves the flexibil-
ity, simplify the design, development, and management of network
services [19]. There also other advantages, for instance in terms of
energy and physical space requirements [10].

The ETSI has coordinated efforts that led to the NFV-MANO
(NFV Management and Orchestration) reference architecture [22].
NFV-MANO allows the interoperability of virtual functions and
services from different developers, and includes modules for VNF
control and orchestration, including lifecycle and resource manage-
ment. In addition, NFV-MANO defines communication interfaces
and provides abstractions for the resources needed to execute VNFs.
Figure 1 shows the NFV-MANO architecture, the NFVI (NFV In-
frastructure) and the VNFs themselves.

The NFVI corresponds to the virtualized infrastructure in which
the VNFs are instantiated, managed, and executed. The NFVI in-
cludes physical storage, network and computational resources.
Physical resources are abstracted into virtual resources through a
virtualization layer, which is composed of a hypervisor that creates
and manages virtualized devices, i.e. Virtual Machines (VM) and
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Figure 1: NFV-MANO reference architecture.

containers. This allows isolation so that each VNF can run inde-
pendently. The VNFs in Figure 1 represent the instances that are
executing on the NFVI.

NFV-MANO itself is organized in three main modules. The first
is the NFV Orchestrator (NFVO), which allows the composition
of VNFs on SFCs (Service Function Chains), also managing their
lifecycle and resources [13]. The second module is the VNF Man-
ager (VNFM), which is responsible for VNF lifecycle management,
including the instantiation, deletion, configuration, and auto scal-
ing of VNFs [31]. To perform its functionalities, the VNFM makes
use of the VNF Descriptor (VNFD), a template responsible for the
specification of each VNF in terms of operational and deployment
requirements. Finally, the Virtualized Infrastructure Manager (VIM)
controls and manages the computing resources of the NFVI. The
VIM is primarily responsible for the creation, deletion, and recon-
figuration of virtual devices.

In terms of VNF availability, the ETSI has specified several re-
siliency requirements for NFV environments and platforms [20, 24].
In particular, an NFV platform must support ensure the resiliency
of VNFs of different types and provided by different vendors. In ad-
dition, it is expected that different levels of resiliency can be defined
as different VNFs have different requirements. Furthermore, to en-
sure high availability, an NFV platform must provide a complete
fault management system, being able to detect and recover from
VNF failures. Finally, the NFV platform must ensure that stateful
VNFs preserve their internal state in case of failure.

While many NFV platforms are fully compliant with the NFV-
MANO architecture, no MANO-compliant solution provides the
full set of functionalities required to ensure end-to-end availability
for VNFs and SFCs. The purpose of the present work is to fill this
gap by proposing a high availability NFV architecture integrated
to the NFV-MANO reference model.

2.2 Service Function Chains
While VNFs perform specific functions, they can be combined into
complex network services, the SFCs. An SFC consists of multiple
VNFs connected in a predefined order through which traffic is
steered [9, 12]. According to the IETF (Internet Engineering Task
Force), the architecture of an SFC (shown in Figure 2) consists
of Classifiers, Service Function Forwarders (SFFs), and the VNFs
themselves, briefly described next.

The Classifier receives the network traffic as input and deter-
mines using policies to which SFC the traffic should be forwarded.
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Policies can be based on several fields, such as source and destina-
tion IP addresses, ports, protocol (e.g., TCP, UDP), among others.
The Classifier also forwards traffic to the required SFCs. The path
along which the traffic goes through within an SFC is called Service
Function Path (SFP) [9]. Once classified, the traffic is encapsulated
so that it can be routed to the correct SFP. As an SFC may consist of
multiple SFPs, headers include the identifier of the SFP to be used.

The SFF is responsible for forwarding packets from the Classifier
to one or more network functions in a pre-defined order. In order to
do this, the SFF uses the information inserted by the Classifier in the
SFC header. After a VNF processes the incoming traffic, it forwards
the processed packets back to the SFF. Then, the SFF forwards the
traffic to the next VNF of the SFP, and this process is repeated until
the traffic has been processed by all VNFs. Finally, when receiving
the traffic from the last VNF of the SFP, the SFF removes the header
from the packets and forwards the traffic to the final destination.

