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ABSTRACT

Recent advances in networking technologies such as massive Internet-
of-Things and 6G-and-beyond cellular networks indicate a trend
towards increasingly dense wireless communications. A wireless
communication channel is a shared medium that demands access
control, such as proper transmission scheduling. The SINR model
can improve the performance of ultra-dense wireless networks
by taking into consideration the effects of interference to allow
multiple simultaneous transmissions in the same coverage area.
However, finding the shortest schedule in wireless networks under
the SINR model is an NP-hard problem. In this work, we present a
greedy heuristic algorithm to solve that problem. The proposed so-
lution, called Sk-Greedy (Stochastic k Greedy) algorithm produces
a complete transmission schedule optimizing size, with the purpose
of increasing the number of simultaneous transmissions (i.e., spa-
tial reuse) thus allowing devices to communicate as frequently as
possible. Simulation results are presented, including comparisons
of Sk-Greedy with the optimal algorithm. Results confirm that the
solution requires short execution times to produce near-optimal
schedules.
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1 INTRODUCTION

Current wireless networking technologies have become increas-
ingly denser. Examples include wireless sensor networks [5, 20],
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cellular networks [6, 25], and massive Internet-of-Things [11, 16].
It is necessary to schedule communications over a wireless channel,
as it is a shared medium [27]. At a given time, it is important to
allow only transmissions that do not interfere with each other at a
level that turns reception impossible. Besides mutual interference,
other factors affect scheduling, in particular the fact that the power
of the transmitted signal decreases with the distance.

In this work, the time is divided into equal-length slots, and
devices are scheduled to transmit in specific time slots [23]. The de-
vices are capable of recognizing the beginning of a slot. All devices
must be scheduled to a time slot. Thus, the schedule is executed
from the first slot to the last, and then again from the first, and so
on. The trivial approach to scheduling is to assign a single device
to each slot. This is not efficient, as each device has to wait for
all others to have a chance to communicate before it can make
the next transmission. In the context of high-speed networks, it is
important to employ efficient schedules to guarantee the latency
and throughput requirements.

According to the traditional model for scheduling in wireless
networks (usually called graph model [9]) no two devices can be
scheduled to the same time slot if they are within the coverage
areas of each other. In dense networks, this becomes a problem:
devices can be placed very close to each other. The SINR (Signal-
to-Interference-and-Noise-Ratio) model becomes a relevant alter-
native in this case. The SINR model allows multiple simultaneous
transmissions that do interfere with one another. Informally, the
model computes all the interference resulting from the simultane-
ous transmissions, as well as the power of the transmitted signals
at the receivers. With this information, it becomes possible to deter-
mine which transmissions can be simultaneous. Allowing devices
whose coverage areas intersect to communicate simultaneously is
called “spatial reuse”. The higher the spatial reuse, the higher the
efficiency of ultra-dense networks. Informally, the objective is to
obtain the minimum schedule in terms of time slots, this problem
has been called Shortest Link Scheduling (SLS) [28]. The Smallest
Link Schedule has the lowest possible number of time slots and
thus the largest number of simultaneous transmissions that can be
scheduled across all slots. Such a schedule reduces the time each
device has to wait until it can communicate, allowing all devices to
communicate more frequently.

The SLS problem in SINR wireless networks has been proven
to be NP-hard [9]. For this reason, much of the work in this area
explores approximation algorithms [1-4, 10, 12, 21]. Although those
algorithms are important from the theoretical point of view, they
have little application in practice [22]. The fact that there is still
a clear need for practical and efficient scheduling algorithms for


https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

WSensing "22, November 21-24, 2018, Fortaleza, CE

SINR wireless networks has been the main motivation for us to
propose a novel strategy to solve the problem.

The proposed strategy is a stochastic greedy heuristic that sched-
ules links defined by the Down-to-Earth (DTE) heuristics [8]. The
DTE heuristics presents a practical solution to determine the set
of links that allow all devices to make transmissions. According to
the DTE strategy, each device only communicates with the clos-
est device and adjusts the transmission power to the minimum
required to reach the receiver, plus a spare amount of power that
will guarantee that the communication will succeed even if there
are other simultaneous transmissions.

