
Efficient Synchronization of CRDTs using VCube-PS
Leonardo de Freitas Galesky

Western Parana State University (UNIOESTE)
Cascavel, Paraná, Brazil

leonardo.galesky@unioeste.br

Luiz Antonio Rodrigues
Western Parana State University (UNIOESTE)

Cascavel, Paraná, Brazil
luiz.rodrigues@unioeste.br

Elias Procópio Duarte Jr.
Federal University of Parana (UFPR)

Curitiba, PR, Brazil
elias@inf.ufpr.br

Luciana Arantes
Sorbonne Universités, LIP6/CNRS

Paris, France
luciana.arantes@lip6.fr

ABSTRACT
This paper presents VCube-Sync, a system that uses a virtual hy-
percube topology as the basis for replication of a Conflict-free
Replicated Data Types (CRDT) based data store. CRDT can en-
sure consistency in a deterministic and conflict-free manner. At
the same time, hypercubes have been previously used for message
distribution due to their fault tolerance and logarithmic latency,
and also enable heuristics based on knowledge of the structured
overlay. The protocol presented in this paper is based on VCube-PS,
a publish-subscriber based on hypercube topology, and exploits the
synergies between the latter and replication systems. Evaluation
experiments with VCube-Sync in the context of operations-based
CRDTs were conducted on the Grid5000 testbed under various
loads and network distributions. The results were compared with
those of EcoSyncTree, another replication protocol developed in
recent research. The results show that VCube-Sync provides better
performance in terms of latency, scalability, and bandwidth.

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks; Availability; Distributed archi-
tectures; • Information systems→ Data structures.

KEYWORDS
Conflict-Free ReplicationData Types, vCube, replication, distributed
algorithms
ACM Reference Format:
Leonardo de Freitas Galesky, Luiz Antonio Rodrigues, Elias Procópio Duarte
Jr., and Luciana Arantes. 2023. Efficient Synchronization of CRDTs using
VCube-PS. In 12th Latin-American Symposium on Dependable and Secure
Computing (LADC 2023), October 16–20, 2023, La Paz, Bolivia. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3569902.3569948

1 INTRODUCTION
Distributed systems provide large-scale Internet services, such as
collaborative text editing [16], distributed databases, distributed

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LADC 2023, October 16–20, 2023, La Paz, Bolivia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9737-7/22/11.
https://doi.org/10.1145/3569902.3569948

version control systems, and real-time collaborative applications,
such as online chat, and gambling [19]. In this context, models
with weaker consistency guarantees, such as eventual consistency,
enable lower latency and higher availability. In this setup, replicas
can be independently modified and temporarily diverge from each
other, relying on a deferred mechanism to broadcast and merge
updates [23, 27].

However, since the order of operations cannot be determined
globally, concurrent updates raise the possibility of conflicts that
must be arbitrated by the participants in the system. Conflict-Free
Replicated Data Types (CRDT) are data structures that satisfy math-
ematical specifications that ensure that operations can be performed
independently and concurrently without any form of coordination
while guaranteeing strong eventual consistency after synchroniza-
tion, and tolerating network and replication delays [25]. These
properties make them a powerful tool for building scalable and
highly available distributed systems.

There are two original types of CRDT in terms of how they
are synchronized: State-based and Operation-based. State-based
CRDT must exchange all their local states to achieve consistency.
This strategy is inefficient since the size of the state, and thus the
payload, increases over the time [25]. On the other hand, CRDT
based on operations propagates only a concise representation of the
operation that changed the local state, resulting in much smaller
messages and thus less bandwidth. However, this strategy requires
that operations are transmitted over reliable channels that guar-
antee causal order delivery in most cases, adding overhead in the
form of metadata and making the system less tolerant of packet
loss and membership changes [21].

An emerging alternative is Delta-State CRDT, where only the
differences between replicas are synchronized. The guarantees are
similar to the state-based implementation but without the high
transmission cost. In this optimized structure, it is usually necessary
to introduce complementary algorithms to compute the deltas and
reduce the entropy of the system [3].

Several software solutions implement CRDT to provide distributed
data, such as databases like Riak [7] or distributed paradigm frame-
works like Phoenix [17]. These solutions sometimes implement
their own protocols to deal with dissemination, cluster node or-
ganization, and causal ordering of messages. Some works, such
as [26] and [18], present specialized protocols for CRDT synchro-
nization and have validated the benefits of tree-based solutions
such as the Plumtree [15]. However, these implementations rely

https://doi.org/10.1145/3569902.3569948
https://doi.org/10.1145/3569902.3569948

on unstructured network overlay topologies, limiting the member-
ship inferences that could be leveraged to develop more efficient
synchronization strategies [8, 11].

The VCube algorithm [10] defines a structured topology based
on virtual hypercubes that have important logarithmic properties,
such as the path length between two processes and the number
of messages exchanged. The VCube-PS [9], a topic-based publish-
subscribe system (pub-sub), exploits these properties to achieve
efficient message dissemination, especially in hot topic scenarios,
while guaranteeing causally ordered message delivery. It has not
yet been explored as a strategy for distributing replica updates.

In this paper, we aim to lay the groundwork for a project that
presents optimizations for CRDT synchronization in a massively
distributed system using VCube-PS as the basis for the implemen-
tation of a replication protocol while also exploring the potential
of partial replication over topics.

The remainder of this paper is organized as follows. Section 2
introduces the main types of CRDT, causal ordering, and replication
protocols, including VCube-PS. Related work is summarized in
Section 3. The methodology to complete the current proposal is
defined in Section 4. Section 5 presents some evaluation results,
comparing VCube-PS withe tha ECO-Sync-Tree, while Section 6
concludes the paper and presents some future directions.

2 BACKGROUND
This section introduces the CRDTmain concepts and the replication
protocols. It also includes VCube-PS, which is the core of VCube-
Sync.

2.1 CRDT
Conflict-Free Replicated Data Types (CRDT) [3] are data types
designed to be modified concurrently that have proven mathemati-
cal properties that ensure strong eventual consistency in a deter-
ministic and conflict-free manner. The goal of CRDTs is to allow
concurrent updates to replicas without the need for coordination
or consensus algorithms, thereby enabling high availability and
low-latency operations.

CRDTs are designed to work in scenarios where network par-
titions, message delays, or node failures can occur, leading to po-
tential conflicts in data updates. They achieve this by ensuring that
conflicts can be resolved automatically at each replica, guaranteeing
that all replicas eventually converge to the same consistent state.

The fundamental classes of CRDT are state-based, operation-
based, and delta-state-based [20]. In short, in the state-based model,
the full local state is propagated to all replicas, and conflicts are
resolved by merging the states. In the operation-based model, repli-
cas exchange and merge individual operations (e.g., add, remove,
increment) to achieve consistency. In our research, we will focus
on operation-based CRDT.