3 NHAM: A HIGH AVAILABILITY NFV
ARCHITECTURE

NHAM (NFV High Availability Module) is a high availability archi-
tecture for NFV that defines strategies for VNF and SFC resiliency,
including failure detection and recovery, covering heterogeneous
functions and services from different providers. A highly available
SFC continues its correct execution even after faults occur, i.e. after
one or more VNFs crash. The availability of a service increases as
the recovery time reduces. Therefore, it is necessary to detect and
react to failures quickly, minimizing downtime. However, the prob-
lem cannot be solved by just using redundancy neither by simply
re-instantiating failed functions [30, 32]. Most VNFs are stateful
– the internal state of the network function changes according to
the packets processed and the execution flow of the function itself.
Thus the VNF state must be preserved after the recovery.

NHAM is a high availability solution for stateful NFV-based
services, integrated as a module to the NFV-MANO reference ar-
chitecture. NHAM includes efficient fault management features.
VNFs simply inherit high availability properties, with no need for
developers to make any changes to the source code in order to
make a service highly-available. NHAM assumes the classical crash
fault model. A description of the NHAM architecture is presented
in the next subsection. The strategy defined by NHAM to ensure
high availability of individual VNFs follows.

3.1 NHAM: The Architecture
NHAM consists of two main components, as shown in Figure 3: the
Fault Management System (FMS) and the VNF StateManager (VSM),
described next. Fault management systems include functionalities
for failure detection and recovery. In the context of NFV, failure
detection consists of monitoring VNF instances, and identifying
crashes [29]. NHAM has two mechanisms for failure detection. The
Failure Detector (FD) module employs a polling strategy – mes-
sages are sent periodically to the VNFs being monitored; acknowl-
edgements should arrive before a timeout expires. The timeout is
computed adaptively. In addition to the polling messages, the FD
checks the state of the VNF by directly inspecting the correspond-
ing virtual device – a functionality provided by several hypervisors.
Immediately after a VNF is suspected to have crashed, it is added
by the FD to a list of suspects and a notification message is sent to
the VNFM.

In addition, the FMS also has a Replica Manager, which features
a choice of resiliency mechanisms, described in Subsection 3.3. The
resiliency mechanisms are used to manage VNF replication. For
each VNF instance, one of four different resiliency mechanisms
can be specified. The choice is done according to the particular
VNF availability requirements. The FMS is also responsible for VNF
recovery. In order to recover a failed VNF, NHAM communicates
with the VIM, VNFM, and NFVO, also described in Subsection 3.3.

In order to preserve the internal state of a VNF after its recovery
– ensuring the correct recovery of stateful VNFs – NHAM employs
the VNF State Manager (VSM) component. The VSM consists of a
State Synchronizer, an API for handling the internal state of VNFs,
and a database responsible for storing the VNF states. The VSM is
described in the next subsection.

NHAMcommunicates with other NFV-MANOmodules, in partic-
ular the NFVO, VNFM, and VIM. Recall that those modules perform,
among other tasks, those related to the lifecycle of virtualized ser-
vices, including the instantiation, configuration and termination of
VNFs and SFCs. As an example of the NHAM-MANO interaction,
during the recovery of a VNF NHAM requests the creation of new
VNFs to the VNFM. Another example: NHAM reconfigures SFCs
through the NFVO.

3.2 Management of Stateful VNFs
The VSM is the component responsible for the recovery of state-
ful VNFs. The VSM is based on checkpoint/restore [4]. As VNFs
run on virtual devices, which can be either virtual machines or
containers, saving the network function instance is a feasible and
attractive strategy to capture the VNF state without requiring any
modification of the VNF source code. Periodically, checkpoints con-
taining a representation of the system state are captured and saved
in non-volatile memory. When a failure is detected, the system can
be restored to the most recently saved checkpoint.

The state of a VNF consists of information that can be classified as
either external or internal [20]. The external state consists of static
information that does not change – or changes infrequently – over
time. Firewall/IDS rules and NAT port mapping tables are examples
of information stored as external state of a network function. The
external state can be easily recovered when the VNF recovers.
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Figure 3: The NHAM Architecture.

The internal state consists of information that is updated as
packets are processed and the function follows its execution flow.
The memory mapping, TCP connections, and cache contents are
examples of internal state information. The main challenge of state
management is to preserve and guarantee the consistency of the
internal state as VNFs fail and recover.

