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Abstract—The Element Management System (EMS) is defined
by the ETSI NFV reference architecture as responsible for the
instrumentation of Virtualized Network Functions (VNF). The
EMS acts as a gateway to each function, executing monitoring
and control requests received from the VNF Manager (VNFM)
and Operation and Business Support Systems (OSS/BSS). Sur-
prisingly, the EMS has been either entirely ignored or only
employed in very restricted settings. In this work, we propose an
ETSI-compliant architecture that allows the development of EMS
solutions that can be used to manage arbitrary VNF instances
while abstracting particular protocols and technologies, thus
enabling the interoperability among heterogeneous systems (VNF,
VNFM, and OSS/BSS). The architecture was implemented as the
Holistic, Lightweight, and Malleable EMS Solution (HoLMES).
Evaluation results are presented showing the overhead of using
HoLMES as a gateway for typical management operations. The
slight increase in execution times is a fair price to pay for
the benefits that the holistic solution represents in terms of the
effectiveness of NFV management.

I. INTRODUCTION

The Network Function Virtualization (NFV) paradigm al-
lows the implementation in software of network functions
and services that run in the network core. Commercial off-
the-shelf servers executing virtualization technology replace
middleboxes that are often implemented as physical appliances
based on dedicated and proprietary hardware. Both the ETSI
and the IETF have been specifying recommendations, models,
and enablers to standardize the NFV paradigm. In particular,
the ETSI has proposed a widely adopted NFV reference archi-
tecture [1], and the IETF has proposed several specifications
in the context of virtualized network services [2], [3].

The ETSI NFV reference architecture revolves around three
different domains: MANO (MANagement and Orchestration),
NFVI (NFV Infrastructure), and VNF (Virtualized Network
Function). The NFV-MANO domain is responsible for sup-
porting the virtualized infrastructure, managing network func-
tions, and orchestrating network services. The NFVI, in turn,
includes the physical resources and their virtualization, making
them available to the other domains. Finally, the VNF domain
handles the execution and management of the lifecycle of
network function instances.

A VNF is actually defined as consisting of two parts [4]: the
Network Function (NF) and the VNF Platform on which it is

executed. Examples of such VNF platforms include ClickOS
[5], OpenNetVM [6], Click-on-OSv [7], and COVEN [8]. The
NF processes packets applying whatever functionalities it was
built to accomplish. Network Functions run on VNF Platforms,
that provide a myriad of resources for their execution [9], [10].

Two blocks are defined for the management of VNF in-
stances: the VNF Manager (VNFM) and the Element Man-
agement System (EMS). The VNFM has been receiving much
attention: multiple APIs [11], [12], applications [13], [14],
and implementations [15], [16] have been recently developed.
Surprisingly, in the context of NFV, the EMS has been either
completely ignored or employed in restricted settings.

The EMS is responsible for VNF instrumentation and exe-
cutes typical management operations (i.e., FCAPS: Fault, Con-
figuration, Accounting, Performance, and Security) on VNF
instances [17]. The EMS also acts as a gateway, providing
the interface for VNF Managers and Operation and Business
Support Systems (OSS/BSS) to interact with VNF instances.
Despite its importance, the EMS has been under-explored in
this context. Even when it is present, the EMS is typically
restricted to specific applications. Those EMS implementations
are heterogeneous, often highly different from each other.
Examples of application-oriented EMS solutions can be found
in the context of 5G resource allocation [18], NFV support
for multimedia communications [19], and in the context of
fast packet processing [20].

Notwithstanding its importance, there is no reference archi-
tecture for implementing an EMS in the context of NFV. This
fact, in practice, makes it hard for existing EMS solutions to
cooperate with other operational blocks from the ETSI NFV
reference architecture due to the lack of standard features and
interfaces. In this way, each different EMS solution usually
provides specific functionalities, both in terms of operation
syntax and management capabilities. Different solutions often
interact in wildly different ways with other blocks of the
reference architecture, typically only working with specific
VNFM, OSS/BSS, and VNF Platforms. Thus, this situation
leads to the violation of two fundamental NFV requirements
[21]: (i) integration (referred to as “coexistence with existing
networks and transition”), as current EMS solutions only work
in specific systems developed by particular vendors; and (ii)
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portability, as it is often impossible to employ a given EMS
in heterogeneous NFV environments.