2.1.1 State-Based CRDT. State-based CRDTs are also referred to
as convergent replicated data types (CvRDTs), where the full state
received from a replica must be merged by a commutative, associa-
tive, and idempotent function. CvRDTs achieve this by encoding
the causality of operations, allowing replicas to merge their local
updates in any order. Examples of CvRDTs include counters, sets,
registers, and graphs [24].

A state-based CRDT often relies on a semilattice structure to
represent the state. A semilattice is a partially ordered set where any
two elements have a unique least upper bound (join) and greatest
lower bound (meet). The merge function of the CRDT operates
within this semilattice structure to ensure conflict resolution. More
formally, a state-based CRDT can be defined by the tuple (𝑆 , ⊑, ⊔)
where 𝑆 is a join-semilattice, ⊑ represents partial order, and ⊔ is a
union operator (join) that derives the least upper bound (LUB) for
all elements of 𝑆 , such that ∀s,t,u ∈ 𝑆 :

𝑠 ⊔ 𝑠 = 𝑠 (idempotency)
𝑠 ⊔ 𝑡 = 𝑡 ⊔ 𝑠 (commutativity)

𝑠 ⊔ (𝑡 ⊔ 𝑢) = (𝑠 ⊔ 𝑡) ⊔ 𝑢 (associativity)

The above properties guarantee that message reordering or dupli-
cation will not adversely affect the final convergence of the system.
It is also tolerant of packet loss as long as a message containing
this state or a higher-order message is received in the future. The
main drawback of this implementation is the potentially unlimited
state growth, especially considering that system synchronization is
done by propagating the current local state of each node [25].

Shapiro et al. [24] present some examples of CRDT. One of them
is a set of unique, non-removable elements 𝐸, also called a grow-
only set (𝐺𝑆𝑒𝑡). We can define it as a CRDT by taking the set of
all subsets of 𝐸; ⊑ as the presence of the element in the set and
⊔ as the union of two subsets. The subsets for 𝐸 = {𝑎, 𝑏, 𝑐} can
be represented by the Hasse diagram of Figure 1. Each element of
𝐸 is represented as a vertex in the plane and a line goes upward
from one vertex 𝑥 to another vertex 𝑦 whenever 𝑦 covers 𝑥 , i.e.,
if element 𝑥 is less than or equal to element 𝑦, there is a line or
directed edge connecting then. This representation allows for the
visualization of the partial order and the relationships between the
elements.

Figure 1: Hasse diagram for the 𝐺𝑆𝑒𝑡{𝑎, 𝑏, 𝑐}

Another example of a state-based CRDT is the increment-only
counter presented in Algorithm 1. The payload, in this case, is an
array where each position corresponds to a node in the system.
Each node increments by 𝑛 the entry in the array that corresponds
to itself and then broadcasts the updated state, e.g., the entire array,
to other members.

2.1.2 Operation-Based CRDT. Operation-based (Op-based) CRDTs
are more spatially efficient than state-based ones because they

2

Algorithm 1 State-based CRDT increment-only counter at proc. 𝑖
[25]

function Init()
𝑣𝑎𝑙 = []

functionQuery()
return sum(𝑣𝑎𝑙)

function Local_Update(𝑛)
val[i] = val[i] + n

functionMerge(𝑋 , 𝑌)
for 𝑟 ∈ 𝑋 .𝑣𝑎𝑙 .𝑘𝑒𝑦𝑠 ∪ 𝑌 .𝑣𝑎𝑙 .𝑘𝑒𝑦𝑠 do

val[r] = max(X.val[r], Y.val[r])

broadcast only a representation of the operations occurring locally
at each node rather than the full state. Each operation represents a
change to the state of the replicated data structure, such as adding
or removing an element, or modifying a value. Operations are typi-
cally defined as functions that take the current state and additional
parameters as input and produce a new state as output.

Op-based CRDTs are also called commutative replicated data
types (CmRDTs) since the order of concurrent updates has no im-
pact on the final converged state of the replicas. CmRDTs are typi-
cally implemented using conflict-free merge functions that combine
concurrent updates deterministically. Examples of CmRDTs include
state-based CRDTs like OR-Set (observed-remove set) and LWW-
Element-Set (Last-Write-Wins Element Set).

For each update operation, Op-based CRDT must define two
functions [21]:

Generator is executed in the replica from which the update is
initiated. It has no side effects and generates an Effector that
encodes the side effects of the operation.

Effector applies the side effect to all replicas and updates the
state.

For most op-based CRDTs, a reliable channel and causal order-
ing of update operations are required. This requirement is usually
achieved by middlewares, or other additional modules that imple-
ment protocols that do not require consensus andmay be tolerant to
partitioning, i.e., replicas connected in one partition of the network
can communicate their operations with each other and eventually
deliver themessage to all other replicas [5, 21]. This is typically done
by assigning unique identifiers (timestamps, sequence numbers, or
other unique identifiers) to operations when they are generated.
These identifiers enable the detection of concurrent operations and
ensure that their effects can be correctly merged.

An operation-based counter is presented in Algorithm 2. The
payload is a serialized representation of the Effector containing the
command and an integer. The local initial value of the counter is
zero.

2.1.3 Delta-State-Based CRDTs. Delta-state-based CRDTs (𝛿-CRDTs)
incorporate the guarantees of state-based CRDTs but implement
message size reduction techniques such as operations-based ones.
Each replica tracks the changes made to its local copy of the data

Algorithm 2 Op-based CRDT increment-only counter [25]

function Init()
𝑣𝑎𝑙 = 0

function Generator()
return ⟨𝑖𝑛𝑐, 𝑛⟩

function Effector(𝑛)
𝑣𝑎𝑙 = 𝑣𝑎𝑙 + 𝑛

as a series of deltas, which are essentially the individual operations
applied to the data structure. These deltas are typically represented
in a compact and efficient form. When replicas communicate with
each other, they exchange and merge these deltas to update their
local state and achieve convergence. This is possible by implement-
ing delta-mutators which return the 𝛿-state, a representation of the
effect of a sequence of updates on the state. This 𝛿 can be stored in
a buffer which in time is transmitted to remote replicas [2].

One of the challenges of 𝛿-state-based CRDT is the propagation
criteria. For instance, for the sake of performance, it should avoid
sending redundancy. Without this control, performance can be
worse than in the fully state-based model. Some of the synchroniza-
tion optimizations proposed by [11] use metadata related to the
topology and membership of the network to achieve better results
concerning used bandwidth, memory consumption, and processing
time until convergence.

Despite these challenges, delta-based CRDTs have been success-
fully used in various applications. For example, collaborative text
editing systems often employ delta-based CRDTs to track andmerge
changes made by multiple users in real-time, allowing them to work
concurrently without conflicts.

2.2 Causal Ordering
Given a topic 𝑡 and two messages𝑚 and𝑚′ and the partial order ≺
that represents a happen-before relationship, if𝑚 ≺ 𝑚′ then the
causal ordering of the delivery of a message guarantees that all
replicas will only observe the effects of𝑚′ after they observe the
effects of𝑚.

