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Abstract
One of the major challenges of the Network Functions Virtualization paradigm is 
to properly deploy functions and services across the network. In particular, current 
solutions for multi-datacenter service mapping present several restrictions in terms 
of the choice of optimization models and metrics. This lack of flexibility ultimately 
leads to sub-optimized mappings that do not meet the (often conflicting) require-
ments of all the parties involved in the deployment process (e.g., network operators, 
clients, providers). This work proposes Genetic Service Mapping (GeSeMa), a new 
intelligent mapping solution based on genetic algorithms. GeSeMa enables flexible 
configuration of the evaluation setup, which is used to generate candidate mappings. 
The solution allows the specification of arbitrary optimization metrics, constraints, 
and different evaluation policies. A genetic algorithm processes mapping requests 
and iteratively creates/evolves candidate mappings. We evaluate GeSeMa through 
comprehensive case studies, including a comparison with other classic and state-of-
the-art alternatives.

Keywords Network functions virtualization · Service function chain · Deployment · 
Embedding · Mapping · Genetic algorithm

1 Introduction

Network Functions Virtualization (NFV) is driving a paradigm shift in telecommu-
nications. NFV allows network functions that have been traditionally implemented 
as physical appliances in hardware to be implemented as software that runs on vir-
tual machines [1, 2]. Examples include intrusion detection systems, load balancers, 
traffic filters, deep packet inspection tools, among many others [3–6]. Hardware 
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appliances, despite presenting high-performance, incur on high capital and opera-
tional expenditures, low scalability, low mobility, and complex management. On the 
other hand, Virtualized Network Functions (VNF) are executed on a software plane 
that runs on commercial off-the-shelf hardware, thus presenting much lower costs in 
terms of development, deployment, and maintenance.

Individual VNFs are the building blocks of Service Function Chains (SFC) [7], 
which are compositions of multiple network functions connected on a service topol-
ogy. The deployment of service topologies on virtualized environments comprises 
the execution of a number of tasks [1]: composition, embedding, and scheduling. 
Recent works have proposed solutions to tackle prominent challenges and improve 
the results of each of those deployment tasks [8–13].

Informally, the problem of mapping a network virtualization service across mul-
tiple datacenters consists of defining where the network functions that make up the 
service will be instantiated and executed. Different datacenters may have restrictions 
on the number of services they run and the resource requirements of the respective 
functions. In addition, the policies the datacenter adopts together with business rules 
adopted by each datacenter also have an impact on which alternatives are feasible 
and their costs. There are network functions that are native to certain datacenters, 
to which they must necessarily be mapped. For other functions, there is a choice of 
where they should be executed, which depends not only on equalizing the resources 
required with policies and resources available in the datacenters. It also depends on 
the topology of the virtualized service and the topology of the multi-datacenter net-
work to which it will be mapped. In this case, the objective is typically to reduce the 
amount of traffic transferred between datacenters as flows are forwarded through the 
network service. Furthermore, other criteria that can be defined for each mapping 
process in particular, such as maximizing the number of users, and maximizing or 
minimizing the number of datacenters used to host the service. It should also be 
taken into account that the mapping objectives usually change according to the very 
nature of the service being mapped, the type of environment in which they operate, 
and also the network technologies involved, such as 5 G or earlier cellular networks 
or even IoT or vehicular networks.

Traditional solutions for mapping VNFs are based on evaluation setups that are 
often static in terms of the set of optimization metrics they employ, as well as objec-
tives and weights, lacking the flexibility required to customize their execution [1, 14, 
15]. Thus, the requirements of the multiple stakeholders (i.e., clients, providers, and 
network operators) are hardly met. A static strategy often leads to poor results, leav-
ing stakeholders to adapt their needs to whatever setup is available in the solutions 
they are using. These limitations are particularly critical when service topologies 
are mapped on multiple datacenter environments [10, 16–18]. These solutions only 
allow stakeholders to make simple adjustments (e.g., adjusting weights of existing 
optimization metrics), but to the best of our knowledge, no current solution allows 
arbitrary optimization metrics and objectives to be defined.

It is important to note that, besides the evaluation setup, other features can impact 
the mapping of virtualized network services on multiple datacenters. Examples of 
some of those features include: the characteristics of the network infrastructure (such 
as whether it is private or public, or whether encrypted connections and specific 
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communication protocols are employed); the topology (e.g., fat tree, three-tier, fully-
connected, arbitrary); the type of service (e.g., traffic filtering, cache, security); and 
the structure of service topologies (e.g., linear or branched). Frequently, mapping 
solutions also neglect (completely or partially) these features, which affects their 
flexibility and further limits their applicability.