In this work, we propose a comprehensive and extensible
architecture for the EMS operational block. This architecture
enables the development of different yet compatible categories
of EMS solutions. Furthermore, internal modules and com-
munication interfaces are fully compliant with the ETSI NFV
reference architecture. Thus, it is relevant to highlight that we
do not contemplate other proposed standards and protocols for
the EMS, such as the IETF and 3GPP ones. The proposed
architecture allows the creation of EMS solutions that are
holistic in the sense that they are not restricted to specific
applications, protocols, and technologies, thus enabling the
interoperability of VNFs, VNFMs, and OSS/BSSes from mul-
tiple vendors [8], [22].

The architecture was implemented as the Holistic,
Lightweight, and Malleable EMS Solution (HoLMES -
https://github.com/ViniGarcia/HoLMES). HoLMES was eval-
uated in the execution of typical NFV management opera-
tions. Results show that HoLMES is capable of successfully
managing heterogeneous VNF instances providing seamless
integration with different VNFM and OSS/BSS platforms. The
slight increase in execution times is a fair price to pay for the
benefits that the holistic solution represents in terms of the
effectiveness of NFV management.

The rest of this paper is organized as follows. Section
II presents definitions on the Element Management System.
Next, Section III gives an overview of the state-of-art NFV
management systems related to this work. In Section IV, the
proposed internal architecture for the Element Management
System is presented. HoLMES, the open-source EMS imple-
mented is described in Section V. Evaluation results follow in
Section VI. Finally, Section VII concludes the paper.

II. THE ELEMENT MANAGEMENT SYSTEM

The Element Management System (also called Element
Manager – EM) was first proposed in 1988 in the context
of TMN (Telecommunications Management Networks) [23]
of the International Telecommunication Union (ITU). In that
context, TMN processes have managed and managing roles.
While the managed role refers to providing information related
to managed resources, the managing role receives notifications
and issues requests for information on managed resources.
Equipment (or virtual equipment) executing a managed or
managing process in TMN is considered to be an EMS.

In 2018, the 3rd Generation Partnership Project (3GPP)
released a document specifying the service-based management
architecture [24]. The EMS is an element responsible for
managing and orchestrating functions and services in this
architecture. In the 3GPP architecture, the EMS is called a
Management Service (MnS) and has the same roles defined
originally in the TMN specifications – managed and managing
– here called MnS producers and consumers. In the 3GPP
architecture, an MnS is provided and accessed by a logical
entity called Management Function (MnF), which can operate
within a network function or as an independent element.

3GPP adopts the service-based management architecture in
the NFV architecture proposed by the ETSI. A VNF holds
an MnS producer working as a Management Agent [8], and
the EMS becomes an MnS consumer for that VNF, while
also working as an MnS producer for other NFV architecture
blocks, such as the VNFM, NFVO, and OSS/BSS. However,
the 3GPP stops at this point, i.e., it neither provides any hint
on how these management services can be implemented nor on
how to deal with the data models and management operations
specified by the ETSI for NFV [17].

A. The Element Management System in NFV

The Element Management System (also called Element
Manager – EM) is defined by the NFV reference architec-
ture [1] as the block responsible for the instrumentation of
VNF instances [25], [26]. The EMS also acts as a gateway,
collecting and processing information from one or more VNF
instances and interacting with other management blocks of the
NFV architecture [17], in particular the VNFM but also the
OSS/BSS. We next describe and classify the EMS according
to its functionalities and characteristics, including operational
features and requirements [1], [17], [27]–[29].

First, an EMS can be classified according to its relationship
with the NFV-MANO domain. Two alternatives are possible
[28]: either the EMS is non-MANO or MANO-compliant.
A non-MANO EMS does not have any restrictions in terms
of the NFV environment in which it is executed, i.e., the
EMS can be deployed regardless of the existence of any
other standard NFV blocks and, if there is such a block, the
EMS interacts with that block as if with a generic “user”.
An example of a non-MANO EMS is one designed for self-
managed software running on bare metal; another example is
the EMS designed for systems deployed outside the NFVI
and that do not communicate with NFV-MANO. Yet other
non-MANO EMS solutions are those under the control of an
OSS/BSS.