The main component of the VSM is the State Synchronizer, re-
sponsible for capturing internal state information and saving VNF
checkpoints. For each VNF, the State Synchronizer employs an
agent that periodically collects internal state information. NHAM
defines an API for VNF state management, which consists of two
main operations, described next.

export_vnf_state. This operation saves a checkpoint of a spe-
cific VNF. First, the virtual device has to be momentarily paused, so
that the state information for the checkpoint can be obtained. Once
the required state information is obtained, the VNF execution is
resumed. After it is ready, the checkpoint is sent either to the VNF
State Database or directly to a replica, depending on the resiliency
mechanism adopted.

import_vnf_state. This operation is employed to restore the
state of a VNF with a checkpoint. Two parameters are specified:
(i) vnf is the VNF instance identifier and; (ii) checkpoint, indicates
from where the corresponding checkpoint has to be imported. In
the execution of the import_vnf_state operation, the first step is to
momentarily pause the VNF that will be updated with the check-
point. Then, the checkpoint is imported and the VNF is updated.
After the operation completes, the VNF outputs a code indicating
that it was successfully updated with the new checkpoint.

Note that NHAM also allows the recovery of stateless VNFs, for
which it is not required to save state information.

3.3 Resiliency Mechanisms and Failure
Recovery

Choosing a strategy to ensure the high availability of VNFs depends
on the resiliency requirements of each specific network function
[24]. For example, network functions that handle real-time traffic

have more strict requirements than functions that handle best-
effort traffic. Therefore, the NFV platform should support different
strategies with different properties and costs.

NHAM presents four different resiliency mechanisms that rely
on two replication methods, which are defined by an ETSI stan-
dard [20]: Active-Standby and Active-Active. In the Active-Standby
method, the VNF replica has already been instantiated but is in
standby mode. In the Active-Active method, the replica has been
instantiated and is active, periodically updating its state.

The resiliency mechanisms vary in terms of cost and recovery
time. The selection of one of those mechanisms for a specific VNF
depends on the VNF features and requirements. Each of the re-
siliency mechanisms employs a different recovery procedure. The
resiliency mechanisms and the corresponding recovery procedures
are described next.

3.3.1 No Redundancy (0R). As the name suggests, the No Redun-
dancy (0R) mechanism does not employ any type of redundancy.
In this case, the State Synchronizer exports the VNF checkpoints
to the VNF State Database. This approach is the simplest and the
cheapest in terms of computational resources required, as it does
not use virtual resources to maintain any replicas.

On the other hand, after a failure occurs, the recovery time is
longer than that of the other methods. As the 0R mechanism does
not employ any replicas, the first step of the recovery process is
to instantiate a new VNF, replacing the one that has failed. Next,
NHAMupdates the internal state of the newVNF. To do so, the State
Synchronizer imports the most recent checkpoint of the failed VNF
to the newly created VNF. Once the recovery process is complete,
a reconfiguration process begins. The first step is to obtain the
updated information of the newly instantiated VNF, including its
IP address and other identifiers. Then, NHAM sends this updated
information to the corresponding NFV-MANO modules.

3.3.2 Primary Replica Active-Standby (1R-AS). The Primary Replica
Active-Standby (1R-AS) resiliency mechanism employs the Active-
Standby method with a replica that is instantiated but remains
in a standby mode. In this mechanism, as in the 0R mechanism,
the State Synchronizer exports the VNF checkpoints to the VNF
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Table 1: Comparison of the different resiliency mechanisms.

Resiliency
Mechanism Method #Replicas Database Recovery

Time
Resource
Usage Reconfiguration

0R None 0 Yes Very High Very Low Yes
1R-AS Active-Standby 1 Yes Moderate Low Yes
1R-AA Active-Active 1 No Low High Yes
MR-AA Active-Active M No Very Low Very High No

State Database. This option is more expensive than 0R because
it consumes virtual resources to maintain the replica, but has a
shorter recovery time.

The difference is that upon a failure, the replica is already created
and the State Synchronizer only needs to import the most recent
checkpoint into the replica, thus updating its internal state. Finally,
the reconfiguration procedure is executed. The replica becomes the
primary VNF and NHAM sends a request to NFV-MANO to update
the required information. Then, a new replica is instantiated and
left in standby mode.

3.3.3 Primary Replica Active-Active (1R-AA). The Primary Replica
Active-Active (1R-AA) resiliency mechanism employs the Active-
Active method, in which the VNF has an active replica. Having such
a replica means that the State Synchronizer periodically updates the
replica with the VNF checkpoints. Therefore, the replica constantly
receives updates reflecting the state of the primary VNF. The 1R-AA
strategy is more expensive than the 1R-AS, however the recovery
time is shorter.

Upon the occurrence of a failure, no particular recovery proce-
dure is required besides a reconfiguration to indicate that the replica
is now the primary VNF. Finally, a new replica is instantiated to
replace the one that became the primary.

