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ABSTRACT
vCube is a virtual topology that organizes the processes of a dis-

tributed system hierarchically, presenting several logarithmic prop-

erties. Although vCube has been used as the basis to develop multi-

ple different distributed systems abstractions, those that assume an

asynchronous system deal with time uncertainty at a higher level.

In this work, we present ♢𝑃-vCube: a push-based failure detector

for asynchronous distributed systems that can guarantee not only

completeness but also eventual accuracy. The underlying system

is assumed to be fully-connected so that any pair of processes can

execute tests on each other. Since there are no limits on communica-

tion delays and process execution time, false suspicions may occur.

To guarantee eventual accuracy, a process exits the system when it

learns that it has been suspected by another process or suspects ev-

ery other process. The proposed algorithm was implemented with

simulation and compared with the traditional all-to-all solution

and a ring approach. Results confirm the scalability of ♢𝑃-vCube,
which represents a compromise between how fast actual failures are

detected and the cost in terms of the number of messages employed.
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• Computer systems organization→ Dependable and fault-
tolerant systems andnetworks; Fault-tolerant network topolo-
gies.
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1 INTRODUCTION
Although we have grown accustomed to planetary-scale systems

and applications, several popular distributed systems abstractions

do not scale well [7, 9]. That is certainly the case for most ap-

proaches currently used to implement failure detectors, the abstrac-

tion proposed by Chandra and Toueg [1] to investigate the solution

of consensus in asynchronous systems with crash faults. Most im-

plementations of failure detectors employ an all-to-all approach:

every process has to (somehow) communicate with every other pro-

cess to be able to determine their states. Processes are classified as

either correct or suspected of having failed. As the system is asyn-

chronous and there are no timing guarantees, false suspicions can

occur. The number of messages employed whenever the underlying

network does not support multicast at the hardware level is qua-

dratic. Gossip is an alternative that has been extensively explored

to solve this problem [2, 12], but as it is a probabilistic approach,

the lack of deterministic guarantees may prevent its applications

in several contexts. In this work, we present a scalable, hierar-

chical strategy to implement failure detectors for asynchronous

distributed systems based on the vCube virtual topology, described

next.

The virtual Cube – vCube – was originally proposed in the

context of hierarchical system-level adaptive diagnosis [5]. The

underlying system is assumed to be fully-connected, in the sense

that any two pairs of processes can (if needed) communicate directly

between themselves, without having to pass through intermediaries.

When all processes are correct and the total number of processes (𝑛)

is a power of 2, then vCube is a hypercube. However, as processes

fail or if 𝑛 is not a power of 2, the topology self-reconfigures itself,

maintaining several logarithmic properties [4] being scalable by

definition. vCube has been employed to develop multiple different

applications, such as atomic broadcast [18], distributed integrity

checking [22], , mutual exclusion [16], and publish/subscribe [3],

among others.

Distributed diagnosis implicitly assumes a synchronous model,

and that is how the vCube was originally specified. Although there

have been abstractions built on top of vCube that assume an asyn-

chronous system (e.g. [11]), they deal with time uncertainties at
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a higher level. In [6] the authors define the vCube as a failure de-

tector, and investigate under which conditions it guarantees the

two classic failure detector properties: completeness and accuracy.

Failure detectors classify a process in one of two states: correct
or suspected, assuming a crash model. Informally, completeness

reflects the ability of the detector to identify processes that actually

failed. Accuracy, on the other hand, is the ability of the detector

not to suspect correct processes (false suspicions).

This work presents ♢𝑃-vCube: an eventually perfect failure de-

tector for asynchronous distributed systems. We show that ♢𝑃-
vCube guarantees not only completeness but also eventual accuracy.

In order to deal with false suspicions, which may cause the view of

correct processes on other processes to be in a temporarily incon-

sistent state, a process that detects that it has been suspected leaves

the system forever. Furthermore, a process that suspects all others

also leaves the system. This approach is similar to the fail-aware

failure detectors proposed by [8], where a correct process, once

suspected by others, suspects itself. We prove that ♢𝑃-vCube guar-
antees eventual accuracy as long as no correct process permanently

and simultaneously suspects and is suspected by all its testers, i.e.

all correct processes are strongly connected among themselves. The

failure detector was implemented with simulation and compared

with both the classic solutions based on the popular all-to-all com-

munications, and also with a failure detector based on a ring virtual

topology. Results confirm the scalability of vCube, which presents

a compromise between how fast actual failures are detected and

the cost in terms of the number of messages employed.