A MANO-compliant EMS, in turn, is fully aware of the
NFV environment and properly communicates/cooperates with
the other management blocks of the reference architecture.
The MANO-compliant EMS solutions can be of three different
types depending on how they are deployed [28], [29]: VNFC
EMS, VNF EMS, and Standalone EMS. A VNFC EMS
runs within a network function instance and can be considered
an internal component of a network function. On the other
hand, a VNF EMS runs independently of the managed network
function and is recognized by NFV-MANO as a VNF instance
itself, but of a special class: it does not process network traffic.
Finally, a Standalone EMS executes on a management plane of
the VNF working domain that is decoupled from both the VNF
instances (such as a VNFC EMS is) and is not under any direct
control of any NFV-MANO block (such as the VNF EMS
is). However, different from a non-MANO EMS, a Standalone
EMS does employ the standard communication interfaces to
execute management operations as it interacts with the NFV
environment.
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Another classification of EMS solutions is based on where
it is deployed concerning the corresponding VNF instances it
is responsible for managing. In this case, an EMS can be either
an Internal EMS or an External EMS [29]. An Internal
EMS runs together with the corresponding VNF instance,
resulting in a self-managed VNF. It is important to notice that
every MANO-compliant VNFC EMS is an Internal EMS, but
the opposite is not true (A standalone EMS can share the
same virtual instance and resources as a VNF, with the VNF
remaining agnostic of it). An EMS classified as non-MANO or
MANO-compliant Standalone can execute as an Internal VNF
provided that they execute within the VNF Platform operation
system. An External EMS, however, does not run within the
corresponding VNF instance, and the communication between
an external EMS and a VNF employs protocols that can
change according to the VNF platform used to execute the
network functions (those protocols are out of the scope of the
ETSI specifications).

An EMS can be also classified as Generic or Specific
[29], depending on whether it executes only the set of standard
management operations defined in [17] or also particular op-
erations of specific VNF Platforms. A Generic EMS interacts
with the NFV environment using a comprehensive interface
that allows the execution of the basic set of management
operations. For a Specific EMS to execute operations besides
those of the basic set, it employs some pre-agreed protocol
(e.g., defined by VNF platform vendors) to communicate with
the platforms running the VNF instances.

Finally, an EMS can manage one or multiple VNF in-
stances and can be classified accordingly [1], [27], [29]: a
Dedicated EMS manages a single VNF instance and an
Umbrella EMS manages multiple VNF instances. While a
Dedicated EMS does not require mechanisms to identify on
which VNF instance it is supposed to execute an operation,
an Umbrella EMS does. An Umbrella EMS not only needs to
keep track of the multiple VNF instances but also employ a
routing strategy to make operations reach the corresponding
functions. The implementation of an Umbrella EMS solution
is thus more complex than that of a Dedicated EMS.

III. RELATED WORK

Although the EMS is defined in the ETSI NFV reference
architecture, current NFV implementations are often restricted
to specific MANO projects, such those of OpenStack Tacker
[15], CloudStack Vines [16], Open Source Mano (OSM) [30],
and OpenBaton [31]. The situation is complicated by the fact
that each of those implementations adopts a different commu-
nication protocol employed to establish the communication
between VNFM and EMS. Often, each EMS is based on
management operations that are also specific to the particular
MANO project. Next, we describe existing EMS solutions,
also classifying each solution according to the criteria defined
in Section II.

Tacker [15] is an NFV-MANO project that includes an NFV
Orchestrator (NFVO) and VNFM. Tacker employs OpenStack
as VIM and NFVI. There is no native EMS available for

Tacker. However, Cloud-Init can be considered a primitive
type of EMS, running Shell Scripts to execute configuration
routines on VNF instances. Nevertheless, Cloud-Init cannot
be considered a complete EMS, and might be categorized
as non-MANO, internal, and dedicated (kind of)
EMS – generic and restrict classifications do not apply in this
case.

OSM [30] is an NFV-MANO project from the ETSI that
is based on containers. OSM also works with the OpenStack
cloud as VIM and NFVI on which VNFs and services are
instantiated. OSM also allows users to employ Kubernetes
to virtualize and manage VNF instances. OSM does not
include a proper EMS, but it is possible to configure a VNF
internally using a system called Day-Like. Similar to Cloud-
Init, Day-Like is a configuration agent, not exactly an EMS.
Furthermore, the execution Day-Like scripts rely on tools that
must have been previously installed on the VNF Platforms,
such as Secure Shell (SSH) and proxy charms. Thus, the Day-
Like system can be categorized as non-MANO, internal,
and dedicated.

The Vines project [16] consists of an NFV-MANO system
with a native VNFM and NFVO that employs the CloudStack
cloud as VI and VIM. This project provides an EMS im-
plemented as a network element of CloudStack. The Vines
EMS can natively communicate and manage several network
functions running over the Leaf Platform, also proposed as
part of the project. Furthermore, the EMS can communicate
with other VNF Platforms through a driver mechanism. The
CloudStack Vines EMS can be classified as MANO (VNF),
external, restrict, and umbrella.