3.3.4 Multiple Replicas Active-Active (MR-AA). The Multiple Repli-
cas Active-Active (MR-AA) resiliencymechanism is a generalization
of the 1R-AA mechanism, in which the VNF can be seen as a mem-
ber of a group of 𝑀 replicas that are continuously synchronized.
The State Synchronizer is responsible for keeping the states of the
𝑀 replicas consistent. In addition, any of the replicas in this group
can be accessed to obtain the service. MR-AA is the most expen-
sive of all mechanisms, as it requires the synchronization of the𝑀
replicas, but presents the shortest downtime.

In case a failure, this mechanism does not require any reconfigu-
ration, since a user can simply access any replica in the group. The
only reconfiguration required is due to the fact that it is possible to
specify the minimum and maximum number of replicas in a group.
If the number of correct replicas gets below a minimum threshold,
then new replicas are created.

3.4 A Comparison of the Resiliency
Mechanisms

A comparison of the different resiliency mechanisms both in terms
of resource usage (e.g., memory and CPU utilization) and recovery
time is shown in Table 1.

The 0R mechanism presents the lowest cost, and has the longest
recovery time. It is ideal for VNFs that execute low priority functions

and can tolerate longer failover times. The 1R-AS approach has a
recovery time shorter than the 0R, as it does not require the creation
of a new replica during the recovery process. This approach fits
VNFs that have high disk capacity or are compute-intensive, as
the standby replica does not consume computing or networking
resources.

The 1R-AA and MR-AA strategies based on the Active-Active
method have the shortest recovery times since the state of the
replicas is constantly updated. On the other hand, they have the
highest resource utilization. They are ideal for critical VNFs that
require higher levels of availability.

Of all mechanisms, MR-AA is the most expensive since it main-
tains a group of synchronized replicas. Thus, NHAM must guaran-
tee that the state is consistent across the multiple replicas. The State
Synchronizer is a centralized component responsible for ensuring
the whole group is updated correctly. To do this, the State Synchro-
nizer waits for confirmations from each replica that the state has
been updated. Only after receiving acknowledgments from all𝑀
replicas the State Synchronizer can start the synchronization of the
next state. The State Synchronizer requires a replica monitoring
strategy to identify failed replicas.

NHAM must also guarantee the consistency of replica states in
two other specific situations: (i) when a VNF is incorrectly sus-
pected to have failed and; (ii) when a VNF fails as the state is being
updated. In the first case (false suspicions of failure), NHAM per-
forms the same procedure as if it the replica had actually failed. A
reconfiguration step is executed through which a new instance or
an existing replica replaces the one that is mistakenly suspected
of having failed. Now consider the second case, in which a VNF
fails as the State Synchronizer is still updating the replicas. In this
case, in order to avoid any inconsistencies, the State Synchronizer
stops the process and rolls back all replicas to their previous state
using the last checkpoint that was correctly saved. The failed VNF
is eliminated, and the correct replicas remain consistent.

4 HIGHLY AVAILABLE SFCS
In this section we describe the strategy employed by NHAM to
make SFCs highly available.

4.1 Buffer Management and Assumptions
NHAM adopts a high availability strategy that guarantees the end-
to-end recovery of stateful SFCs (i.e., composed of one or more
stateful VNFs) after an arbitrary number of VNFs fail along the
service chain. In most SFC implementations, each VNF along a SFP
is preceded by a buffer, used by the SFF to store packets before they
are delivered to the VNF. NHAM employs two buffers for each VNF
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along the chain, as shown in Figure 4. buffer_rx precedes the VNF
in the chain and receives the traffic to be delivered to the VNF; thus
buffer_rx stores packets that have not yet been processed by the
VNF. buffer_tx follows the VNF in the chain and receives traffic
output by the VNF; thus buffer_tx stores traffic that has already
been processed by the VNF.

The data flow starts as the buffer_rx of the first VNF of the chain
receives from the SFF the packets which will be processed by the
VNF. Later on the SFF forwards the packets from buffer_rx to the
VNF. After processing the traffic according to the network function
it implements, the VNF outputs the packets into buffer_tx. The SFF
acts again moving packets from buffer_tx of a VNF to the buffer_rx
of the next VNF along the chain. This process is then repeated for
all other VNFs along the chain. After the last VNF processes the
traffic and places the packets in the final buffer_tx, it is the SFF that
is responsible for properly delivering this traffic to the destination.