VCube-PS uses causal barriers [4] to ensure the causal delivery
of operations. The advantage of this model over logical vector
clocks, for instance, is that it is not always necessary to transmit the
whole clock entries to the system members. Message dependency is
established directly which compresses the space used for metadata.

Consider two application-generated messages,𝑚 and𝑚′, pub-
lished to a topic 𝑡 . If the publication of𝑚 causally precedes the pub-
lication of𝑚′; and there is no message𝑚′′ in which the publication
of𝑚 causally precedes the publication of𝑚′′ while simultaneously
𝑚′′ causally precedes the publication of𝑚′, then𝑚 is an immediate
predecessor, or direct dependency, of𝑚′. The set of messages that
are direct dependencies of𝑚 determines the causal barrier (𝑐𝑏𝑚).

Since the causal barrier stores only direct dependencies, when-
ever a new message𝑚 is sent, the previous barrier is cleared, re-
moving unnecessary metadata and reducing causal redundancy,
since all previous messages would be indirect dependencies of𝑚.

3

2.3 Replication Protocols
Data replication is often used as a fault-tolerant and performance-
enhancing mechanism in distributed systems. Different replicas
can maintain copies of the information, ensuring that there is no
single point of failure and potentially spreading the load of accesses.
In addition, it is possible to optimize system latency by keeping
replicas closer to users. To ensure a consistent state even during
runtime, these replicas must be able to communicate through a
replication protocol [23].

In centralized replication systems, all communication between
nodes is directed by a leader. In contrast, in decentralized replica-
tion systems, communication takes place between arbitrary nodes.
This exchange of messages is done through primitives that imple-
ment broadcasting to all nodes or only to some (multicast). After
a message is received, its delivery (deliver) can be intentionally
delayed to satisfy a predefined condition such as the causal order
[6].

When an operation occurs locally on a node, the change must be
communicated to the other members of the system. The replication
protocol defines when, how, and to whom such a change will be
sent. In this case, nodes need to be connected to each other but
the actual network topology can be overlaid by various optimized
application-layer topologies [23].

In general, systemmembers only need to be aware of their neigh-
bors, which is defined by the overlay. In structured overlays, a
relationship between nodes must be established in advance. This
information and the properties of the network can therefore be
leveraged by the application [8, 14, 23].

At the same time, synchronization can be more scalable and effi-
cient if, instead of full replication, where all nodes keep a complete
copy of the data, partial replication, where nodes can contain only a
subset defined by a partitioning rule is used. This choice reduces the
cost of propagating changes since only a subset of replicas needs
to receive each update [13].

The replication protocol may also provide certain guarantees,
such as the causal delivery of messages. Some common designs
that provide such a causality are those based on vector clocks [5],
which require additional storage as well as others based on causal
barriers, which are more scalable, requiring negligible space, but
can be less accurate in representing direct dependencies [10].

The Plumtree and VCube-PS message dissemination protocols
are introduced and described below. Plumtree is the core of EcoSync-
Tree, whose performance is compared to the one of VCube-Sync in
Section 5. It is worth noting that the Plumtree protocol is a system
built on top of unstructured networks and specifies distribution
rules through trees at runtime. The VCube-PS protocol is struc-
tured and therefore establishes node ordering rules over message
dissemination time. Both provide causal delivery guarantees.

2.3.1 Plumtree. The Plumtree protocol [15] is unstructured and
capable of optimizing message dissemination in gossip-based en-
vironments. Its implementation is completely decentralized and
has fault-tolerance mechanisms. It is the basis for a series of imple-
mentations of replication systems that use CRDTs, such as those
presented by [26] and [18].

The algorithm works by performing a configuration cycle that
occurs only when necessary: after the exit or entry of a new node

in the set. During the transmission of this message, the path traced
by it is identified, that is, which were the network nodes involved
in the dissemination, determining, from this, a tree that acts as an
overlay of the initial topology. In this phase, the redundant paths
are also identified [15].

Once the overlay is defined, the protocol makes use of two gossip
strategies:

Eager push gossip Sends messages through the tree, built in
the last configuration.

Lazy push gossip Uses redundant connections between nodes
to send a small control message capable of validating receipt
of the main message. If the target node does not receive
the main message within a pre-established timeout, it can
request it (pull request) through this alternative link. This
push-pull mechanism introduces high availability and a way
to repair the tree

2.3.2 VCube-PS. VCube is a distributed diagnosis algorithm that
builds a hypercube-like overlay topology organizing the nodes
of the system into progressively larger clusters. It is dynamically
re-organized in case of a process failure and exhibits important
logarithmic properties even in the presence of failures. A strategy
to disseminate diagnostic information was also defined as part of
the protocol and experimental results have shown that it presents
latency improvements when compared to similar models [10].

In VCube, a node of index 𝑖 groups all other 𝑁 − 1 members of
the system into 𝑑 = log2 𝑁 similar sized clusters 1..𝑑 . The list of
nodes on each cluster 𝑠 is defined by a function 𝑐𝑖,𝑠 below where ⊕
is the logical bitwise exclusive operator XOR [10].

𝑐𝑖,𝑠 = 𝑖 ⊕ 22−1 | |𝑐𝑖⊕2𝑠−1,𝑘 |𝑘 = 1, ..., 𝑠 − 1 (1)
The graph on Figure 2 shows the hierarchical cluster-based logi-

cal organization of a VCube where 𝑁 = 8 and 𝑖 = 0.

Figure 2: Virtual hypercube for node 𝑖 = 0 [9]

The topic-based pub-sub system VCube-PS [9] exploits these
properties to achieve efficient message dissemination, fault toler-
ance, and causal delivery of messages through the use of causal
barriers. It is particularly effective in hot topic scenarios, which are
common in large Internet systems.

Each topic arranges its members in a tree that is an overlay
of the entire topology. Only the members of a topic receive its
messages, and relays, if any, are temporary. In addition, each node
(publisher) acts as the root or source of a message. In VCube-PS,

4

information about membership, as well as published messages, are
sent to subscribers of a topic through dynamically constructed
spanning trees whose root is at the publisher. Causal order per
topic is ensured for message delivery.

Amessage is delivered by calling the VCube-PS function Co_Deliver.
The delivery of it takes place after all its causal dependencies have
been already delivered. Messages can be kept in a buffer until this
condition is met.

VCube-PS has not yet been used as a replication strategy. It is
worth pointing out that selectivity over topics could possibly be
used as a criterion for partial replication.

Therefore, we propose in this article an experimental implemen-
tation and evaluation of a VCube-based replication protocol for
CRDT-based data stores on top of VCube-PS.

The goal of our proposal is that, by transmitting update messages
over the VCube-PS, which also allows inference of membership
metadata, combined with guarantees such as causal delivery, the
replication systems offer an efficient solution in terms of data fresh-
ness or latency, scalability, and fault tolerance.