The OpenBaton project [31] is an extensible NFV-MANO
project that features a flexible NFVO and VNFM. OpenBaton
employs OpenStack as VIM/NFVI, but it is possible to create
drivers to allow other cloud platforms. OpenBaton provides
an EMS that executes internally to the VNF Platforms. This
EMS is customizable in the sense that it enables users to
define internal management operations. Those operations are
available through REST (Representational State Transfer) or
AMQP (Advanced Message Queuing Protocol) interfaces.
The OpenBaton EMS keeps running and responding to man-
agement requests during the complete lifecycle of a VNF
instance. Thus, the OpenBaton EMS can be classified as
MANO (Standalone), internal, restrict, and
dedicated.

All the EMS solutions described above are designed each
for a particular NFV-MANO project and cannot cooperate with
a VNFM of other projects [32]. It is important to note that,
besides design limitations, this is also a consequence of the
fact that none adopts the standard protocol defined for the Ve-
Vnfm-em reference point [17]. Furthermore, most of those
EMS solutions are internal. This category of EMS can be
adopted by VNF platforms running on multi-process operating
systems, such as Ubuntu Cloud and Alpine Linux, but is not
appropriate for minimalist single-process platforms that host
one VNF instance, such as ClickOS [5] and Click-On-OSv [7].
Those minimalist operating systems typically do not support
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the installation of tools that those EMS solutions require.

IV. THE PROPOSED EMS ARCHITECTURE

In the context of NFV, current EMS solutions are widely
different from each other, mostly due to the fact that there
is no EMS standard architecture to follow. As the EMS acts
as a gateway that integrates NFV management blocks (i.e.,
VNF, VNFM, OSS/BSS) and plays an important role in the
execution of critical operations – such as those to configure,
monitor, migrate, and scale virtualized network functions –
EMS solutions should meet the requirements of the NFV
paradigm in terms of integration and portability.

In order to fill this gap, in this section, we propose an EMS
architecture shown in Figure 1. The architecture consists of
six modules: (i) Access Subsystem (AS); (ii) Internal Router
(IR); (iii) Monitoring Subsystem (MS); (iv) VNF Subsystem
(VS); (v) EMS Management Information Base (EMIB); and
(vi) Configuration Module (CM). The modules were designed
to be loosely coupled. The architecture specifies interfaces
between internal modules and other management blocks and
thus readily supports implementations and solutions from
diverse vendors. Furthermore, the proposed architecture can
work with both VNFs and PNFs (Physical Network Func-
tions). In the figure, solid arrows represent the communication
between internal modules, while dashed arrows represent data
exchanged in the execution of tasks related to the configuration
and maintenance of internal modules themselves. Interfaces
to other NFV blocks are shown as double solid lines. Other
external interfaces, outside the scope of EMS per se, are shown
as double dashed lines.

The proposed EMS assumes that VNF Platforms execute
a Management Agent (MA) [8], which provides an interface
to monitor and control the execution of VNF instances. This
interface consists of at least five operations: request, retrieve,
start, stop, and monitor. The request operation is used to
deploy a VNF Package (VNFP) [33]. Once a VNF instance is
executing, retrieve operations can be used to obtain informa-
tion, e.g. the VNF ID or network interfaces supported. Start
and stop are VNF lifecycle operations. Finally, monitoring
provides a standard way to obtain VNF state information and
measure performance parameters. It is important to highlight
that the MA is not mandatory, it can be replaced by any other
way to allow the EMS to access a VNF instance, such as an
SSH interface.

The EMS executes operations received from other NFV
management blocks as well as from operators and sends back
task outcomes to the respective requester. The EMS can also
trigger management operations and send operation requests
to other NFV management blocks. The internal modules are
described next.

Access Subsystem (AS) – The AS is responsible for receiv-
ing, validating, and forwarding them to the Internal Router.
Furthermore, after the operation is processed, the AS also
returns the results to the request source. The AS consists of
two agents: the Operation Agent (OA) and the Authentication
Agent (AA). The OA implements the Access Interface (AIf)

of an EMS. It provides all the operations accessible externally
to the EMS, whether for the VNF instance management or
for the management of the EMS itself. The OA must follow
the specification of the Ve-Vnfm-em interface [17], thus being
ETSI compliant. The AA, in turn, checks if received requests
come from a valid source with the proper authorization.
Although the AA is optional, it is strongly recommended in
the ETSI documents related to the EMS [34], [35]. The AA
executes a request authentication after it is validated by the OA
and before the request is forwarded to the Internal Router.

Internal Router (IR) – The IR forwards requests across
internal modules. If the request requires the execution of a
management operation on a VNF instance, it is forwarded
to the VNF Subsystem. Otherwise, if the request is for
some internal management operation, it is forwarded to the
Configuration Module. Overall, the IR must keep track of the
path a request follows within the EMS, as well as partial
results, warnings, and errors. The outcome of an operation
executed is forwarded to the AS, which in turn sends the
outcome to the request source.