In this work, we propose a new multi-datacenter mapping solution, called Genetic 
Service Mapping (GeSeMa). GeSeMa allows the evaluation setup to be customized, 
providing high flexibility to adapt to different needs of the multiple stakeholders and 
takes multiple features into consideration. To do that, the stakeholders describe their 
needs and other service features on a standard request document. GeSeMa then uses 
a multi-objective optimization metaheuristic based on genetic algorithms to find 
mapping candidates in feasible time. We evaluate GeSeMa through comprehensive 
case studies, including a comparison with other alternative classic strategies and 
state-of-the-art solutions [17].

The rest of this work is organized as follows. Section 2 presents preliminary defi-
nitions and related work. GeSeMa is presented in Sect. 3. Evaluation results are in 
Sect. 4, with comparisons with other classic and state-of-the-art solutions. Finally, 
Sect. 5 concludes the paper and presents future work.

2  Background and Related Work

This section is organized in three parts. Section 2.1 presents basic concepts related 
to NFV technology and service deployment. Section 2.2 describes related work on 
multi-datacenter mapping of virtualized network services. Section 2.3 gives a brief 
overview of genetic algorithms.

2.1  NFV & Service Deployment

Traditional network infrastructures rely on dedicated hardware—called physical 
appliances—to execute a myriad of functions, such as network traffic routing, shap-
ing, and balancing [19]. The Network Functions Virtualization (NFV) [20] paradigm 
allows the implementation of network functions using virtualization technologies. In 
comparison with hardware alternatives, NFV technology reduces costs and increases 
flexibility [21]. A Virtualized Network Function (VNF) is the basic NFV unit which 
processes network traffic applying some specific functionality. Furthermore, com-
plex network services can be created through the connection of multiple virtualized 
network functions in a service topology [22, 23] forming a Service Function Chain 
(SFC) [7].

The instantiation of virtualized network services on the network substrate 
involves a series of tasks that are collectively known as the service deployment 
process. In particular, the NFV Resource Allocation (NFV-RA) [1] encompasses 
the most prominent deployment tasks, which are treated as optimization prob-
lems: (i) composition of service topologies; (ii) embedding of service topolo-
gies on virtualized environments; and (iii) scheduling network functions on 
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virtualization servers. The deployment tasks directly impact the performance of 
virtualized network services, being a crucial task to properly execute a myriad of 
applications, from security to dependable services [4, 6, 24]. Challenges regard-
ing the NFV-RA tasks have been widely explored in recent works [8–12].

The embedding tasks take into account the resources available on the virtual-
ized environment. Three of these embedding techniques are defined next: map-
ping, selection, and placement. Mapping is dedicated to splitting and mapping 
service topologies on multiple datacenters or administrative domains. Selection 
allows network functions that have already been deployed to be shared among dif-
ferent services. Finally, placement corresponds to the allocation of network ser-
vices to virtualization servers. These techniques also take into account the needs 
of stakeholders (i.e., network providers, operators, and clients). These needs are 
typically specified as policies and Service Level Agreements (SLAs). The embed-
ding task has also been considered to be a business opportunity for Network-as-
a-Service platforms [25]. In this work, we propose a flexible and customizable 
embedding solution based on multi-objective genetic algorithms for the mapping 
technique.

Fig. 1  The mapping technique
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In particular, the mapping technique considers a range of available datacenters 
or administrative domains for distributing and deploying a virtualized network 
service, as shown in Fig.  1. In Fig.  1, the red targets indicate a specific data-
center capable of hosting one or more network functions. These network func-
tions are represented as interconnected boxes, forming a network service topol-
ogy. The mapping solution determines the (near-to) optimal datacenter to allocate 
each network function based on a specific optimization function. The optimiza-
tion function can consider various factors, including local datacenter optimization 
metrics, such as the cost of allocation and execution, and transition optimization 
metrics, such as latency for data transmission between datacenters.

2.2  Related Work

There are often multiple possible mappings of a given virtualized network service 
on a multi-datacenter environment. However, the performance of those distinct 
mappings varies when different policies, constraints, and optimization metrics are 
employed [1]. In this way, mapping solutions must evaluate the multiple alternatives 
to guarantee, for instance, the Quality of Service (QoS) and Quality of Experience 
(QoE) of the final results. Multi-datacenter mapping solutions can be organized in 
two main classes: (i) centralized and (ii) distributed. Centralized solutions execute 
on a single processing unit. These solutions receive as input information about the 
network service to embed and the available datacenters, and return candidate map-
pings that optimize a given evaluation setup. Distributed solutions send messages 
with embedding requests to the available datacenters. The datacenters evaluate the 
embedding requests, decide which functions they will host, and forward requests for 
the remaining functions to neighbor datacenters. Centralized solutions are described 
in [10, 17, 26, 27], and distributed solutions are presented in [16, 28].