3 RELATEDWORK
Cure [1] is a decentralized replication protocol for key-value databases
that provides causal consistency and atomicity, i.e., consistent con-
current operations on multiple keys, which is a form of high-
availability transactions (HATs). To ensure that concurrent opera-
tions converge to the same correct value, the model uses operation-
based CRDT and vector clocks to track causality. The latter are
also used to control different versions of the same data set that
can be garbage collected. This protocol is the foundation of the
AntidoteDB database. One of the limitations of this system is that
the metadata tracking mechanism grows with the number of nodes
involved. The present work assumes massively distributed systems,
which makes the implementation of Cure infeasible.

Selective Hearing [18] is a model that extends the existing LASP
framework, which has CRDT as its primary data structure and
has mechanisms for communication and synchronization between
processes, with an epidemic dissemination structure based on the
Plumtree protocol. The final product also enables a partial view
of the cluster through overlays and has been presented as useful
for applications in the Internet of Things and mobile gaming. This
strategy aims to reduce latency for data visibility while maintaining
dynamic membership. Since this implementation is based on the
LASP programming model, it is not environment agnostic. Fur-
thermore, unlike the present work, it considers an unstructured
overlay.

SYNC Tree [26] is a broadcast protocol based on a modified ver-
sion of the Plumtree and HyParView protocols. It provides causality
guarantees and is capable of synchronizing hundreds of nodes. This
model supports dynamic membership and introduces a synchro-
nization strategy for joining and leaving nodes. Furthermore, the
system uses CRDT as a distributed data structure and implements
procedures such as garbage collection to achieve better latency
and reduce communication costs. Leveraging all these mechanisms,
extended ECO SYNC tree [26] is an optimized version of the SYNC
protocol. Support for partial replication is suggested only as future
work, and the network topology is unstructured.

The above discussed models have similar features to our pro-
posal, but none of them delivers all of the properties introduced by
this paper, i.e., (i) support for massively distributed systems using
lightweight causality tracking; (ii) no central server; (iii) support to
partial replication; (iv) usage of a structured topology that allows
metadata to be inferred about nodes and their neighbors; and (v)
modular implementation.

4 THE VCUBE-SYNC
In this section, we present VCube-Sync, a system where data are
replicated 𝑁 times without location restrictions and members are
considered to be stable, i.e., VCube-Sync membership is not dy-
namic and members can not leave or join it. Through the use of
reliable channels or message fair-lossy channels with message re-
transmission, VCube-Sync is considered to be tolerant to transient
failures (e.g., network contention). It supports partial replication,
allowing different nodes to have different data sets at the same time.

The application state is stored in the form of CRDT, enabling
concurrent conflict-free operations. Synchronization is achieved
by transmitting either a serialized representation of the operation,
in the case of operation-based CRDT, or the complete state of a
particular partition, in the case of state-based CRDT. The application
is built in independent modules inspired by [26] and [12]:

membership determines the actual network connections be-
tween nodes;

broadcast applies diffusion strategies, such as overlays to the
actual network, and determines diffusion trees while ensur-
ing preconditions such as causality;

replication provides an interface to the CRDT data store;
application maintains the state of the data store using CRDT.

4.1 Proposed solution
The replication protocol of VCube-Sync exploits the VCube-PS
topic-based publish-subscribe system (pub-sub) on top of VCube,
described in Section 2.3.2.

Operations are only transmitted to interested nodes (subscribers)
in a specific partition of data (topic). Each transmission occurs
through VCube hierarchical hypercube-based diffusion tree, com-
posed only of subscribers of that topic, with the root node being the
one that originated the operation. VCube-PS protocol, via causal
barriers, ensures that messages are delivered in causal order. It is
also responsible for maintaining the mapping of nodes to topics.
Thus, when node 𝑖 initiates the transmission of message 𝑚, the
latter is disseminated through a hierarchical transmission tree with
𝑖 as the root, comprising nodes that are subscribers of a topic 𝑡 .

In VCube-Sync a topic, the key for partial replication, maps one-
to-one with a stored CRDT. A single node can be part of multiple
topics and therefore stores multiple items. Messages can be of three
types: SUB or "subscribe", which is sent by a node to express interest
in a topic; UNS or "unsubscribe", which reverses the SUB operation;
PUB or "publication", which in VCube-Sync corresponds to sending
a replication message.

VCube-Sync exposes three functions: Subscribe(𝑡), Unsubscribe(𝑡),
and Publish(𝑡 ,𝑚), where 𝑡 represents a topic and𝑚 represents a
message. A node can only publish messages in topics in which
it participates. Once received, messages are delivered using the

5

function Co_Deliver, which happens only when all causal depen-
dencies of the message are satisfied. As long as this condition is not
met, the messages are kept in a buffer. The Algorithm 3 presents
the VCube-Sync.

Algorithm 3 Application interface methods for process 𝑖 [9].

1: function Init()
2: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
3: 𝑣𝑖𝑒𝑤 ← ∅

4: function Subscribe(topic 𝑡)
5: if ⟨𝑖, 𝑆𝑈𝐵, _⟩ ∉ 𝑣𝑖𝑒𝑤 [𝑡] then
6: 𝑣𝑖𝑒𝑤 [𝑡] ← {⟨𝑖, 𝑆𝑈𝐵, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⟩}
7: Co_Broadcast(𝑆𝑈𝐵, 𝑡, _)
8: return OK
9: return NOK

10: function Unsubscribe(topic 𝑡)
11: if ⟨𝑖, 𝑆𝑈𝐵, _⟩ ∈ 𝑣𝑖𝑒𝑤 [𝑡] then
12: 𝑣𝑖𝑒𝑤 [𝑡] ← 𝑣𝑖𝑒𝑤 [𝑡] ∖ {⟨𝑖, 𝑆𝑈𝐵, _⟩}
13: Co_Broadcast(𝑈𝑁𝑆, 𝑡, _)
14: return OK
15: return NOK

16: function Publish(topic 𝑡 , message 𝑑𝑎𝑡𝑎)
17: if ⟨𝑖, 𝑆𝑈𝐵, _⟩ ∈ 𝑣𝑖𝑒𝑤 [𝑡] then
18: Co_Broadcast(𝑃𝑈𝐵, 𝑡, 𝑑𝑎𝑡𝑎)
19: return OK
20: return NOK

Two auxiliary functions Cluster(𝑖, 𝑗) and Children(𝑖, 𝑡, ℎ) are
also used to build the hierarchical diffusion trees, implemented
according to [9]:
• Cluster(𝑖, 𝑗): returns the index 𝑠 of the cluster of a node 𝑖
that contains node 𝑗 , (1 ≤ 𝑠 ≤ log2 𝑁) . For example in Fig-
ure 2, Cluster(0, 1) = 1, Cluster(0, 2) = Cluster(0, 3) =
2, and Cluster(0, 4) = Cluster(0, 5) = Cluster(0, 6) =
Cluster(0, 7) = 3.
• Children(𝑖, 𝑡, ℎ): returns a set containing all nodes virtually
connected to 𝑖 . A child of 𝑖 is the first node of cluster 𝑐𝑖,𝑠
which is also a subscriber of 𝑡 , or simply the first node of this
cluster without considering topics when this is not defined.
The parameterℎ represents the cluster which can vary from 1
to log2 𝑁 . For ℎ = log2 𝑁 , the function returns the set of first
children of 𝑖; For any other value ℎ < log2 𝑁 , the function
returns only a subset of children, that is, only those where
the number of cluster 𝑠 is smaller than or equal to ℎ (𝑠 ≤ ℎ).
For example, in Figure 2, if 𝑡 = ‘ ∗ ’, Children(0, ∗, 3) =
{1, 2, 4}, Children(0, ∗, 2) = {1.2}, and Children(4, ∗, 2) =
{5.6}. On the other hand, if only nodes 0, 3, and 4 have
subscribed to topic 𝑡1, then Children(0, 𝑡1, 3) = {3, 4} and
Children(4, 𝑡1, 2) = ∅.