Monitoring Subsystem (MS) – This module provides an
execution environment for running scripts to monitor VNF
instances. Although a monitoring script can employ any op-
eration of the VNF Subsystem, most of its operations are
related to checking the health of virtualized instances (e.g.,
using heartbeat messages received from a virtual machine
or container); checking the status of objects maintained by
network functions (e.g., filters and inspectors); and keeping
track of general performance metrics (e.g., latency and jitter).
EMS users can set up monitoring scripts using any opera-
tion available, requested through the MS-VS interface. Those
scripts are executed continuously by the MS. The MS can also
send notifications, alerts, and reports after relevant events are
identified. These notification messages are sent through the
Monitoring Interfaces (MIf) of each agent using the MS-MIf
interface, thus avoiding overloading the AS.

VNF Subsystem (VS) – The VS establishes the commu-
nication of the EMS with one or more VNF Platforms. This
module recognizes the execution platform of each particular
VNF to choose the procedures available to execute a manage-
ment operation and handle results as well as errors. Whenever
possible the VS does more than just apply an operation to a
VNF instance, also being capable of interpreting the results
and presenting proper responses to the requester. The EMS-
VNF communication occurs through VNF Interfaces (VIf).
The management of these interfaces can vary according to the
implementation of the EMS, and there may be multiple VIfs.
For example, multiple VIfs can be used so that a specific VIf
is defined for each supported VNF Platform. Furthermore, an
exclusive VIf can be set up to allow the communication of
each VS monitoring script.

EMS Management Information Base (EMIB) – This
module stores and provides access to information related to
the management of the EMS instance itself. The EMIB can
be implemented in various ways, from a simple collection of
local text files to a complex database system. The choice of
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Fig. 1. Element Management System Architecture

a particular implementation model depends on the complexity
and amount of information that must be kept. Examples of
information maintained by the EMIB include credentials of
the EMS users; description, localization, and access models
of managed VNF instances; the set of monitoring scripts and
policies available; and data to support the communication with
different NFV management blocks/modules (e.g., VNF/MA,
VNFM, and OSS/BSS).

Configuration Module (CM) – The primary objective of
the CM is to configure the internal modules of EMS as it is
started, according to information kept by the EMIB. Then the
CM continues to run as a module responsible for controlling
the EMS, which can update configurations, activate and deacti-
vate monitoring scripts, insert or remove information about the
users and managed VNF instances. The CM operations can be
executed by users registered in the AS with the authorization
level to execute a control task.

The general workflow of the proposed EMS can be de-
scribed as follows. Initially, the AS receives a request to
execute an operation from the AIf (AIf-AA) interface, and
the OA proceeds with operation validation. If the operation
is available and the request has the proper structure and
content, it is sent by the OA to the AA (OA-AA). The AA
authenticates the requester and confirms the authorization to
execute the intended operation. Then, the AS forwards valid
and authorized requests to the IR (AS-IR). The IR registers

the request and forwards it to the VS (if the operation request
is a VNF management routine - IR-VS) or to the CM (if the
operation request is related to the management of the EMS
itself - IR-CM). In the case of a VNF management request,
the VS identifies the platform of the requested VNF and
its respective virtual instance address (information provided
by the AS during request validation). With this information,
the request is properly modified and forwarded through the
respective VIf (VS-VIf) interface. On the other hand, in the
case of an EMS configuration request, the CM identifies the
target module and intermediates the execution of the operation.
Results follow the opposite path until they are sent back to the
requester by the AS.

V. HOLMES: HOLISTIC, LIGHTWEIGHT AND MALLEABLE
EMS SOLUTION

The proposed EMS architecture was implemented as an
open source solution: the Holistic, Lightweight and Malleable
EMS Solution (HoLMES)1. HoLMES includes every internal
module as well as all the interfaces described in the EMS ar-
chitecture, being fully compliant with the ETSI NFV reference
architecture [1]. We designed HoLMES to communicate with
different VNF Platforms and NFV-MANO projects. HoLMES
also allows the management of multiple VNF instances si-

1 Available at https://github.com/ViniGarcia/HoLMES
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multaneously. In terms of the classification proposed in Sec-
tion II, HoLMES is MANO (standalone), external,
restrict, and umbrella. The EMS is provided as
a package that can be installed to run in Linux/Windows
environments and also as a pre-configured virtual machine
image for Ubuntu Cloud [36].