Sk-Greedy is a stochastic greedy heuristic that aims at a balance
of both exploring/exploiting the search space of the scheduling
problem. At first, k links are selected randomly among the links to
be scheduled, and those links are evaluated. The best candidate from
the set is selected as a local solution, updating the problem state and
repeating the process until the algorithm finds a complete solution.
Randomizing the candidates for each problem state enables the
exploration of the problem search space. And the execution of a
greedy approach to process the set of k random candidates exploits
specific unexpected portions of the search space. For this reason, the
Sk-greedy heuristic is classified as a stochastic heuristic. To improve
the probability of finding the global optimum solution, the Sk-
Greedy algorithm is executed multiple times, creating a population
of several complete solutions for the optimization problem. Finally,
all those complete solutions are compared to decide which is the
best; that one is returned as the final result.

Experiments were executed to evaluate the proposed Sk-Greedy
heuristic. An experiment compares the scheduling results from
the proposed heuristic with the results from the optimal algorithm
for scheduling links defined with the DTE strategy. The optimal
algorithm checks all scheduling alternatives. Another experiment
evaluates the ability of the Sk-Greedy scheduler to find optimized
scheduling results for networks with a large number of communi-
cation links, which are infeasible to be processed by the optimal
algorithm.

The remainder of this work is organized as follows. Section 2
gives a brief description of the SINR model and the DTE heuristic
for link selection and power assignment. Section 3 presents the
SK-Greedy heuristic scheduling strategy. Section ?? shows the re-
sults of two experiments conducted to evaluate SK-Greedy. Finally,
conclusions are presented in Section 5.

2 THE DOWN-TO-EARTH SINR SCHEDULING
STRATEGY

The SINR (Signal-to-Interference-plus-Noise Ratio) model takes
into account the effects of cumulative interference on transmitted
signals as well as the effects of path loss to determine whether
reception is possible or not. The SINR model has been shown [19, 24]
to provide a good approximation of real wireless communication
channels.

The SINR model employs the signal-to-noise interference ratio
to determine whether a given transmission will succeed. Equation 1
shows how the SINR threshold y is employed to determine whether
a transmission from device i can be correctly received by a device
Jj. The SINR threshold is computed based on several parameters.
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The first is path loss, i.e. the power level of the transmitted signal
Pr; fades as it propagates from the transmitter to the receiver.
Devices are placed on the Euclidean plane, and the power of the
transmitted signal decreases according to the inverse of the distance
d(i, j) between i and j raised to the path loss, @. This specific
signal propagation model has been called the geometric SINR model
[10, 15].
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The other parameters are noise and signal interference. Back-
ground noise (Np) corresponds to spurious signals that cannot be
avoided and interfere with any communication. Antennas and even
the receiving circuit can be sources of noise. Interference occurs
among multiple simultaneous transmissions. A device in the cover-
age area of multiple transmitters receives all transmitted signals
each with a different power level. Typically, a receiver is only re-
sponsible for decoding a single signal, which is the one with the
highest power level, so that all others are considered interfering
signals [18]. Note that technologies such as CDMA (Code Division
Multiple Access) and MIMO (Multiple Input Multiple Output) allow
a single device to simultaneously receive signals from multiple
transmitters, but they are not employed in this work.

As mentioned in the Introduction, in the SINR model, it is nec-
essary to schedule communications to guarantee that they will
succeed. The basic unit that is scheduled is a link from a transmit-
ting device i to a particular receiver j. Each device must be the
transmitter of some link so that each device has the opportunity
to communicate. So, starting from a set of devices positioned on
the Euclidean plane, the first problem is to determine the links
themselves, i.e., which device will communicate with which other
device. In this work, we employ the so-called Down-to-Earth (DTE)
heuristic [8] to solve this problem, described next.

First, the DTE heuristic determines that each device i only makes
a transmission to the closest device j. In other words, the set of
links to schedule L consist of links (i, j), such that the distance
d(i,j) < d(i,k),Vk € V, where V is the set of devices. Next, the
DTE heuristic determines the power level to be employed by each
transmitter i. The minimum power level Pr; required by device i
to communicate with j is shown as equation 2 below.

Pr;
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However, in order to allow spatial reuse (multiple simultaneous
transmissions), the power level must be above the minimum, so
that interference can be tolerated. A configurable spare SINR level
— Yspare — can be employed to compute the power level to use.
Thus the transmission power Pr; adopted by device i is computed
in a way to guarantee that the resulting SINR at the receiver j is

Y + Yspare, as shown in equation 3.