The rest of the paper is organized as follows. Section 2 introduces

failure detectors and their main properties. Section 3 presents re-

lated work. The proposed ♢𝑃-vCube failure detector is presented in
section ??. Section 5 describes the implementation and simulation

results. Section 6 concludes the paper.

2 BACKGROUND: FAILURE DETECTORS
Unreliable failure detectors [1] are used to monitor distributed

systems. They detect whether a process or node in the system has

failed or is unavailable. The ultimate purpose of failure detectors is

to allow distributed systems to be reliable. By detecting failed nodes,

the system can take appropriate actions, such as redistributing tasks

to other nodes or replicating data to ensure data availability.

Failure detectors can be described as a group of 𝑛-detection

failure modules, where each of these modules is connected to a

different process in the system. These modules cooperate in order

to satisfy the failure detector demanded properties [14].

Considering the following completeness properties, as defined

in [1]:

Strong completeness Eventually, every process that crashes

is permanently suspected by every correct process;

Weak completeness Eventually, every process that crashes

is permanently suspected by some correct process.

When considered by itself, completeness is trivial to guarantee

by forcing each process to permanently suspect all other system

processes, which is not desirable. It is thus necessary to consider

another property – accuracy – also defined by [1]:

Eventual Strong accuracy Eventually, no correct process is

ever suspected by any other correct process;

Eventual Weak accuracy Eventually, some correct process

is never suspected by any correct process.

By combining these properties in pairs, four classes of fault

detectors can be defined, as shown in Table 1.

Table 1: Four classes of failure detectors considering eventual
accuracy.

Completeness Accuracy
Eventual Strong Eventual Weak

Strong Eventually Perfect

♢𝑃
Eventually Strong

♢𝑆

Weak Eventually Quasi-Perfect

♢𝑄
Eventually Weak

♢𝑊

The ♢𝑃 and ♢𝑆 detectors guarantee that all faulty processes will

be detected by all correct processes (strong completeness) and that,

in a finite time, false suspicions will cease to happen for all or some

correct process, respectively.

There are different alternatives for implementing a failure detec-

tor. In this work, we employ the push-based strategy, according to

which processes test each other to determine their states. The most

common strategy is the so-called pull-based or heartbeat-based

strategy. A process monitored by a heartbeat-based failure detector

[10] sends periodic messages (called heartbeats) with the purpose

to inform that it is correct. If the failure detector does not receive

a heartbeat (or a number of heartbeats) within the expected time

interval, it considers the monitored process has failed - the process

gets to be suspected. Yet another approach is that of suspicion-based

failure detectors, which rely on the idea of detecting the failure

of a process only based on the suspicion level of other nodes in

the system. Each node keeps track of the status of other nodes and

raises the suspicion level if it detects any anomalies.

In an asynchronous system model, there is no assumption of

any upper bound on message delivery delays, and any processes

can crash. This makes failure detection more challenging compared

to synchronous system models, where message delivery delays

are bounded and failure detection can be done using timeouts.

However, it is worth noting that failure detectors are not foolproof,

and there is always a chance of false positives or false negatives.

It is important to carefully design and tune the failure detector to

balance the risks of false positives and false negatives.

In the asynchronous model, failure detectors typically rely on ad-

ditional assumptions or techniques to overcome the lack of timing

guarantees. For instance, the heartbeats of heartbeat-based fail-

ure detectors can be delayed, leading to false suspicions. A smart

time-out can be employed to predict such a delay and avoid false

suspicion.

In another approach, the Impact failure detector [17] is designed

to provide accurate failure detection while minimizing the number

of false positives and false negatives. The Impact failure detector

uses a probabilistic approach that takes into account the impact of

each node’s failure on the system’s availability. This information is

used to estimate the probability of each node’s failure and update

the suspicion level accordingly.
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3 RELATEDWORK
In [1] the authors presented a detection algorithm of timeouts im-

plementing a ♢𝑃 detector. The algorithm uses heartbeat messages

periodically exchanged between all processes, which requires a

quadratic number of messages and a partially synchronous system.