We assume that the buffers, the SFF, and other MANO compo-
nents do not fail. This is a realistic assumption: in order to support
highly available SFCs the environment on which these SFCs run
must have itself been designed to be fault-tolerant. VNFs are not
shared by multiple SFCs, i.e. each VNF is employed by a single
SFC. It is recommended to deploy VNFs and buffers on physically
decoupled hardware. Furthermore, the recovery strategy assumes
that all VNFs along the chain process traffic in FIFO order. Thus
whenever two packets are sent in a certain order to the VNF, if they
are not dropped by the VNF, they are output preserving that order.

The Hold/Release strategy is proposed to guarantee the consis-
tent recovery of an SFC after a failure. Hold/Release is based on a
combination of VNF checkpointing coupled with buffer manage-
ment, and is described next.

4.2 The SFC Hold/Release Strategy
The recovery of a stateful SFC consists of two main parts: (i) the
individual recovery of each VNF that has failed, including state
restoration in case of stateful VNFs (described in Section 3.2); and
(ii) the retransmission of traffic lost due to VNF failures, which is
done with the Hold/Release strategy described next (ii).

Before the SFF places each packet in the first buffer_rx of the
first VNF of the SFC, each packet is encapsulated so that it can be
routed along the SFP. Besides carrying explicit information used to
identify the SFP [9], as the SFF encapsulates a packet it also adds

a timestamp, which is implemented as a counter and works as a
sequential packet identifier.

NHAM continuously monitors the VNFs, and upon identifying
the failure of any VNF, NHAM immediately sends a message to the
SFF to change the state of the SFC to recovering. When a SFC is in
this state, traffic does not progress through the VNF until it has
fully recovered. Thus a VNF in the recovering state neither receives
packets from buffer_rx nor sends packets to buffer_tx.

In the Hold/Release strategy, after the packets in buffer_rx are
delivered to the VNF, they are not removed from the buffer, i.e. they
are temporarily retained. The VNF then receives and processes the
packets, and stores the resulting traffic on buffer_tx. The idea is to
keep the traffic in buffer_rx until a VNF checkpoint is taken after
it has processed that traffic. If a checkpoint is taken after a given
packet has been processed we say that the checkpoint includes that
packet.

In case the VNF fails before the checkpoint is taken, it is rolled
back to the previous checkpoint, and all packets it had received
from that point (which are still in buffer_rx) must be sent again
and processed by the VNF. In case the VNF does not fail, the SFF
waits until the checkpoint is saved. At this point, it is possible to
conclude that the last packet in buffer_tx has been both processed
by the VNF and included in the checkpoint. Then, the SFF removes
all packets up to that last packet from buffer_rx.

Consider as an example that all packets up to packet 𝑖 have been
processed by a VNF when a checkpoint starts. Consider that packet
𝑖 + 1 had also been sent from buffer_rx to the VNF, but was not
included in the checkpoint. As the checkpoint completes, the SFF
confirms that the last packet that was already in buffer_tx is packet
𝑖 and can conclude that this packet was included in the checkpoint.
Now all packets up to 𝑖 can be removed from buffer_rx. Note that
packet 𝑖 + 1 cannot be removed: if it is necessary to rollback, packet
𝑖 + 1 must be reprocessed by the VNF. NHAM also keeps track of
the last packet delivered to the next VNF along the chain, which
can be used to avoid sending duplicate packets along the SFC.

So the strategy can be summarized as follows: (i) packets in
buffer_rx have not yet been processed by the VNF (although they
may have been delivered to the VNF); (ii) the state of the VNF is
updated as it processes each packet; and (iii) packets processed by
the VNF are output to buffer_tx. The SFF keeps track of both the last
packet included in the last checkpoint (described above) and of the
last packet delivered to the next VNF along the chain, this is the last
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packet stored in buffer_tx. This allows avoiding sending duplicate
packets to the next VNF after a recovering VNF reprocesses traffic
to rebuild its state.

Consider for example another situation in which packets 𝑖 , 𝑖 + 1,
and 𝑖 + 2 have been sent from buffer_rx to the VNF. However, the
VNF had only processed up to packet 𝑖 when a checkpoint started.
As the checkpoint completes, the SFF confirms that the last packet
in buffer_tx is packet 𝑖 , and can then remove all packets up to that
one from buffer_rx. Consider however that after the checkpoint
completes the VNF continues processing and outputs packets 𝑖 + 1
and 𝑖 + 2 to buffer_tx which are forwarded to the next VNF. The SFF
keeps track of the last packet in buffer_tx, in this case packet 𝑖 + 2.
Now the VNF fails. As packets 𝑖 + 1 and 𝑖 + 2 were not included
in the last checkpoint, they must be reprocessed after the VNF
recovers. However, they have been already forwarded to the next
VNF along the chain. After the recovery, the SFF avoids duplicates
by forwarding only packets from 𝑖 + 3 along the SFC.