Dietrich et  al. [26] propose a solution to allocate virtualized network func-
tions across a set of multiple providers infrastructures. The solution optimizes the 
multi-datacenter mapping relying on four static metrics: (i) minimization of finan-
cial costs; (ii) minimization of the number of different providers and datacenters; 
(iii) minimization of resource usage; and (iv) maximization of suitability weights. 
In [27], an orchestration platform for multi-datacenter network services, called 
TeNOR, is proposed. TeNOR includes a multi-datacenter mapping solution which 
recovers information about financial costs, transmission delays, and resource usage 
to evaluate and optimizes (with a minimization objective) the candidate mappings. 
In [10], a multi-datacenter mapping strategy is proposed that considers hybrid sce-
narios where private and public datacenters provide optical network resources. The 
objective of that solution is to minimize financial costs (encouraging the allocation 
of functions in private datacenters) and the usage of frequency slots of the optical 
channels connecting the datacenters. Finally, the authors in [29] propose a hybrid 
solution for allocating virtualized network services in distributed points-of-presence. 
They employ a constructive heuristic to minimize both the maximum network link 
utilization and the required CPU cores for executing the virtualized services.
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In addition to the previously presented centralized mapping strategies that 
work with monolithic network functions, the authors in [30] propose a centralized 
mapping solution designed specifically for mapping micro-service-based net-
work functions and services. The solution utilizes a parallelization scheme and an 
optimization method based on Mixed Integer Linear Programming to minimize 
latency delay based on specific policies outlined in service requests.

The solution proposed in [16] consists of a multi-datacenter mapping tech-
nique based on a vertex-centric algorithm. The solution triggers rounds of mes-
sage exchanges among providers to find candidate mappings iteratively. The map-
ping algorithm uses a mechanism to avoid the concentration of the entire service 
on a single provider. This mechanism limits the number of network functions 
allocated in each round. This solution does not optimize any metric, returning to 
the user a set of candidate mappings that fulfill the allocation and instantiation 
constraints of the requesting service. With a method similar to [16], DistNSE [28] 
finds candidate mappings by exchanging messages among providers. This solu-
tion evaluates two optimization metrics: minimization of financial costs and sta-
bilization of inter-datacenter load. However, DistNSE does not limit the number 
of network functions allocated on each provider.

In [17] a multi-datacenter mapping technique based on a mono-objective 
genetic algorithm is proposed. The objective of that solution is to allocate the 
network functions of a network service chain on a multi-datacenter environment 
based on a single indicator (E). This indicator represents multiple datacenter 
metrics, such as link availability, bandwidth, the number of network functions 
that each datacenter can host, among others. Besides mapping the network ser-
vice across the multiple datacenters, the proposed solution also provides a backup 
schema for the mapped network functions. The backup schema intends to improve 
the overall service reliability. It is however possible map the main functions with-
out the backup.

The solution proposed in [18] employs a mono-objective genetic algorithm to 
map virtualized network services on physical substrate nodes. The solution aims to 
optimize the usage of computing and networking resources by the network services. 
In this way, the authors propose an objective function that minimizes the residual 
capacity of nodes to host functions and links to handle their communication, given 
the mapped services. The objective function consists of the minimization of a single 
indicator called Cm . This indicator typically gets the best results when all the net-
work functions are mapped to a single substrate node.

Finally, the Genetic Algorithm + Least Cost Backup (GA+LCB) [17] solution 
provides limited support for the definition of datacenter dependencies—which can 
be specified only for the first and last network functions of a chain. Besides employ-
ing a mono-objective genetic algorithm, that solution does not enable the users to 
tune typical genetic features such as setting the crossover probability and choos-
ing the selector algorithm. Similar to the GA+LCB, the solution proposed in [18] 
employs a mono-objective genetic algorithm that enables the users only to tune 
genetic features, such as crossover and mutation rates. However, this algorithm does 
not allow the user to change its objective function nor define datacenter dependen-
cies of particular network functions in a service. It is possible to state that none of 
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the presented solutions supports a customized evaluation setup or is based on multi-
objective genetic algorithms to map services on multiple datacenter. In the present 
work, we argue that multi-objective genetic algorithms can support customizable 
evaluation setups while finding good candidate mappings in workable times for 
complex virtual network service mapping problems.

Table 1 summarizes features of the related works described above. Despite the 
fact that all these solutions evaluate multiple optimization metrics, they do not ena-
ble stakeholders to customize the evaluation setup (i.e., it is not possible to define/
select neither the metrics employed by the optimization process, nor the objectives/
weights). This lack of customization makes it difficult to model and evaluate policies 
that are closely related to the deployment process (e.g., maximum delay, maximum 
geographical distance). Furthermore, solutions in [10] and [27] present limitations 
in terms of the specification of datacenter dependencies (i.e. they do not allow the 
specification of which functions should be allocated to which particular datacenters). 