To reduce the number of detection messages, [13] proposed a

ring-based solution for partially synchronous systems. Each process

monitors only the next correct process in the ring, i.e., its direct

successor. Therefore, the number of messages sent periodically is

linear. It is a ♢𝑃 class detector, i.e., faulty processes are perma-

nently suspected, but false suspicions may occur during a period

of instability.

Later, [14] proposed a new version of the algorithm implement-

ing a ♢𝑆 . The ring organization was retained, but instead of each

process testing its successor, the system tries to determine a correct

process that is common to all others. In this case, only the common

correct process sends ”I_AM_ ALIVE” messages at regular intervals.

When the trusted process stops sending messages, the next process

in the ring becomes the trusted process. Monitoring is done by

timeouts and the time interval varies for each monitored process

and is increased when a false suspicion is detected. The version

was compared with the solution of [1] and [13] and proved to be

more efficient in terms of the number and the size of messages.

SWIM [2] is a fault detection solution that aims to increase the

scalability of detection protocols. Unlike traditional protocols based

on heartbeats, SWIM separates the functionality of error detection

and dissemination of membership updates from the membership
protocol. The processes are monitored by a random point-to-point

probe. The expected time for initial detection of a process failure

and the expected message load per member does not vary with

group size. Information about membership changes, such as process

joins, terminations, and failures, is piggybacked in ping and acks
messages.

In [21], two atomic broadcast algorithms were compared, based

on unreliable failure detectors and group management protocols.

The original ♢𝑆 failure detector algorithm proposed by Chandra

and Toueg was employed [1].

Falcon [15] is a failure detector that uses a network of spy mod-

ules, or spies, which employ internal information to determine

whether the system modules are active or not. When a module ap-

pears to have failed, the spies stop it for good, allowing the detector

to report that the process has failed without error. The system has

been implemented and evaluated in monitoring applications, oper-

ating systems resources, virtual machines and network switches.

The solution proposed by Fetzer and Cristian [8] is particularly

related to the present work. The authors introduced fail-aware

failure detectors, also defining strong and weak fail-awareness

properties. Strong fail-awareness requires a process to suspect itself

as soon as another process suspects it. Weak fail-awareness requires

a failure detector to suspect its associated process whenever it is

suspected by a majority of processes.

4 THE ♢𝑃-VCUBE FAILURE DETECTOR
A distributed system is defined as a finite set 𝑃 with 𝑛 > 1 processes

{𝑝0, .., 𝑝𝑛−1} that communicate by exchanging messages. The op-

erations to send and receive messages are both atomic. The links

connecting processes are reliable. The system is represented by a

complete graph, i.e., every pair of processes can communicate di-

rectly without the need for intermediaries. Furthermore, processes

form a vCube overlay, as described below.

The system is asynchronous, namely, there are no limits on

message transmission delays and on the relative processing speeds

of the processes. The permanent crash fault model is assumed. A

faulty process no longer sends out any messages. A process that

never crashes and replies correctly to the detector is considered to

be correct or fault-free. Otherwise, the process is faulty or suspected.
♢𝑃-vCube is a push-based failure detector. Thus, instead of em-

ploying heartbeats, a process executes a test on another process

to determine its state. A test consists of the exchange of messages

between a tester and a tested node. If a test succeeds, both the tester

and tested processes identify each other as correct. The virtual

edges of a vCube correspond to the tests that the correct processes

perform on each other. The set 𝑉 of processes of the system 𝑃 test

each other forming a virtual topology that corresponds to directed

graph 𝐴 = (𝑉 ,𝑇 ), where 𝑇 is the set of tests executed.

The dimension of a vCube is defined as ⌈log(𝑛)⌉, all logarithms

in this work are base 2. Processes of a vCube with dimension 𝑑 > 0

have identifiers consisting of 𝑑 bits. In a faultless scenario, two

processes are virtually connected if their binary addresses differ by

a single bit. In the example in Figure 1, process 1 (001) is connected

to processes 0 (000), 3 (011), and 5 (101).