The recovery of the VNF proceeds according to its respective
resiliency mechanism, as described in Section 3.3. After the VNF
is up again with its state restored according with the last check-
point saved, the next step is the retransmission of all the traffic in
buffer_rx, including packets the VNF had received since the check-
point was saved.

The Hold/Release strategy ensures that the SFC recovers regard-
less of the number of VNFs that have failed. Multiple VNFs may
even fail at the same time, for example due to a power failure. Note
that as the buffer_rx of a given VNF is only cleaned after a VNF
checkpoint is saved and the corresponding processed packet is in
buffer_tx, the traffic processed between the checkpoints of each VNF
is not lost and the consistency of the SFC as a whole is guaranteed.

5 IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

NHAM was implemented as a prototype within an NFV platform
that is compliant with the NFV-MANO reference model. The proto-
type was implemented in Python and is based on Docker containers
[18]. A REST API was implemented for VNF state management.
CRIU (Checkpoint/Restore in Userspace) [3] was employed to take
VNF checkpoints. The checkpoints consist of the minimum infor-
mation required to restore a failed VNF, including the network
function itself and a few related resources, such as memory maps
and the process tree. The VNFs employed in the experiments are
packet forwarders.

Experiments were executed on an Intel Core i7 processor at
2.50GHz with 8 cores, 16 GB RAM, a 1Gbps Ethernet NIC, and
Linux Ubuntu 20.04. Each VNF consists of an Ubuntu server with
256 MB RAM and 1 CPU. The MR-AA mechanism uses 3 replicas
by default. NHAM does not require any kernel patches in order
to work. The first set of experiments evaluates and compares the
impact of the four different VNF resiliency mechanisms during
SFC recovery time as the number of VNFs of the SFC grows. The
second set of experiments evaluates resource usage of each recovery
strategy, both in terms of memory and CPU utilization. The third set
of experiments measures the impact of NHAM on the throughput.
Finally, the last experiment evaluates the availability of NHAM-
supported NFV-based services. Each experiment was repeated 10

times and the results are averages presented with a confidence
interval of 95%.

5.1 Failure Recovery Time
As a short downtime is particularly important to improve the avail-
ability of virtual services, the first set of experiments measures the
total recovery time, from failure detection until recovery completes.
The failures were injected using scripts that remove all connections
from the VNFs. Therefore, monitoring messages are not received,
which triggers failure suspicions. The first experiment, shown in
Figure 5, measures the average recovery time after a single VNF of
the SFC fails. This experiment compares the four different resiliency
mechanisms, and the number of VNFs in the SFC increases from 1
to 8.
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Figure 5: Average recovery time after a single VNF fails.

As predicted, the 0R mechanism presents the longest recovery
time, reaching up to 3.6s of downtime for an SFC with 8 VNFs.
This is the time it takes to instantiate a new VNF – which takes
approximately 2.4s on average – and have the VSM restore the most
recent checkpoint. The 1R-AS mechanism presents better results,
and this can be explained by the fact that a replica has already been
instantiated and is in standby mode. By using the Active-Standby
method, NHAM only needs to import a checkpoint into the replica,
and the total recovery time was of 1.14s for a SFC with 8 VNFs.

Mechanisms based on the Active-Active method present even
better results. In particular, the 1R-AA mechanism reached an aver-
age of up to 0.05s of the total recovery time, as the active replicas
already have the up-to-date state. Finally, as expected, the MR-AA
mechanism achieved the best results, as it maintains a group of
synchronized replicas. The MR-AA recovery time is only 0.0002s,
which corresponds to the time to update the replica group. It is
important to note that, for all strategies, the recovery time remained
unchanged, regardless of the SFC length.

The next experiment evaluates the impact on the recovery time
when multiple failures occur at the same time, for example, due to
a link failure or a power outage. The experiment shown in Figure
6 employs SFCs with 8 VNFs and the number of failures per SFC
varies from 1 (single VNF failure) to 8 (failure of the whole SFC).
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Figure 6: Average recovery time of multiple failures per SFC.

As described in Section 4, NHAM detects and recovers multiple
failed VNFs in parallel. We measured the impact of increasing the
number of VNFs that fail simultaneously on the recovery time. For
the 0R resiliency mechanism, the recovery time increases from 3.56s
(one failure) to 7.8s (8 failures) – thus an increase of 2.1 times. For
the 1R-AS mechanism, the difference between recovering a single
failure and recovering the entire SFC is smaller, increasing from
1.14s to 2.52s.