& =y+ Yspare

No Pri=(y+ Yspare) “No - d(i, j)a ®3)



Sk-Greedy: A Heuristic Scheduling Algorithm for
Wireless Networks under the SINR Model

The spare power level allows spatial reuse under certain condi-
tions. The amount of interference Py supported by each receiver
J, when considering the reception of the signal transmitted by the
device i, is given by the following equation, where Pg; is the power

level at the receiver j, given by dg%:

Pp;
P@S%-Ng 4)

After determining the set of links, the next problem is scheduling
which is an NP-hard problem. In the next section, we present the
SK-Greedy heuristic to solve this problem.

3 THE SK-GREEDY SCHEDULER

In this section, we present the Sk-Greedy Scheduler, a simple but
efficient algorithm to solve the scheduling problem in wireless
networks under the SINR model and with links determined by the
DTE heuristic strategy.

3.1 The Stochastic k Greedy Heuristic

Greedy heuristics evaluate the search space of an optimization
problem looking for the best partial solutions locally, iteratively
composing a complete solution. There are many ways to define
which is the best local solution. In generic problems, greedy heuris-
tics employ an objective function to evaluate all the candidates
for the partial solution given the current problem state. Based on
this evaluation, the heuristics thus decides the best-fitted candidate,
update the problem state, and repeat the process until finding a
complete solution. We call this approach “best-fit”.

Another possible approach that greedy heuristics use to decide
the local candidate to adopt is as follows. Given a set of candidates
for a partial solution of the problem state, evaluate the candidates
until finding the first viable candidate. Once detected, decide on
that candidate, update the problem state, and repeat the process
until the problem is completely solved. This approach is usually
employed to create efficient heuristics (in terms of execution time)
for constrained optimization problems. We call this approach “first-
viable”.

Overall, greedy heuristics are, by definition, used in the context
of deterministic algorithms. Thus, these heuristics always return
the same result given the same inputs. Due to that reason, we can
say that greedy heuristics focus on exploiting the search space,
not exploring it. It can be a good strategy for problems with low
complexity and small search spaces. But, considering sophisticated
scenarios (e.g., a very large number of constraints, multiple candi-
dates to solve each problem state, and a large search space), such
as the scheduling problem in wireless networks under the SINR
model, exploiting-based heuristics may be stuck in a local optimum
far away from the global best solution.

In this way, we propose a new stochastic greedy heuristic that
aims at a balance both exploring/exploiting the search space of
the optimization problem in question. This heuristic, which we
call Stochastic k-Greedy (or simply Sk-Greedy), can work both
with the “best-fit” and “first-viable” approaches, evaluating a set
of candidates precisely in the same way as in a traditional greedy
heuristic. The main difference between the Sk-greedy heuristic to a
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regular deterministic greedy heuristic is on how it determines the
set of candidates to be evaluated for each problem state.

The SK-Greedy heuristic, instead of evaluating all the available
candidates to find a local solution for a problem state, selects k
random candidates among the ones available and evaluates each
them. Next, the best fitted or the first viable candidate from the
k-set is taken as the local solution, updating the problem state and
repeating the process until the algorithm finds a complete solution.

Randomizing the evaluated candidates for each problem state
enables the exploration of the problem search space. And the execu-
tion of a greedy approach for the random k-set exploits a particular
and unexpected portion of the same search space. For this reason,
the Sk-greedy heuristic is classified as a stochastic heuristic.

To improve the probability of finding the global optimum so-
lution, algorithms based on the Sk-Greedy heuristic can execute
several times, creating a population of different complete solutions
for the optimization problem. Finally, all those complete solutions
are compared to decide which is the best, and that one is returned
as the final result. The comparison can be done by simply employ-
ing their evaluation result values (mono-objective optimization)
or using other strategies (multi-objective optimization) — such as
Pareto frontiers [17]).

3.2 SINR Scheduling with Sk-Greedy

We modeled the scheduling problem of DTE links in wireless net-
works under the SINR model using the Sk-Greedy heuristic. We
call the proposed algorithm Sk-Greedy Scheduler.