21 4

653

7

C0,1

C0,2

C0,3

FAULTY

0

Figure 1: Clusters of a vCube with 2
3 = 8 processes; 𝑝4 is

faulty.

vCube organizes processes into progressively larger clusters of

2
𝑠−1

processes, 𝑠 = 1, .., log
2
𝑛. Function 𝑐𝑖,𝑠 (Equation 1) returns

the sorted list of processes in each cluster, where ⊕ is the exclusive

bitwise operator (XOR ).

𝑐𝑖,𝑠 = {𝑖 ⊕ 2
𝑠−1, 𝑐

𝑖⊕2𝑠−1 , 1, ... , 𝑐𝑖⊕2𝑠−1 ,𝑠−1} (1)

Table 2 shows the outcomes of the 𝑐𝑖,𝑠 function for 8 processes.

To determine the edges of the virtual topology, for each node 𝑖

there is an edge ( 𝑗, 𝑖) such that 𝑗 is the first fault-free node in
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𝑐𝑖,𝑠 , 𝑠 = 1... log
2
𝑛. After a process detects that another process

has failed, the set of edges (tests) is recomputed. For example, in

Figure 1, process 𝑝0 originally tests process 𝑝4 in cluster 3, but after
𝑝4 fails, process 𝑝0 tests process 𝑝5, which is next in the considered

correct 𝑐0,3 list.

Table 2: Result of function 𝑐𝑖,𝑠 for 8 processes.

s 𝑐0,𝑠 𝑐1,𝑠 𝑐2,𝑠 𝑐3,𝑠 𝑐4,𝑠 𝑐5,𝑠 𝑐6,𝑠 𝑐7,𝑠

1 1 0 3 2 5 4 7 6

2 2,3 3,2 0,1 1,0 6,7 7,6 4,5 5,4

3 4,5,6,7 5,4,7,6 6,7,4,5 7,6,5,4 0,1,2,3 1,0,3,2 2,3,0,1 3,2,1,0

Algorithm 1 presents the pseudocode of the proposed ♢𝑃-vCube
failure detector for asynchronous systems. Processes running ♢𝑃-
vCube execute tests periodically, on a testing interval defined using

the local clock. Process 𝑖 keeps track of the state of all other pro-

cesses in the 𝑆𝑇𝐴𝑇𝐸𝑖 [] array. Note para process 𝑖 also obtains from
a tested correct process 𝑗 the information that 𝑗 maintains on the

state of 𝑖 . Thus process 𝑖 can identify whether it has been the sub-

ject of a false suspicion, i.e. process 𝑖 was suspected erroneously

by process 𝑗 . In this case, process 𝑖 , stops executing and leaves the

system (line 8). The result is a ♢𝑃 failure detector, as shown below.

A testing round has occurred when all correct processes have

executed all their assigned tests. The failure detection latency is

defined as the number of rounds it takes for all correct processes to

detect a state change. The latency for the vCube to detect a process

failure is a logarithmic function of the total number: log
2

2
𝑁 testing

rounds in the worst case, but much lower in average [4].

Next, we prove that ♢𝑃-vCube is an eventually perfect failure

detector. Theorem 4.1 proves that ♢𝑃-vCube guarantees eventual
strong accuracy.

Theorem 4.1. Even if there are false suspicions, ♢𝑃-vCube always
guarantees the eventual strong completeness property.

Proof. Consider that process 𝑗 has failed. Now any process 𝑖

that tests 𝑗 determines correctly suspects 𝑗 , as it has permanently

crashed and does not send any reply to a test. If some process 𝑘

does not test 𝑗 , then if there is a path on𝐴 consisting only of correct

processes from 𝑘 to any other process that tested 𝑖 and information

about 𝑗 ’s failure will reach 𝑘 in at most log
2

2
𝑁 testing rounds. If

there is no path in 𝐴 from 𝑘 (that does not 𝑗 ) to 𝑗 , then ♢𝑃-vCube
guarantees that 𝑘 eventually tests and suspects 𝑗 .

□

Theorem 4.2. ♢𝑃-vCube guarantees eventual strong accuracy.

Proof. In case no correct process permanently and simultane-

ously suspects and is suspected by any of its testers, all correct

processes are strongly connected among themselves, all correct

processes will determine their correct state.