Algorithm 4 presents the message broadcasting mechanism for
VCube-Sync synchronization. This algorithm is an adaptation of
VCube-PS, having as differences (i) that VCube-PS also implements

guaranteed FIFO (First In, First Out) reception per-source using mes-
sages of type ACK and (ii) that in VCube-PS, each node 𝑖 stores which
counter of the first message received from each node 𝑗 . These mech-
anisms are implemented to handle node join and leave dynamics. In
VCube-Sync we consider a stable system, so these mechanisms are
not needed and have been removed which increases the responsive-
ness of the system by allowing more parallelism in transmission.

The broadcast of a replication message by the broadcast layer
from a node 𝑖 is initiated with the function Co_Broadcast(𝑚),
which creates themessage to be broadcast. The function ReceiveMes-
sage is then called and, from this point on, the behavior is the
same whether for locally generated messages or for messages
received over the network. This function starts the propagation
of the message to the list of neighbors obtained by the function
Children(𝑖, 𝑡, ℎ), and also the process of delivering the message lo-
cally. Local delivery of messages of type 𝑆𝑈𝐵 corresponds to adding
the message to the 𝑟𝑒𝑐𝑠 list and invoking the CheckDeliverable(𝑡)
function, while those of other types correspond to significant changes
and therefore invoke the Update(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) method.

The CheckDelivery(𝑡) method scans the recs[𝑡] set which con-
tains all messages received on topic 𝑡 that has not yet been delivered.
For each one, it is validated if the causal barrier is satisfied. In this
case, the message is delivered by the Co_Deliver(m) method, re-
moved o from the recs[t] set, and has its identifier added to the
delvs[t] set and the causal barrier of this node 𝑖 . Otherwise, the mes-
sage remains in the recs[t] set where it will have the opportunity
to be checked again when a new message from 𝑡 is received.

Finally, in the context of VCube-Sync, the message data corre-
sponds to a data replication operation. When a message is delivered
by the Co_Deliver(𝑚) method, the NotifyReply(𝑚) method trans-
mits the message to the Replication layer, where the operation is
applied immediately based on the corresponding topic.

5 RESULTS
In order to evaluate the performance of VCube-Sync in different
scenarios, experiments were carried out on the Grid’5000 platform
(https://www.grid5000.fr) in Nancy region on the “gros” cluster by
hosts equipped with an Intel Xeon Gold 5220 processor with 18
cores, 96 GB RAM and connected through a network with a capacity
of 2x25 Gbps. Following Vieira [26] and Fouto et al. [12], Docker
Swarm was used in the experiments, with one node of the replica-
tion protocol running in each container. The Babel framework [12],
developed by the NOVA LINCS laboratory of NOVA University
Lisbon, was also used for the simulation setup and communication
between application layers and nodes.

VCube-Sync was compared with EcoSyncTree, which is based
on unstructured topology with optimizations from the Plumtree
and HyParView [26] protocols.

The experiments were conducted with different numbers of
nodes: 50, 100, and 200, and different sets of publishers and sub-
scribers, including scenarios of total and partial replication. These
scenarios are grouped into two categories: those with only one
publisher and those with multiple publishers. Each experiment was
executed three times, and for experiments that require a node sam-
ple, the selection was made via uniform sampling. We used a CRDT
based on register-type operations in which each operation has a

6

https://www.grid5000.fr

Algorithm 4 Causal broadcast of VCube-Sync at process 𝑖
1: function Init()
2: ∀𝑡 ∈ 𝑇𝑂𝑃𝐼𝐶𝑆 : 𝑣𝑖𝑒𝑤 [𝑡] ← ∅; 𝑟𝑒𝑐𝑠 [𝑡] ← ∅; 𝑑𝑒𝑙𝑣 [𝑡] ← ∅;
3: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0; 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐼𝑑𝑠 ← ∅; 𝑐𝑎𝑢𝑠𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 [𝑡] ← ∅

4: function Co_Deliver(message𝑚)
5: NotifyReply(𝑚) ⊲ Deliver to the replication layer

6: function Co_Broadcast(message_type 𝑡𝑦𝑝𝑒 , topic 𝑡 , content 𝑑𝑎𝑡𝑎)
7: 𝑚 = New(𝑚𝑒𝑠𝑠𝑎𝑔𝑒)
8: 𝑚.𝑡𝑦𝑝𝑒 ← 𝑡𝑦𝑝𝑒 ;𝑚.𝑠 ← 𝑖;𝑚.𝑡 ← 𝑡

9: 𝑚.𝑐 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ;𝑚.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ← 𝑑𝑎𝑡𝑎;
10: 𝑚.𝑐𝑏 ← 𝑐𝑎𝑢𝑠𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 [𝑡]
11: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
12: 𝑐𝑎𝑢𝑠𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 [𝑡] ← {⟨𝑖, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ⟩}
13: ReceiveMessage(𝑚)

14: function ReceiveMessage(message𝑚)
15: if𝑚.𝑖𝑑 ∈ 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐼𝑑𝑠 then
16: return ⊲ Ignore duplicated messages
17: if𝑚.𝑡𝑦𝑝𝑒 = 𝑆𝑈𝐵 then
18: 𝑐ℎ𝑑 ← Children(𝑖, ∗,Cluster(𝑖,𝑚.𝑠) − 1)
19: else
20: 𝑐ℎ𝑑 ← Children(𝑖,𝑚.𝑡,Cluster(𝑖,𝑚.𝑠) − 1)
21: for all 𝑘 ∈ 𝑐ℎ𝑑 do
22: Send(𝑚) to 𝑝𝑘