The Sk-Greedy Scheduler receives as input the coordinates of
each device on the Euclidean plane. The scheduler executes a three-
step algorithm which consists of (1) the establishment of the com-
munication graph, (2) the generation of schedule candidates, and
(3) candidate evaluation and decision. The first step consists of
applying the DTE strategy (presented in Section 2) to define the
communication links for the provided devices. The links, in turn,
are processed in the second step of the algorithm.

The Sk-Greedy Scheduler composes a complete schedule can-
didate (second step) by generating its slots iteratively. The slot
generation method is as follows. First, the algorithm starts with an
empty slot, allocating a link randomly selected from the set of links
to schedule, called available links. Next, the Sk-Greedy heuristic is
run to define the other links that will be included in the current
slot. This process occurs in three stages: (I) k links are randomly
selected from the available ones (the user defines k as an input pa-
rameter); (II) each link is checked, verifying if it can coexist with the
other links already assigned to the slot (i.e., the transmissions can
be simultaneous); (IIT) the first edge that satisfies this coexistence
criterion (first-viable approach) is included in the slot, the other
edges are returned to the set of available edges, and the algorithm
moves to Stage I. If among the k links none could be assigned to
the current slot with the first one, the slot is closed, included in
the set of schedule candidates, and a next slot is started, repeating
the entire process. The algorithm goes on generating slots until
including all the available links have been assigned to a slot, thus
having a complete schedule candidate. The process is shown in
Figure 1.
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Figure 1: The Process of Composing a Schedule Candidate
In the third step, the proposed scheduler evaluates all the sched- 6 T T T T
ule candidates with a mono-objective function: minimizing the
number of slots of the final schedule. The objective function is . o N
mathematically expressed as Equation 5. Note that if different can- =
[ 4 |- -
didates present the same smallest number of slots, they are all E
returned as optimized solutions for the scheduling problem. 2 L |
S
Scheduling é . B
[}
min Z 1 (5) e
Slots 1 |
Finally, it is relevant to highlight that the algorithm always re-
turns a viable schedule. In the best case, the returned schedule has 0 = 12 114 lt ILS 2
a single slot (a rare and typically impractical scenario). In the worst
case, however, the returned schedule has the number of slots equal Number of Edges

to the number of links.

4 EXPERIMENTAL RESULTS

This section describes the experiments executed to evaluate the
proposed Sk-Greedy Scheduler. The first experiment compares the
scheduling results from the proposed heuristic with the results
from the optimal algorithm for scheduling DTE links, which we
call “Optimal DTE algorithm". The optimal algorithm checks all
scheduling alternatives. The second experiment evaluates the Sk-
Greedy Scheduler’s ability to find optimized scheduling results for
networks with a large number of communication links, which are
infeasible to be processed by the optimal algorithm.

We employed the following SINR parameters for all experiments:
the path loss was set to @ = 4; and the SINR threshold was set to
Y = 20 decibels, yspare = 50 decibels and the background noise

Figure 2: Execution Time (Optimal DTE)

No = —90dBm. The experiments were executed on a machine based
on a Core I3-XXX processor, with 8GB RAM DDR3, running Ubuntu
16.04. Both the Sk-Greedy Scheduler and Optimal DTE were imple-
mented using Python 3.9. Finally, all the experiments were repeated
30 times, achieving a confidence level of 95%.

For the first experiment, we simulated networks of 10, 12, 14,
16, and 18 devices randomly distributed on an area of 400 x 400
square meters. Thus, we executed the Optimal DTE algorithm to
determine the mean execution time and the optimal scheduling size
for each simulation scenario. Figure 2 presents the mean execution
times, while the black bars in Figure 3 show the optimal scheduling



Sk-Greedy: A Heuristic Scheduling Algorithm for
Wireless Networks under the SINR Model

WSensing *22, November 21-24, 2018, Fortaleza, CE

| |NEDTE Optimal 9.87 |

10 00 SK-Greedy % 9 ‘?
¢ o 8 |
. 697
w
;‘U 6 6 i -
=
]
)
£ |
w

2 ;

0

10 12 14 16 18
Number of Edges

Figure 3: Comparison between DTE Optimal and SK-Greedy Scheduler (Area Size = 400x400m)

sizes. We submitted the simulation files to the Sk-Greedy Scheduler
(k=2), which was configured it to execute for the same time taken
by the optimal algorithm. Figure 3 presents the mean size of the
scheduling results returned by the Sk-Greedy Scheduler for each
simulation with gray bars.