Now, consider that at least one of the testers of a correct process

𝑗 , say process 𝑖 , suspects 𝑗 , while at least another tester, say process

𝑘 does not suspect 𝑗 . In this case, 𝑗 does not suspect 𝑖 either, the

test which consists of the exchange of messages between processes

has succeeded. However, as 𝑖 and 𝑘 are strongly connected between

themselves, 𝑘 will obtain the information that 𝑖 suspects 𝑗 and will

update 𝑆𝑇𝐴𝑇𝐸𝑘 [ 𝑗]. The next time 𝑘 succeeds in testing 𝑗 , they

exchange information, and 𝑗 will learn it has been falsely suspected

and will halt execution.

In case 𝑗 permanently and simultaneously suspects and is sus-

pected by all its testers, which eventually consists of all system

nodes, then it also halts, guaranteeing the eventual strong accu-

racy. □

5 SIMULATION & RESULTS
Neko [20] is a Java framework1 that was developed with the goal

of enabling the simulation of distributed algorithms and evaluating

their performance. Its architecture is divided into two main layers:

Application and Network. An application is built in terms of micro

protocols. Micro protocols are registered in processes (containers),
which are instances of the NekoProcess class. At the application

level, processes communicate by passing messages. Messages are

sent and received using the send and deliver methods, respec-

tively. Micro protocols can communicate in two ways: over the

network if they are registered in different processes, or by calling

the corresponding method by direct reference if they belong to

the same process. If the message is sent over the network, once

it is received by the target process, it is delivered directly to the

micro protocol specified in the message header. In a simulation, all

processes reside on a single computer. In a distributed execution,

each process may be on a different computer.

The second component of Neko’s architecture is the network,

which can be simulated or real. Simulated networks include two

main implementations:

BasicNetwork Uses a parameter lambda to create fixed trans-
mission delays;

RandomNetwork Generates random transmission delays (ran-

dom from Java) based on a parameter lambda that varies be-

tween 0 and 1. The seed parameter can be used to reproduce

a particular experiment.

A real network uses sockets TCP communication and must be in-

stantiated by running modules on each host. In this way, processing

and communication time is obtained from the real environment.

5.1 Support for simulation of failures and false
suspicions

Simulation of failures in Neko is performed using the adaptations

proposed in Figure 2. A collapse mechanism starts and stops failure

intervals according to the configuration file used for other Neko

configurations. The application sends messages to the failure simu-

lation support class, which checks if the process collapses. If so, the

message is discarded. The same applies to messages received from

the network. The application can query the status of the process

and in case of an error stop its execution by a crashed flag.
In this work, false suspicion simulation mechanisms have been

included. The AbstractFailureDetector class now provides a

falseSuspicion(𝑖𝑛𝑡𝑝) method that receives as a parameter the

identifier of the 𝑝 process that is suspected by the 𝑖 process. The

method checks whether the process is in a valid execution state, i.e.

1
source code available at https://github.com/arluiz/neko
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Algorithm 1 The ♢𝑃-vCube failure detector executed by process 𝑖

1: 𝑆𝑇𝐴𝑇𝐸𝑖 [ 𝑗] ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 , ∀𝑗 = 0, .., 𝑛 − 1
2: repeat
3: for 𝑠 ← 1 to log

2
(𝑛) do

4: for all 𝑗 ∈ 𝑐𝑖,𝑠 | 𝑖 is the first correct process ∈ 𝑐 𝑗,𝑠 do
5: Test(j)

6: if 𝑗 is tested 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 then 𝑖 obtains 𝑆𝑇𝐴𝑇𝐸 𝑗 [] and 𝑗 obtains 𝑆𝑇𝐴𝑇𝐸𝑖 []
7: if 𝑆𝑇𝐴𝑇𝐸 𝑗 [𝑖] = 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 then ⊲ 𝑖 was suspected by 𝑗 (false suspicion)

8: Halt execution and leave the system

9: else
10: Update 𝑆𝑇𝐴𝑇𝐸𝑖 [] with the received 𝑆𝑇𝐴𝑇𝐸 𝑗 []
11: else
12: if 𝑆𝑇𝐴𝑇𝐸𝑖 [ 𝑗] = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 then 𝑆𝑇𝐴𝑇𝐸𝑖 [ 𝑗] ← 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