23: if ⟨𝑖, 𝑆𝑈𝐵, _ ⟩ ∈ 𝑣𝑖𝑒𝑤 [𝑚.𝑡] then ⊲ 𝑖 is a subscriber of𝑚.𝑡

24: if𝑚.𝑡𝑦𝑝𝑒 = 𝑃𝑈𝐵 then
25: 𝑟𝑒𝑐𝑠 [𝑚.𝑡] ← 𝑟𝑒𝑐𝑠 [𝑚.𝑡] ∪ {𝑚}
26: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐼𝑑𝑠 ←𝑚𝑠𝑔𝑠 ∪ {𝑚.𝑖𝑑 }
27: CheckDeliverable(𝑚.𝑡)
28: else
29: 𝑣𝑖𝑒𝑤 [𝑚.𝑡] ← Update(𝑣𝑖𝑒𝑤 [𝑚.𝑡], {⟨𝑚.𝑠,𝑚.𝑡𝑦𝑝𝑒,𝑚.𝑐 ⟩})

30: function Update(𝑠𝑒𝑡1, 𝑠𝑒𝑡2)
31: for all ⟨𝑛1, _, 𝑟𝑐1 ⟩ ∈ 𝑠𝑒𝑡1 do
32: if ∃ ⟨𝑛1, _, 𝑟𝑐2 ⟩ ∈ 𝑠𝑒𝑡2 then
33: if 𝑟𝑐2 > 𝑟𝑐1 then
34: 𝑠𝑒𝑡1 ← 𝑠𝑒𝑡1 ∖ {⟨𝑛1, _, 𝑟𝑐1 ⟩}
35: else
36: 𝑠𝑒𝑡2 ← 𝑠𝑒𝑡2 ∖ {⟨𝑛1, _, 𝑟𝑐2 ⟩}
37: return 𝑠𝑒𝑡1 ∪ 𝑠𝑒𝑡2

38: function CheckDeliverable(topic 𝑡)
39: while (∃𝑚 ∈ 𝑟𝑒𝑐𝑠 [𝑡] : CheckCB(𝑡,𝑚.𝑐𝑏) = 𝑡𝑟𝑢𝑒) do
40: Co_Deliver(𝑚)
41: 𝑟𝑒𝑐𝑠 [𝑡] ← 𝑟𝑒𝑐𝑠 [𝑡] \ {𝑚}
42: 𝑑𝑒𝑙𝑣𝑠 [𝑡] ← 𝑑𝑒𝑙𝑣𝑠 [𝑡] \ {⟨𝑚.𝑠, _⟩} ∪ {⟨𝑚.𝑠,𝑚.𝑐 ⟩}
43: 𝑐𝑎𝑢𝑠𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 [𝑡] ← 𝑐𝑎𝑢𝑠𝑎𝑙_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 [𝑡] \ {𝑚.𝑐𝑏}

∪ {⟨𝑚.𝑠,𝑚.𝑐 ⟩}

44: function CheckCB(topic 𝑡 , causal barrier 𝑐𝑏)
45: for all ⟨𝑠, 𝑐 ⟩ ∈ 𝑐𝑏 do
46: if ∃ ⟨𝑠′, 𝑐′ ⟩ ∈ 𝑑𝑒𝑙𝑣𝑠 [𝑡] : 𝑠 = 𝑠′and 𝑐′ ≥ 𝑐 then
47: 𝑐𝑏 ← 𝑐𝑏 \ {⟨𝑠, 𝑐 ⟩}
48: return 𝑐𝑏 = ∅

size of 1,024 bytes. In all experiments, the number of nodes per
machine was the same.

Average message delivery latency and bandwidth were both
evaluated in various configurations with different number of nodes
and topic arrangements. Application events are logged by logger
Log4J. After generating logs in the distributed environment, they
are analyzed by other scripts, which output the final results.

For each of the evaluated protocols, VCube-Sync and EcoSync-
Tree, the configuration of the nodes was set according to Table 1.

Table 1: Configurations of the tests.

Type Publishers Subscribers

Single publisher 1 25%
Single publisher 1 100%

Multiple publishers 25% of members 100%
Multiple publishers 100% of members 100%

The execution of each experiment proceeds in the following
sequence of steps: (1) Start all nodes through Docker containers;
(2) Initiate the membership protocols and wait for stabilization; (3)
Initiate the transmission of SUB-type messages, indicating interest
in specific topics according to the arrangement of each experiment;
(4) Initiate the replication message transmission during 400 sec-
onds, with one message sent per second per publisher; (5) Upon
completion of the transmission, the nodes remain available for up
to 5 minutes to receive messages in transit or generated by nodes
that initiated step 3 at a later time.

5.1 Single Publisher
This collection of experiments evaluates the replication perfor-
mance in a scenario where only one node publishes messages, al-
lowing the observation of the behavior without causal dependency.
Figure 3(a) presents the average delivery latency when the percent-
age of nodes interested in the topic is 100% and 25%. The latter
applies only to VCube-Sync since the ECO-Sync-Tree protocol does
not provide partial replication. Thus, in this case, all nodes receive
a replication message even if they are not interested in a particular
topic.

The average latency for 200 nodes of ECO-Sync-Tree for total
replication is 0.854s, a value 3.16 times higher than that observed
in VCube-Sync in the same setup and 3.49 times higher than the
scenario of partial replication. Moreover, the impact of partial repli-
cation can be observed in the total number of transmitted bytes
for each simulation as depicted in Figure 3(b). For 200 nodes, the
total number of bytes transmitted by the ECO-Sync-Tree was 142.67
megabytes, a value 4.68x greater than when using the VCube-Sync
in the full replication arrangement, and 19.14x greater in the partial
replication scenario. This suggests that the reduction factor induced
by partial replication is as expected since only nodes interested
in the topics receive and transmit messages, resulting in a linear
reduction in the number of bytes proportionally.

It is also noteworthy that VCube does not require the sending of
messages for topology maintenance. Therefore, byte transmission
rate tends to zero if replication messages are not in transit. On the
other hand, EcoSyncTree uses messages to maintain the topology,
which makes the case of a single publisher not very optimized, since
the maintenance cost corresponds to a portion of almost 50% of the

7

Figure 3: Results for a single Publisher. (a) Average message delivery latency in seconds per the protocol and the number of
nodes; (b) Total experiment bandwidth usage in Gigabytes by protocol and the number of nodes.

network usage rate, as shown in Figure 4. Furthermore, the number
of duplicate messages observed by nodes using ECOSyncTree with
just one publisher ranged from 0 to 12%. Whereas for VCube-Sync
there are never duplicate messages when there are no failures.

Figure 4: Bandwidth usage per protocol in megabytes per
second for 200 nodes.

For both protocols, for all numbers of nodes in the 100% sub-
scribers’ scenario, the total number of messages transmitted over
the network was the same. However, ECOSyncTree showed higher
bandwidth usage compared to VCube-Sync. Sucha a diference can
be explained since ECOSyncTree has a synchronization cycle that
runs continuously even when no node has been identified as failing.

Figure 4 confirms that VCube-Sync algorithm performs signif-
icantly better than the Eco-Sync algorithm in terms of latency.
Compared to Eco-Sync, VCube-Sync is capable of achieving much
lower latencies across all node arrangements and subscriber per-
centages. It is also interesting to point out that as the number of
nodes increases, latency of both algorithms increases as well. How-
ever, VCube-Sync is still able to maintain a relatively low latency
compared to Eco-Sync, even with a higher number of nodes. Such a

behavior suggests that VCube-Sync may be better suited for larger-
scale systems that require more nodes.