HoLMES was implemented with the Python 3 programming
language. The Access Subsystem employs the Flask library to
create an HTTP Access Interface. Furthermore, the Access
Subsystem natively provides all the operations specified for
the Ve-Vnfm-em interface [37], which allows the VNFM to
communicate with the EMS. Drivers are employed to enable
the Operation Agent (Access Subsystem) to communicate with
different NFV-MANO and OSS/BSS systems. These drivers
include the Ve-Vnfm-em operations. HoLMES provides a
template that can be used to implement arbitrary drivers (Vnfm-
DriverTemplate). The Authentication Agent provides methods
with distinct levels of security levels to authenticate the
requests. These methods vary from no authentication to those
that require a username and password. The Internal Router was
also fully implemented and takes care of message exchanges
between the internal modules. The Internal Router uses labels
to identify operation requests, and the corresponding results,
warnings, and errors.

The Monitoring Subsystem was implemented with the
multiprocessing Python library. A monitoring script commu-
nicates with the corresponding VNF instances through the
VNF Subsystem. Therefore, a script can make use of all
operations available in the platform of each VNF instance.
Authorized users can subscribe to receive notifications from
the Monitoring Subsystem, triggered by the occurrence of
predefined events. These notifications are sent through Mon-
itoring Interfaces defined case by case. The model for the
implementation of a monitoring script is available as a general
template (MonitoringScriptTemplate).

The VNF Subsystem allows the EMS to communicate
with the VNF Platforms. It employs drivers similar to those
employed by the Operation Agent of the Access Subsystem. A
driver allows the VNF Subsystem to recognize and provide the
management operations for a particular VNF Platform. Thus,
for each VNF Platform the corresponding driver specifies man-
agement operations and establishes a VNF Interface (VIf) with
the proper communication technology, such as REST, Socket,
or RMI. The template for creating the drivers is available as
part of the HoLMES package (VnfDriverTemplate).

HoLMES employs an EMS Management Information Base
(EMIB) based on the SQLite relational database. The EMIB
keeps the information necessary for the execution and man-
agement of the EMS. Examples of such information include
credentials and privileges of users, VNF Platform drivers,
AS drivers, monitoring scripts, and data about managed VNF
instances. The Configuration Module manages the EMS itself
using EMIB information. Thus, all requests that are not
directly related to operations executed on VNF instances are
processed by the Configuration Agent. Management operations
from the Configuration Agent are available (with a specific

protocol) at the Access Subsystem/Operation Agent. These
management operations are accessible to users with EMS
administration privileges.

Finally, HoLMES employs three classes of messages for
internal communication: (i) IRMessage, the standard message
exchange model based on the IR. This class of message
includes information about the source and destination of a
request, and keeps track of the paths traversed internally in
the EMS (it is used in the As-Ir, Ir-Cm, and Ir-Vs interfaces);
(ii) CMMessage, this message class refers to CM messages
(Ir-Cm). Those messages carry specific information required
to execute management operations on the EMS itself; and (iii)
VSMessages, message class to the VNF Subsystem (Ir-Vs),
used to execute operations on VNF instances.

VI. EVALUATION

In this section, we present the results of the evaluation
of the proposed EMS architecture obtained from experiments
executed with HoLMES. We measured the overhead to ex-
ecute management operations with the addition of the EMS
interfacing the communication between an OSS requesting the
execution of different types of operations on multiple VNF
Platforms. The OSS employed a single interface to request
the EMS to execute operations on several VNF Platforms and
VNFM. In order to measure the overhead, we executed the
same experiments with the OSS itself implementing multiple
interfaces, each dedicated to a specific VNF Platform or
VNFM (without the EMS). We employed three VNF Plat-
forms with interfaces based on two distinct technologies in
the evaluation: Click-On-OSv (COO – HTTP interface) [7],
Leaf (HTTP interface) [16], and COVEN (L3 Socket and
HTTP interfaces) [8]. Moreover, we used the VNFM of the
CloudStack Vines NFV-MANO [16]. We developed drivers for
the VNF Platforms and VNFM2.

The environment in which the experiments were executed
consisted of two hosts connected to a GbE network. The first
host, hereby called VNFM/VNF, is based on an Intel Core
I5-3330 3.0GHz, 8GB RAM DDR3, Ubuntu 16.04, running
the KVM hypervisor. This machine hosted the VNFM of the
CloudStack/Vines environment and the VNF instances. The
second machine, called OSS/EMS, is based on an Intel Core
I3 4010-U 1.9GHz, 8GB RAM DDR3, and Ubuntu 16.04.
This machine hosted the OSS and the HoLMES EMS. Each
experiment was executed 150 times, and we removed 10%
of the best and worst results to eliminate outliers. Thus, 120
median results were used to define the mean and standard
deviation of the times to execute the management operations.
The following subsections describe the experiments and results
in detail, as well as a discussion of the evaluation.