13: if ∀𝑗 = 0, .., 𝑛 − 1, 𝑗 ≠ 𝑖: 𝑆𝑇𝐴𝑇𝐸𝑖 [ 𝑗] = 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 then
14: Halt execution and leave the system

15: Sleep until the next testing interval

16: until forever

Figure 2: Neko crashes and false suspicions simulation modules.

it is not faulty in the simulator context and calls the suspect(𝑝)
method, which was already part of Neko. This method is called via

a parameter:

process.i.false_suspect.process.p =< time >

which must be included in the simulation’s general configuration

file. The source code and a configuration example can be found at

https://github.com/arluiz/vcubefd-asynch.

5.2 vCube Vs. vRing Vs. All-to-All
In order to illustrate the advantages of employing vCube in compar-

ison with other alternatives, Figure 3 different test runs of different

failure detectors all executed with the Neko [20] simulator. Fig-

ure 3(c) shows a vCube test run. Also shown is the test run for the

classic all-to-all implementation of failure detectors (each process

monitors all others) (Figure 3(a)). Furthermore, a failure detector

based on a virtual ring (vRing) defined in [6] is also shown (Fig-

ure 3(b)). In the all-to-all strategy, each process tests all other 𝑛 − 1
processes, resulting in a total of 𝑛(𝑛 − 1) tests, which is quadratic.

In the vRing approach, each process 𝑖 tests process 𝑖 +1which is the

next in the ring, and so on until a correct process is found. vRing

employs at most 𝑛messages (2∗𝑛 in a request-reply strategy). In the

case of vCube, each process is tested by at most log
2
𝑛 neighbors,

for a total of 𝑛 ∗ 𝑙𝑜𝑔2𝑛 tests in the worst case. The first sequence

of messages represents ARE_YOU_ALIVE requests and the second,

5
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I_AM_ALIVE responses. In this case, the number of messages is

twice the number of tests.

A testing round has occurred when all correct processes have

executed all their assigned tests. The failure detection latency is

defined as the number of rounds it takes for all correct processes

to detect a state change. The latency for the vCube to detect a

process failure is a logarithmic function of the total number: log
2

2
𝑁

testing rounds in the worst case, but much lower in average [4].

Meanwhile, the all-to-all strategy presents a latency of a single

testing round, and vRing has a latency of 𝑛 testing rounds. Thus the

vCube represents a compromise between how fast actual failures are

detected and the cost in terms of the number of messages employed.

The performance of distributed algorithms is commonly mea-

sured based on two metrics: time complexity and [19] message

complexity. The time complexity measures the latency of the algo-

rithm, that is, the execution time. Message complexity consists of

counting the total number of messages generated by the algorithm.

In this work, latencywas evaluated in two aspects: 1)crash failure:
diagnostic latency of the crash failure, that is, after the failure, how

much time is required for all other processes to be notified; 2) false

suspicions: a) time for the process to identify that it was suspected

incorrectly; b) false suspicion detection latency: it is the time for all

processes to identify a process as faulty based on the false suspicion

reported by the first process.

The algorithms were evaluated in three scenarios: a) without

failures or false suspicions; b) with crash failures; and c) without

failures, but with false suspicions. For each scenario, systems with

𝑛 = 2
𝑑
processes were used, for 𝑑 = 2, 3, .., 8, i.e., 𝑛 = 4, 8, 16, .., 256.

Failure parameters are described in the following scenarios, where

applicable.

The two Neko network models used were the BasicNetwork

and the RandomNetwork. For each message sent, a sending time

of 0.1 time intervals is considered, a message transmission time

over the network and a reception time of 0.1. In simulations with

the BasicNetwork network, the time interval between sending

and receiving a message is 1.0, but for each message sent in se-

quence, the sending time is shifted by 0.1 (As illustrated in Fig-

ure 3). As the receiving is controlled by the simulator, the trans-

mission time on the network was configured by the parameter

BasicNetwork.lambda=0.9. On the RandomNetwork, the trans-

mission time varies randomly according to a RandomNetwork.lambda
parameter.

vCube was compared to a classic all-to-all (ALL) solution, in

which each correct process sends an individual test to all other pro-

cesses considered correct, and with a Virtual Ring (vRing) solution,

where the processes are all fully connected but each correct process

sequentially tests until it finds the next correct process. For a fair

comparison, in case of a false suspicion, the suspected process also

leaves the system in all-to-all and vRing.