For the 1R-AA and MR-AA mechanisms the difference is even
smaller, since the time to recover from a single failure is significantly
lower than that of the other strategies. For the 1R-AA strategy, the
recovery time varies from 0.004s (1 failure) to 0.009s (8 failures),
while for the MR-AA the recovery time varies from 0.0004s to
0.0009s. From these results, it is possible to conclude that all the
recovery mechanisms are scalable with respect to the number of
VNF failures.

5.2 Resource Usage
In next experiment we investigated the cost of the resiliency mech-
anisms in terms of memory and the CPU utilization, including the
cost to monitor, recover, and synchronize the internal state of VNFs.
Figures 7 and 8 show the results for memory and CPU utilization for
each of the resiliency mechanisms as the length of the SFC length
varies from 1 to 8 VNFs. The 0R mechanism presents a longer recov-
ery time in exchange for lower cost. The 0R mechanism scales well
as the number of VNFs grow: its CPU utilization remains roughly
constant. For memory usage, the increase is proportional to the
number of VNFs, ranging from 1.88% (1 VNF) to 13.04% (8 VNFs).
On the other hand, although the 1R-AS mechanism has a shorter
recovery time than 0R, it maintains the same performance levels as
0R, both in terms of CPU and memory.

As expected, mechanisms based on the Active-Active method
present higher resource utilization, as they are constantly synchro-
nizing the internal state of their replicas. The 1R-AA mechanism
presents CPU utilization of 21% and memory usage of 38% to syn-
chronize up to 8 VNFs. As for the MR-AA mechanism, despite
having similar memory usage than the 1R-AA, its CPU usage is
higher: up to 45% for a SFC with 8 VNFs. Note that memory usage
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Figure 7: CPU usage.
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Figure 8: Memory usage.

of approaches based on the Active-Active method is significantly
higher than the others. This is due to the fact that 1R-AA and
MR-AA perform their operations in memory, avoiding non-volatile
memory I/O overheads.

5.3 SFC Throughput
NHAM employs the Hold/Release strategy to guarantee the high
availability of virtualized services. The next experiment measures
the impact of that strategy on the throughput by evaluating the
impact in two different scenarios: the first scenario is without fail-
ures while in the second failures occur every 30s. The SFCs used in
these experiments consisted of 4 VNFs.

In the scenario without failures (Figure 9), each resiliency mech-
anism is compared to the baseline, which corresponds to a bare SFC
that is not running NHAM. The 0R and 1R-AS mechanisms pre-
sented similar throughput, which was expected as both take check-
points in the same way. These mechanisms decrease the throughput
by approximately 11.5%; this is due to the fact that checkpoints are
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obtained, compressed, and saved in non-volatile memory, increas-
ing the amount of time that the VNF is stopped.
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Figure 9: SFC throughput during a failure-free scenario.

For the 1R-AA mechanism, the throughput decreases by 4.7%.
As seen in the previous section, this mechanism works in memory
as the internal state is transferred to an active replica – this signif-
icantly improves the throughput. On the other hand, the MR-AA
mechanism is the mechanism that presents the greatest degradation
of the throughput. Despite having a very low recovery time, the
throughput decreases by 14.1%. Like the 1R-AA, the MR-AA mech-
anism also runs in memory, however, all the processing done to
guarantee that the group of replicas of each VNF remains consistent
does have an impact on the throughput.
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Figure 10: SFC throughput with failures.

In the scenario with VNF failures, shown in Figure 10, failures are
injected every 30s. It is possible to observe that the reduction of the
throughput is higher for the 0R and 1R-AS mechanisms than for the
Active-Active basedmethods, which is a consequence of their longer
recovery times. Note that even in this scenario, the throughput rate
remains constant for the 1R-AA and MR-AA mechanisms.

5.4 Evaluating VNF Availability
In this experiment the availability of NFV-based services using
NHAM was computed under a varying MTBF (Mean Time Between
Failures). Table 2 presents the results for each resiliency mechanism.
Each experiment lasted for 3 hours and the MTBF indicates the
frequency at which failures were injected. In this experiment, SFCs
with 8 VNFs were employed.

Table 2: SFC availability as the MTBF varies.