A. Management of VNF Platforms

Three distinct management operations with different perfor-
mance profiles were executed on the VNF Platforms: (i) Get
Status for checking the status of the platform, a lightweight

2 All scripts, and raw results obtained are available at
https://github.com/ViniGarcia/HoLMES/tree/Experiments
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operation; (ii) Post NF to send a network function package
to the platform, a data transfer operation; and (iii) Post
Configure and Start, an operation to configure and
start a network function on the platform, an operation with
intensive computing requirements. The time interval for the
execution of each operation was measured from the instant the
request is requested to the instance on which the corresponding
response is received by the OSS.

Fig. 2. Mean Execution Times (Get Status)

The first experiment executed the operation that returns the
status of the VNF Platforms as a string: Get Status. This
operation is lightweight once it does not involve file transfer,
and requires a negligible time to be executed by the VNF
Platforms. Figure 2 presents the mean execution times of Get
Status for all experimented VNF Platforms. The overhead
due to the employment of the EMS varied from 166% to 333%.
The Leaf and Click-On-OSv platforms presented, respectively,
the smallest and highest relative overheads in this experiment.
The COVEN Platform for both interfaces (HTTP and Socket),
however, produced the highest execution time overhead: 11ms.
As it is a lightweight operation, most of the execution time
of Get Status is spent to send the request and receive the
response. Thus, the communication with the EMS, both as the
request is sent from the OSS to the VNF Platform and the
response travels back, is the cause of the overhead measured
in this experiment. The differences in the execution times of
the VNF Platforms are due to differences in how they execute
the operation.

In the second experiment, network function packages are
sent to the VNF Platforms. Post NF can be classified as
a data transfer operation. The mean execution times of this
operation are shown in Figure 3. In this experiment, the
overhead of using the EMS between the OSS and the VNF
Platforms varied from 158% (Leaf) to 875% (COVEN Socket).
In the middle are the overheads of Click-On-OSv at 300%
and COVEN HTTP at 388%. The higher overhead compared
to the first experiment (i.e., Get Status) occurs due to the
fact that here files are first transferred to the EMS, which

Fig. 3. Mean Execution Times (Post NF)

forwards them to the VNF Platforms. It is also important
to notice that the network packages differ according to the
VNF Platform. For Click-On-OSv, we sent a simple packet
forwarder with 352 octets; for Leaf, the network function is
one previously available on the platform (Apache2 server),
and the NF package sent had 2797 octets; for COVEN, the
network function consisted of a 4-component forwarder, and
the package sent had 9287 octets. The differences of the
package sizes do have an influence on the execution times and
the overheads measured. The highest proportional overhead
was measured for the COVEN Socket and is a consequence
of using a layer 7 protocol (between the OSS and the EMS)
that is absent when the EMS is not employed. Thus, a larger
number of messages and extra headers are processed during
the data transfer, which generates higher delays. However, we
notice that even considering the worst proportional overhead
scenario, the extra time did not exceed 35ms.

Fig. 4. Mean Execution Times (Post Configure and Start)
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In the third experiment, the network functions previously
transferred to the VNF Platforms are initialized and config-
ured. These operations are classified as computation-intensive.
Figure 4 presents the mean execution times. The overhead
varied from 0.55% (COVEN Socket) to 1.67% (Leaf). Re-
sults for Click HTTP and Click-On-OSv were of 0.58% and
1.27%, respectively. This experiment presented the smallest
overheads. The reason is that most of the execution is within
the VNF Platforms, with minimal transmission delays. The
highest overhead of this experiment was 29ms for the Leaf
Platform.

The results presented above show that employing the EMS
does have a cost impact in terms of the time to execute
management operations, as expected. However, the EMS
seamlessly allowed the integration of the different platforms,
abstracting the heterogeneity of management entities and their
respective technologies. This enables an OSS with a single
interface to work with multiple different VNF Platforms. We
note that even in the worst cases, the EMS overhead did not
surpass 35ms, which can be considered a low price to pay to
have holistic management.