All experiments were performed in log
2

2
(𝑛) rounds, which is the

vCube’s maximum diagnostic latency in the worst case, in order to

guarantee that all processes will be tested by all others. The testing

interval for both algorithms was set to 30.0. At each testing interval,

vCube only tests the neighbors.

5.3 No failures or false suspicions
In this first test scenario, the network models BasicNetwork and

RandomNetwork were used to simulate scenarios in which there

were no failures of any of the processes.

In Figure 4, it is possible to observe the execution time of all

rounds and the number of messages of the vCube algorithm all-

for-all (ALL) and the virtual ring (vRing), after being executed in

a BasicNetwork model. The execution time varies for the three

algorithms, but increases faster for ALL as the number of processes

increases. vRing has the same execution time as VCube, since the

time to go around the ring is equivalent to the propagation time

between the source and the farthest leaf of the hypercube. The

number of messages for ALL is also noticeably higher, being𝑛 log
2
𝑛

tests per round for vCube, 𝑛2 for ALL, and 𝑛 for vRing, due to the

sequential testing. Each test uses a request (REQUEST) and response

(REPLY) strategy.

The second scenario tested was a network model RandomNet-

work with transmission delay parameter lambda=0.1, which gen-

erates random delays, but without large variations, thus avoiding

false suspicions. The result is exactly the same as the previous sce-

nario, except for small variations in transmission delays. For the

sake of space, graphics have been omitted.

Table 3 shows the values for the number of messages in the two

scenarios without failures. Regardless of the type of network, the

total number of messages is the same. As expected, ALL exchanges

a much larger number of messages compared to vCube and vRing,

especially when the number of processes grows. vRing sends fewer

messages than both others.

Table 3: Number of messages to ALL, vCube and vRing in
fault-free scenarios.

Processes ALL vCube vRing

4 96 64 32

8 1.008 432 144

16 7.680 2.048 512

32 49.600 8.000 1.600

64 290.304 27.648 4.608

128 1.593.088 87.808 12.544

256 8.355.840 262.144 32.768

5.4 Crash failures
To simulate a crash failure, the Neko mechanism was used in which

it was possible to define a failure signal of process 0 at time 0 (zero)

of the simulation. The vCube, ALL and vRing algorithms were

executed on the BasicNetwork network model. In the scenario

with a single failure, the execution time is very close to the scenario

without failures, since each execution includes more than one round

of tests and the detection latency is diluted in the total time. The

same happens with the number of messages, although it is slightly

lower as the processes detect the failure and stop testing the failed

process.

Figure 5 shows the latency of a failure crash started at time

0, that is, the time interval between the failure of a process and
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(a) All-to-All (𝑂 (𝑛2 ) messages) (b) vRing (𝑂 (𝑛) messages)

(c) vCube (𝑂 (𝑛) messages)

Figure 3: All-for-all, vRing and vCube testing messages for 8 processes (generated by Neko’s LogView tool [20]).

the identification of the failure in all the correct processes. As

process 0 is the first to be tested by all processes in ALL, the time

is constant and is linked to the timeout of the test. This value could
be proportionately larger if the failed process was the last one to be

tested due to the transmission delay of sequential messages. Even

so, the detection would happen in the same round of tests.

The latency of vCube is proportional to the number of test runs.

In the first round, only neighbors connected virtually to the failed

process identify the event. In the second round, neighbors two hops

away identify the failure, and so on. The diagnostic latency of the

vRing algorithm is directly related to the number of processes in

the system. Since only one process learns of the failure in each

round of testing, it takes up to 𝑛 − 1 rounds for all correct processes
to identify the faulty process.

Therefore, diagnostic latency is always higher in vCube com-

pared to all-to-all and always lower than vRing. This result is com-

parable when false suspicions occur, since information propagation

follows the same strategy.