Figure 2 shows that the execution time of the Optimal DTE al-
gorithm grows fast as the number of communication edges to be
scheduled increases. In particular, increasing the number of com-
munication edges from 10 to 18 (80%) made the execution time
increase by 46527.28%. Furthermore, the optimal algorithm could
not be executed (in our environment) for more than 18 communi-
cation links.

Figure 3 shows the schedule sizes returned by both the Optimal
DTE (black bars) and Sk-Greedy (gray bars) algorithms. The results
show that the proposed heuristic always produced the optimal
or near-optimal results for this case study: the mean scheduling
size did not exceed the optimal scheduling size plus one for all
the scenarios. Furthermore, it is relevant to highlight that the k
parameter of the Sk-Greedy Scheduler was set to 2 to increase the
number of schedule candidates (exploration) instead of exploiting
just a few candidates. This decision was motivated due to the small
number of communication links to be scheduled and the limited
execution times.

For the second experiment, we simulated the allocation of 50, 100,
250, and 500 devices randomly distributed in an area of 400 x 400
square meters. All those simulations are unfeasible to be processed
by the Optimal DTE algorithm. In this way, we only executed the
SK-Greedy Scheduler for these scenarios. We configured the sched-
uler to generate and evaluate 100 scheduling candidates with k=2
(fast execution). We measured the mean execution time to create
candidates and decide on a scheduling result. Furthermore, we ana-
lyzed the mean size of the schedules resulting from 30 executions
of the algorithm.

Figure 4 shows the mean execution time for each scenario of the
second experiment. We can note that the execution time increases
as the number of communication edges increases. It is the expected
behavior, since increasing the number of communication edges
means enlarging the search space to be considered by the scheduler.

Execution Time (s)

o L1 ! ! !
50 100 250 500

Number of Edges

Figure 4: Execution Time For 100 Generations (SK-Greedy
Scheduler)

For this experiment, we observe that the execution time increases
(close to) linearly. It occurs because with k=2, the scheduler does
not spend much time in frustrated attempts to include new links
to a slot, keeping the mean number of evaluations per-link with a
maximum difference of 38% for all the scenarios.

Finally, Figure 5 presents the mean schedule size returned by the
Sk-Greedy Scheduler for each scenario of the second experiment.
First, it is possible to conclude that the scheduler optimized the
number of slots of resulting schedules, compared with the baseline
(one link per slot). With the proposed strategy, the scheduler could
reduce the number of slots from 2.22 (50 communication links) to
8.48 (500 communication links) times.

It is important to highlight that the schedule size reduction ratio
increases as the number of communication edges increase in the
same area. This occurs due to the characteristics of the DTE heuris-
tic (each device creates a communication edge with the closest
device). With a large number of devices, they are naturally closer
to each other in comparison with a scenario with a few devices in
an area with the same size. Thus, the power required to transmit is
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much lower, and the probability of finding multiple communication
edges that can be scheduled to the same slot increases significantly.

5 CONCLUSIONS

Current wireless networks are increasingly denser and have very
high requirements in terms of throughput and latency. The SINR
model has the potential of improving the performance of very dense
networks, as it allows spatial reuse, i.e., multiple simultaneous trans-
missions within the same coverage area. As scheduling under the
SINR model is NP-hard, it is necessary to develop efficient heuristics
that are capable of producing solutions that are close to the optimal.
Although several scheduling algorithms have been proposed in the
literature, most have a purely theoretical focus. The DTE heuris-
tics presents a practical solution to determine the set of links that
allow all devices to make transmissions. According to that strat-
egy, each device only communicates with the closest device and
adjusts the transmission power to the minimum required to reach
the receiver, plus a spare amount of power that will guarantee that
the communication is possible even if there are other simultaneous
transmissions. In this work, we presented Sk-Greedy, a greedy sto-
chastic heuristic that solves the scheduling problem for DTE links
efficiently, and produces results that are very close to those of the
optimal algorithm. Future work includes investigating distributed
scheduling strategies [7]. Providing the scheduler with a failure
detection service [26] is the first step towards a dynamic scheduler
that can support critical applications [14]. Multiple services can
then be designed, such as reliable broadcast [13], among others.
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