5.2 Multiple Publishers
In this set of experiments, all nodes subscribe to a single topic, and
the number of publishers is varied between 25% and 100% for each
protocol. This setup allows us to evaluate the impact of message
load balancing in each protocol. In the arrangement where only 25%
of members are publishers, the selection is random and uniform.

Figure 5(a) shows that for 200 nodes, when there are 100% of
publishers, the average message delivery latency of ECO-SYNC-
tree is 1.56x that of VCube-Sync. When there exist only 25% of
publishers, the difference is slightly reduced to 1.51x. This result
demonstrates the efficiency of VCube-Sync in latency even in the
presence of a large number of nodes, which is consistent with the
results of Araujo et al. [9].

In Figure 5(b), VCube-Sync achieves a total throughput of 6.41
GB per second for the scenario with 200 nodes and 100% publishers,
which is 7.39% higher than that of ECO-SYNC-tree. However, in the
scenario with 25% publishers, VCube-Sync reduces the total band-
width usage by 2.79%. The increase in the number of bytes in the
100% scenario is due to the additional metadata that a message may
contain in VCube-Sync, especially those related to causal barrier.

As for bandwidth usage, according to Figure 5(b), for the scenario
of 200 nodes and 100% of publishers, VCube-Sync presented a total
throughput of 6, 41 GB, 7.39% more when compared to ECOSync-
Tree. On the other hand, for the scenario with 25% of publishers,
VCube-Sync had a 2.79% reduction in total bandwidth usage. The
increase in the number of bytes in the 100% scenario is caused
by the additional metadata that a message can contain in VCube-
Sync, especially the causal barrier. Another observation is that, in a
scenario with multiple publishers, the network maintenance over-
head in ECOSyncTree is minimal, with the data rate for sending
messages for network maintenance in the scenario with 200 nodes

8

Figure 5: Result for Multiple Publishers. (a) Average message delivery latency in seconds per protocol, number of nodes and
number of publishers; (b) Total experiment bandwidth usage in Gigabytes by the protocol, number of nodes and number of
publishers.

and 100% of publishers being approximately 10 KBytes/s, while the
maximum throughput of the experiment was 48.63 MBytes/s.

For both protocols, for every number of nodes in the 100% pub-
lishers’ scenario, the total number of transmitted messages was 3%
higher in VCube-Sync. A possible reason for such an increase is that,
due to the intermediate synchronization performed by ECOSync-
Tree, some of the replication messages are received after a syn-
chronization that already has this event. Since redundant messages
are not retransmitted, a small number of replication operations
end up not traversing the entire tree and not counted as individual
messages.

In Figure 5, it can be seen that VCube-Sync performswell in terms
of latency when compared to Eco-Sync. The latency of VCube-Sync
is consistently lower than that of Eco-Sync, especially in scenarios
where all nodes are publishers. For example, in the case where there
are 50 nodes and all of them publish messages, the latency of VCube-
Sync is 220.10ms while that of Eco-Sync is 343.82ms. Likewise, in
the case where there are 100 nodes and they all publish messages,
the latency of VCube-Sync is 233.70ms while that of Eco-Sync is
532.93ms.

We can also observe that the percentage of publishers has a
significant impact in latency of both algorithms. The greater the
percentage of publishers, the higher the latency. For example, in
the case where there are 50 nodes and only 25% of them publish
messages, the latency of VCube-Sync is 204.66ms while that of Eco-
Sync is 361.40ms. However, when all 50 nodes publish messages,
the latency of VCube-Sync increases to 220.10ms, while that of
Eco-Sync increases to 343.82ms.

The above results confirm that VCube-Sync provides significant
advantages in message delivery latency with a small increase in
the number of transmitted bytes.

6 CONCLUSION
In this paper, we introduce VCube-Sync, a new partial replication
protocol based on hypercubes that offers causal ordering guarantees
for operation delivery using causal barriers. The application state
is maintained by CRDT, which allows operations to be performed
concurrently while ensuring a deterministically convergent final
state.

The proposed solution is based on the VCube-PS publish-subscribe
protocol which is capable of creating hierarchical dissemination
trees with the node that performed an operation updating the state
as the root. Results show that the solution exhibits excellent per-
formance in terms of message delivery latency and good usage
rates in terms of bandwidth, especially in scenarios with multiple
topics. These results suggest that the solution is a promising option
for ensuring consistency in distributed data systems. Furthermore,
VCube-PS, which serves as the foundation of VCube-Sync, per-
formed well in simulated scenarios with more than a thousand
nodes, ensuring the scalability of the solution.

As future work, we plan to add to VCube-Sync the capability
to handle system membership dynamics and failure recovery. Al-
though VCube can be used as a failure detector, the algorithm imple-
mented in this work also requires additional state synchronization
mechanisms similar to those implemented by ECO-Sync-Tree. Some
existing solutions involve the hybrid use of types of CRDT, such as
State or Delta-State-based CRDT, for this synchronization phase.
Therefore, the latter could potentially use hypercube metadata to
determine optimal synchronization methods.

In addition, to reduce the amount of messaging and communica-
tion costs, causality or time-based aggregation algorithms could be
applied, such as those presented in [9] and [22].

9

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001. Experiments have been carried out using the Grid’5000 testbed,
which is supported by a scientific interest group hosted by Inria
and including CNRS, RENATER, and several universities and other
organizations (https://www.grid5000.fr).

REFERENCES
[1] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li,

Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. 2016. Cure:
Strong Semantics Meets High Availability and Low Latency. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS). IEEE, 405–
414. https://doi.org/10.1109/ICDCS.2016.98

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2014. Efficient State-
based CRDTs by Delta-Mutation. CoRR abs/1410.2803 (2014). arXiv:1410.2803
http://arxiv.org/abs/1410.2803

[3] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2018. Delta state replicated
data types. J. Parallel and Distrib. Comput. 111 (jan 2018), 162–173. https:
//doi.org/10.1016/j.jpdc.2017.08.003 arXiv:1603.01529

[4] Roberto Baldoni, Ravi Prakash, Michel Raynal, and Mukesh Singhal. 1998. Effi-
cient Δ-causal broadcasting. 13, 5 (Sept. 1998), 263–269.

[5] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. 2017. Pure Operation-
Based Replicated Data Types. CoRR abs/1710.04469 (2017). arXiv:1710.04469
http://arxiv.org/abs/1710.04469

[6] Kenneth Birman, André Schiper, and Pat Stephenson. 1991. Lightweight Causal
and Atomic Group Multicast. ACM Trans. Comput. Syst. 9, 3 (aug 1991), 272–314.
https://doi.org/10.1145/128738.128742

[7] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott. 2014. Riak
DT Map: A Composable, Convergent Replicated Dictionary. In Proceedings of the
First Workshop on Principles and Practice of Eventual Consistency (Amsterdam,
The Netherlands) (PaPEC ’14). Association for Computing Machinery, New York,
NY, USA, Article 1, 1 pages. https://doi.org/10.1145/2596631.2596633

[8] Miguel Castro, Manuel Costa, and Antony Rowstron. 2005. Debunking Some
Myths about Structured and Unstructured Overlays. In Proceedings of the 2nd Con-
ference on Symposium on Networked Systems Design & Implementation - Volume 2
(NSDI’05). USENIX Association, USA, 85–98.