5.5 False suspicions
The scenario with the introduction of false suspicions using the

new resource implemented in Neko behaves similarly to the crash
scenario. Figure 6 illustrates an example of log generated for a sys-

tem with 4 processes. Process 0 was configured to suspect process

1 at time 0. In the first line, process 0 already signals that it sus-

pected process 1. Therefore, it starts directly testing process 2 (line

3). Process 1 tests process 0 and receives the information that it is

suspected of it (lines 4 and 10, respectively). Upon receiving this

information, process 1 leaves the system (line 11) and, on line 12, a

crash signal is created by it to stop its execution.

A second way to test false suspicions is to use the Random-

Network network. In this case, lambda = 0.6 was used, which

generates large variations in the network transmission time, caus-

ing premature timeouts and, consequently, false suspicions.
Figure 7 presents the total execution time and the number of

messages for the three tested algorithms. The total execution time

of the log
2

2
𝑛 rounds in each scenario is less than in the previous

7
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Figure 4: Fault-free execution on BasicNetwork.
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Figure 5: Diagnosis latency for one fault in the time 0.0 on
the BasicNetwork.

executions, especially for the vCube. This is due to the number of

processes that were suspected and left the system, as can be seen

in Table 4.

For the same reason, in Figure 7(b), it is possible to identify

that there is a significant reduction in the amount of messages ex-

changed by processes. This is because this scenario produces many

suspected processes, which leave the network when identifying

themselves as suspected. As a result, fewer tests are performed

both by those who left the network and by those who detected the

failure and stopped testing the suspect process. Although it is the

1 0,000 p0 messages falsely suspect p1
2 0,000 p0 messages suspect 1
3 0,100 p0 messages e s p0 p2 ARE_YOU_ALIVE 0
4 0,100 p1 messages e s p1 p0 ARE_YOU_ALIVE 0
5 ..
6 1,000 p0 messages e r p1 p0 ARE_YOU_ALIVE 0
7 ..
8 1,100 p0 messages e s p0 p1 I_AM_ALIVE true
9 ..
10 2,000 p1 messages e r p0 p1 I_AM_ALIVE true
11 2,000 p1 messages p0 suspect me: die!
12 2,000 p1 messages crash started at crash -all2all -fd

Figure 6: Clipping of log generated for a false suspicion of
process 1 by process 0 on network BasicNetwork.

Table 4: Number of suspected processes on the RandomNet-
work network with lambda=0.6.

Processes ALL vCube vRing

4 1 1 0

8 1 2 1

16 2 5 3

32 5 13 6

64 7 33 22

128 14 82 40

256 35 187 154

behavior of the network, it is not a fair comparison because vCube

and vRing had many more suspected processes than ALL.
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Figure 7: Execution with over one failure in RandomNetwork with lambda=0.6.

6 CONCLUSIONS AND FUTUREWORK
This work presents ♢𝑃-vCube, an eventually perfect hierarchical

push-based failure detector for failure detection in asynchronous

systems. In those systems false suspicions can occur, due to un-

bound message delays and process execution times. In the proposed

algorithm, a correct process halts itself after learning that it has

been identified as suspicious by any other process or suspects all

other processes. This strategy guarantees the eventual accuracy of

the proposed detector. We have also shown that ♢𝑃-vCube guaran-
tees the eventual strong completeness.

♢𝑃-vCube was compared using simulation to the classic all-to-

all implementation of failure detectors, as well as with a solution

based on a virtual ring (vRing). To simulate false suspicions, a

new mechanism was built into the Java Neko framework. That
mechanism can be used to configure when one process should

suspect another, regardless of its current state. False suspicions

can also be generated by varying the transmission times of the

simulated network using features available in the simulator. Results

show that ♢𝑃-vCube has a failure detection latency higher than

all-to-all but lower than that of vRing. In terms of execution time

and number of messages, it has been shown that ♢𝑃-vCube uses a
considerably lower number of messages than all-to-all, which also

reduces the execution time of the test runs, with all-to-all having

the highest execution time. vRing requires a considerably lower

number of messages than ♢𝑃-vCube, but the execution times of the

test runs is very similar to ♢𝑃-vCube.
To conclude, ♢𝑃-vCube represents the middle ground between

the other two solutions, clearly showing a compromise between

how fast actual failures are detected and the cost in terms of the

number of messages employed. Future work includes the investiga-

tion of robust distributed applications on top of ♢𝑃-vCube, such as

consensus and reliable/ordered broadcasting.
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