MTBF Availability (%)
0R 1R-AS 1R-AA MR-AA

60 (1 min) 98.057 98.240 99.916 99.999
300 (5 min) 99.605 99.643 99.983 99.999
600 (10 min) 99.802 99.821 99.991 99.999
900 (15 min) 99.868 99.880 99.994 99.999
1200 (20 min) 99.901 99.910 99.995 99.999
1500 (25 min) 99.920 99.928 99.996 99.999
1800 (30 min) 99.934 99.940 99.997 99.999

The 0R mechanism, as expected, presents the lowest figures,
although it can be used for network functions that can tolerate
longer recovery times. Even for tests with a higher MTBF (e.g. one
failure every 30 minutes), 0R reached only 99.3% of availability.
Likewise, the 1R-AS mechanism also does not reach the availability
levels necessary to ensure carrier-grade availability of VNFs, despite
achieving better results than 0R.

The 1R-AA mechanism performs better even in the most failure-
prone scenario: with an MTBF of 60, VNFs achieved 99.9% (three
nines) of availability and 99.99% (four nines) with an MTBF from
600. Naturally, the MR-AA mechanism presents the best results,
reaching an availability of 99.999% (five nines) in all cases.

In general, cloud platforms which are used to deploy NFV envi-
ronments reach up to approximately 99.9% (three nines) of availabil-
ity [11]. The results shown in this section allows the conclusion that
NHAM can ensure the high availability of VNFs with Active-Active
based mechanisms, but this is further constrained by the availability
of the cloud platform on which the VNF/SFC is running.

6 RELATEDWORK
REINFORCE [15] is a framework to support resiliency for VNFs and
SFCs based on replicating the state of network functions. While
NHAM provides different resiliency mechanisms, REINFORCE em-
ploys a single Active-Standby method for resiliency. In addition,
REINFORCE requires the VNF developers themselves to specify
which VNF operations are stateful. Furthermore, REINFORCE it is
not compliant with NFV-MANO.

FTC (Fault Tolerant Chain) [8] is a solution to improve the re-
siliency of SFCs that is neither based on checkpointing nor packet
replay. FTC piggybacks VNF state information in packets that are
propagated through the chain. Each VNF acts as a replica for its
predecessor, avoiding the need to use dedicated replicas. After a
VNF fails, it is re-instantiated and its state is retrieved from the
successor on the chain. FTC is neither compliant with the IETF SFC
reference architecture (e.g., assuming that each VNF sends traffic
directly to the next one) nor NFV-MANO.
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In yet another proposal based on buffers [23], the authors pro-
pose Pico Replication (PR), a high availability framework for mid-
dleboxes. Instead of capturing the internal state of the middleboxes,
PR performs checkpoints directly on specific data flows, while the
middlebox continues to process other flows. PR requires several
modifications to ensure the high availability of middleboxes, in-
cluding changes to the kernel and SDN controller.

Another strategy proposed in [14] consists of decoupling the
internal state of network functions from their processing. The in-
ternal state is saved to a distributed database. In this way, fault
tolerance is achieved for stateful network functions, since in case
of a failure the new instance can retrieve the updated state from
the database, with the corresponding overhead.

An approach based on rollback-recovery is proposed in [28].
The FTMB (Fault-Tolerant Middlebox) system saves the state of
middleboxes using two mechanisms: ordered logging and parallel
release. Ordered logging is used to save the information needed to
reproduce system entries in the event of a failure. Parallel release is
an algorithm that complements ordered logging so that the correct
reproduction of entries is ensured, given the dependencies between
packets. Although this solution reduces the overhead as the system
fails, the proposed strategy requiresmodifications to the VNF source
code, which represents a limitation.

In addition to the works described above, most NFV and cloud
platforms, such as OpenStack [21] and OSM [5], support some kind
of fault tolerance. However, these solutions cannot guarantee the
availability of stateful VNFs, since they do not have mechanisms to
preserve the internal state of the virtual devices.

7 CONCLUSION
In this work we propose NHAM: an NFV high availability archi-
tecture which is defined as a module of NFV-MANO reference
model. NHAM ensures the high availability of stateful VNFs and
SFCs, without requiring source code modifications. Four different
resiliency mechanisms are defined, which can be chosen depending
on the features and requirements of the different types of VNFs.
NHAM employs a state manager that couples checkpoint/restore
with buffer management to allow the recovery of stateful SFCs even
after multiple VNFs fail simultaneously, ensuring complete and cor-
rect end-to-end service recovery. A prototype was implemented and
experimental results were executed to evaluate the performance
and availability of NHAM-based VNFs and SFCs. Results show that
NHAM is an effective solution to improve the robustness of virtual-
ized services that can reach carrier-grade availability. Future work
includes the investigation of strategies to improve fault prevention
and prediction in the context of NFV.
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