[9] João Paulo de Araujo, Luciana Arantes, Elias P. Duarte, Luiz A. Rodrigues, and
Pierre Sens. 2019. VCube-PS: A causal broadcast topic-based publish/subscribe
system. J. Parallel and Distrib. Comput. 125 (2019), 18–30. https://doi.org/10.
1016/j.jpdc.2018.10.011

[10] Elias P. Duarte, Luis C. E. Bona, and Vinicius K. Ruoso. 2014. VCube: A Provably
Scalable Distributed Diagnosis Algorithm. 2014 5th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems, 17–22. https://doi.org/10.1109/
ScalA.2014.14

[11] Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero, and João Leitão. 2018. Ef-
ficient Synchronization of State-based CRDTs. CoRR abs/1803.02750 (2018).
arXiv:1803.02750 http://arxiv.org/abs/1803.02750

[12] P. Fouto, P. Costa, N. Preguica, and J. Leitao. 2022. Babel: A Framework for
Developing Performant and Dependable Distributed Protocols. , 146-155 pages.
https://doi.org/10.1109/SRDS55811.2022.00022

[13] Pedro Fouto, João Leitão, and Nuno Preguiça. 2018. Practical and Fast Causal
Consistent Partial Geo-Replication. In IEEE 17th International Symposium on
Network Computing and Applications (NCA). 1–10. https://doi.org/10.1109/NCA.
2018.8548067

[14] J. Leitão. 2012. Topology Management for Unstructured Overlay Networks. Ph. D.
Dissertation. Technical University of Lisbon.

[15] Joao Leitao, Jose Pereira, and Luis Rodrigues. 2007. Epidemic Broadcast Trees. In
2007 26th IEEE International Symposium on Reliable Distributed Systems (SRDS
2007). IEEE, 301–310. https://doi.org/10.1109/SRDS.2007.27

[16] Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Hardenberg. 2022.
Peritext: A CRDT for Collaborative Rich Text Editing. In Proceedings of the ACM
on Human-Computer Interaction (PACMHCI). 35 pages. https://doi.org/10.1145/
3555644

[17] Chris McCord. 2022. Phoenix Presence. https://github.com/phoenixframework/
phoenix_pubsub/blob/master/lib/phoenix/tracker.ex

[18] Christopher Meiklejohn and Peter Van Roy. 2015. Selective Hearing: An Ap-
proach to Distributed, Eventually Consistent Edge Computation. In 2015 IEEE 34th
Symposium on Reliable Distributed Systems Workshop (SRDSW), Vol. 2016-Janua.
IEEE, 62–67. https://doi.org/10.1109/SRDSW.2015.9

[19] Michael Owen. 2015. Using Erlang, Riak and the ORSWOT CRDT at bet365 for
Scalability and Performance. http://www.erlang-factory.com/euc2015/michael-
owen

[20] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. 2018. Conflict-Free Replicated
Data Types CRDTs. Springer International Publishing, Cham, 1–10. https:
//doi.org/10.1007/978-3-319-63962-8_185-1

[21] Nuno M. Preguiça. 2018. Conflict-free Replicated Data Types: An Overview.
CoRR abs/1806.10254 (2018). arXiv:1806.10254 http://arxiv.org/abs/1806.10254

[22] Luiz Rodrigues, Elias Duarte Jr, João Paulo de Araujo, Luciana Arantes, and Pierre
Sens. 2018. Bundling Messages to Reduce the Cost of Tree-Based Broadcast
Algorithms. In 2018 Eighth Latin-American Symposium on Dependable Computing
(LADC). IEEE, 115–124. https://doi.org/10.1109/LADC.2018.00022

[23] Yasushi Saito and Marc Shapiro. 2005. Optimistic Replication. ACM Comput.
Surv. 37, 1 (mar 2005), 42–81. https://doi.org/10.1145/1057977.1057980

[24] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A
comprehensive study of Convergent and Commutative Replicated Data Types. Re-
search Report RR-7506. Inria – Centre Paris-Rocquencourt ; INRIA. 50 pages.
https://hal.inria.fr/inria-00555588

[25] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of Dis-
tributed Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 386–400.

[26] Ema Vieira. 2021. ECO SYNC TREE: A Causal and Dynamic Broadcast Tree for
Edge-based Replication. Master’s thesis. NOVA University Lisbon.

[27] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (jan 2009),
40–44. https://doi.org/10.1145/1435417.1435432

10

https://www.grid5000.fr)
https://doi.org/10.1109/ICDCS.2016.98
https://arxiv.org/abs/1410.2803
http://arxiv.org/abs/1410.2803
https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1016/j.jpdc.2017.08.003
https://arxiv.org/abs/1603.01529
https://arxiv.org/abs/1710.04469
http://arxiv.org/abs/1710.04469
https://doi.org/10.1145/128738.128742
https://doi.org/10.1145/2596631.2596633
https://doi.org/10.1016/j.jpdc.2018.10.011
https://doi.org/10.1016/j.jpdc.2018.10.011
https://doi.org/10.1109/ScalA.2014.14
https://doi.org/10.1109/ScalA.2014.14
https://arxiv.org/abs/1803.02750
http://arxiv.org/abs/1803.02750
https://doi.org/10.1109/SRDS55811.2022.00022
https://doi.org/10.1109/NCA.2018.8548067
https://doi.org/10.1109/NCA.2018.8548067
https://doi.org/10.1109/SRDS.2007.27
https://doi.org/10.1145/3555644
https://doi.org/10.1145/3555644
https://github.com/phoenixframework/phoenix_pubsub/blob/master/lib/phoenix/tracker.ex
https://github.com/phoenixframework/phoenix_pubsub/blob/master/lib/phoenix/tracker.ex
https://doi.org/10.1109/SRDSW.2015.9
http://www.erlang-factory.com/euc2015/michael-owen
http://www.erlang-factory.com/euc2015/michael-owen
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://arxiv.org/abs/1806.10254
http://arxiv.org/abs/1806.10254
https://doi.org/10.1109/LADC.2018.00022
https://doi.org/10.1145/1057977.1057980
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/1435417.1435432

	Abstract
	1 Introduction
	2 Background
	2.1 CRDT
	2.2 Causal Ordering
	2.3 Replication Protocols

	3 Related Work
	4 The VCube-Sync
	4.1 Proposed solution

	5 Results
	5.1 Single Publisher
	5.2 Multiple Publishers

	6 Conclusion
	Acknowledgments
	References