B. Communication with VNFM

In this subsection, we measured the overhead of using
the EMS in the communication between OSS and VNFM.
The experiments were executed with a simple OSS and the
CloudStack/Vines VNFM. We measured the overhead on
the execution times of three management operations. These
operations are from the Ve-Vnfm-em interface, and there are
corresponding operations in the CloudStack/Vines VNFM,
which does not implement Ve-Vnfm-em. We first measured
the execution times of the Vines operations themselves, as
they are requested directly by the OSS. Then we compared
it with an alternative in which the EMS implements the Ve-
Vnfm-em interface and receives requests from the OSS for
the execution of standard operations. However, before the
EMS forwards the operations to the VNFM, it has to map
each requested operation to the corresponding one available
at the VNFM. The overhead includes this mapping, for which
HoLMES employs its Vines driver.

The CloudStack Vines management operations
employed were: List VNF Instances, Start VM
Instance, and Stop VM Instance. Those operations
correspond to the following standard Ve-Vnfm-em
operations, respectively: Get vnf_instances, Post
vnf_instances/{vnfInstanceId}/operate
(with a start flag in the arguments), and Post
vnf_instances/{vnfInstanceId}/operate (with
a stop flag in the arguments). In the experiments, we called
these operations, respectively, Get Instance (GI), Post
Start (PST), and Post Stop (PSP). The mean execution
times and the standard deviation of each management
operation are shown in Figure 5.

The GI operation returns information about all the VNF
instances managed by the VNFM. In order to execute this
operation, the VNFM interacts with the VIM, retrieving, in

Fig. 5. Mean Execution Times (VNFM Operations)

addition to the identifiers of the managed VNF instances,
a set of configuration information for the respective virtual
machines. GI can be considered a lightweight operation.
However, the VNFM does need to communicate multiple times
with the VIM. The overhead of using the EMS was 32%,
which corresponds to 6ms.

The PST and PSP operations, in turn, request the VNFM to
start up and stop a VM, respectively. This causes the VNFM to
communicate with the VIM. These operations do not wait for
the termination of the VIM processes, but only for confirma-
tion that they have been received and accepted. Thus, despite
being intensive in terms of computation, the operations present
a low execution time compared to other compute-intensive
operations (such as configuring and starting a network function
in a VNF platform, for example). Therefore, employing the
EMS to interface the operation request with the VNFM adds
an overhead of 9% and 14% on the execution of PST and PSP,
respectively. These overheads correspond to 10 (PST) and 16
(PSP) milliseconds.

The overhead of using the EMS in the communication of
an OSS with the CloudStack/Vines VNFM was 32% in the
worst case, which corresponds to 16ms.

Note that the time overhead in absolute terms typically
varies considering the characteristics of the operation, the
amount of processing done by the EMS, and the extra trans-
mission time for relaying the request through the EMS. Thus,
as in the two experiments, the requests are similar, the EMS
does little processing, and the execution environment is the
same, the absolute overheads are quite similar for operations
with similar characteristics. Examples are the maximum time
overhead for the operations that can be considered lightweight:
11ms for Get Status (VNF) and 6ms for Get Instance
(VNFM); and also for operations that are computationally
intensive: 29ms for Post Configure and Start (VNF)
and 10-16ms for Post Start and Post Stop (VNFM).
However, the differences in terms of percentage are greater,
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as these involve the total time required to perform the re-
quested operation on a VNF instance or the VNFM. Thus, the
overhead of using the EMS to execute Get Status corresponds
a 333% increase which is about 10 times greater than the
corresponding percentage for Get Instances (32%). Similarly,
the overhead of Post Configure and Start is nearly 10 times
smaller than the corresponding percentage for the Post Start
and Post Stop operations.

VII. CONCLUSION

Although the EMS is defined by ETSI NFV reference ar-
chitecture as the element responsible for VNF instrumentation,
only a few limited EMS solutions are currently available. The
main contribution of this work is to propose an architecture
for the EMS that consists of loosely coupled internal modules
yet exposes interfaces that are fully ETSI-compliant. The
proposed architecture leverages the EMS to enable true holistic
NFV management, as it provides the glue for the interaction
of heterogeneous blocks (VNF, VNFM, and OSS/BSS) from
different platforms/vendors. Thus, the proposed architecture
supports the integration and portability requirements from the
ETSI. The proposed EMS architecture was implemented as
the open-source HoLMES system, which was employed to
evaluate the overhead of using an EMS to execute different
types of management operations on multiple VNF Platforms.
Experiments confirm that the proposed EMS can be used
effectively while abstracting particular protocols and technolo-
gies. Future work includes extending HoLMES to allow the
native integration of more VNFM and VNF platforms and
the automatic generation of VNF monitoring scripts based on
policies. Furthermore, we aim to explore the IETF and 3GPP
models, standards, and protocols regarding EMS in the context
of the proposed architecture.
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