Table 1  Summary of mapping solution characteristics

Mapping 
solution

Class Heuristic Optimization metrics Customization of 
evaluation setup

Support of 
datacenter 
dependence

[26] Centralized Subgraph mapping Financial costs ✗ ✗
Number of providers
Computational 

resources
Adequacy (weights)

[27] Centralized N/A Financial costs ✗ ✓
Inter-datacenter 

delay
Computational 

resources
[10] Centralized K-Cut Financial costs ✗ ✓

Frequency slots
[29] Centralized Constructive heu-

ristic
Network link usage ✗ ✗
Number of CPU 

cores
[30] Centralized N/A Latency ✗ ✗
[17] Centralized Genetic metaheuris-

tic
Links availability ✗ ✗
Bandwidth avail-

ability
Datacenter reliability
Function support

[18] Centralized Genetic metaheuris-
tic

Bandwidth efficiency ✗ ✗
Processing efficiency

[28] Distributed Time to live Financial costs ✗ ✗
Load balancing

[16] Distributed N/A N/A ✗ ✗
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Thus, for example, these solutions are not suitable to embed hybrid services (i.e., 
those in which physical network functions coexist with virtualized network func-
tions along a service topology) in multi-datacenter environments.

2.3  Genetic Algorithms

Genetic algorithms are inspired by Darwin’s theory of evolution and have been used 
to solve a myriad of optimization problems [31–33]. These algorithms evaluate indi-
viduals described by chromosomes (typically a vector representing a solution to the 
given problem). Chromosomes contain at least one gene, where a gene is a vector 
position. Each gene can be seen as a sub-problem and contains an allele. An allele, 
in turn, is a value that solves the sub-problem. Generations of individuals are sub-
mitted to the evolution processes, and are subject to operations such as crossover 
and mutation. The purpose of the evolutionary operations is to create new genera-
tions with individuals that are more fitted to solve the problem. Crossover opera-
tions select two or more individuals and partially combine their chromosomes to 
create a new descending individual. Mutation operations select random genes of an 
individual and replace their alleles (randomly or not). Note that genetic algorithms 
are metaheuristics and do not guarantee the globally optimal result. Furthermore, 
genetic algorithms execute stochastic operations. Thus, multiple executions of the 
same metaheuristic can produce different results for the same input. In particular, 
genetic algorithms are suitable to solve problems with large search spaces, providing 
results in workable execution time.

Two main classes distinguish genetic algorithms when they are used to solve opti-
mization problems: mono-objective and multi-objective. Mono-objective algorithms 
optimize a single metric, while multi-objective algorithms optimize multiple metrics 
through a cost-benefit relationship—typically using Pareto frontiers. Individuals in 
a common frontier do not have a domination relationship (i.e., they have at least 
one metric that presents better results compared to the other individuals in the same 
frontier). Optimization problems can also have constraints that invalidate portions 
of the search space. Different mechanisms can be used to tackle these constraints, 
for example, non-randomization of the initial population, the definition of immuta-
ble genes, and discarding invalid individuals. In this work, the problem of mapping 
virtual services on multiple datacenters is modeled as a multi-objective optimization 
problem. We use the Nondominated Sorting Genetic Algorithm II (NSGAII) [34] 
and Strength Pareto Evolutionary Algorithm 2 (SPEA2) [35] to implement the pro-
posed solution.

Genetic algorithms have been used to solve other problems related to NFV 
deployment. In [36–39], solutions based on genetic algorithms are presented for net-
work function placement. In particular, [36] uses a Multi-Objective Genetic Algo-
rithm (MOGA) and NSGAII to optimize the allocation of network functions on 
virtualization servers taking two objectives into account: the minimization of the 
concentration of traffic on some connections while balancing the load across the 
multiple servers. The genetic algorithm proposed in [37] minimizes the amount of 
traffic between servers in different datacenters. Similarly, in [38], NSGAII is used 
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to do service placement minimizing two optimization metrics: the number of virtu-
alization servers used, and the concentration of traffic on the connection channels. 
Finally, in [39] the authors propose a placement solution that maximizes the aver-
age usage of available servers and minimizes the number of servers used to provide 
a single service. In the context of network function scheduling, an NSGAII-based 
solution is proposed [40] to minimize both server resource consumption and the pro-
cessing time of network functions running on those servers. Despite the fact that 
genetic algorithms are employed by those solutions, none executes multi-objective 
multi-datacenter mapping of virtualized network services. Furthermore, they also 
do not enable stakeholders to customize the evaluation setup (including optimization 
metrics, objectives, and weights).

3  Genetic Service Mapping

Genetic Service Mapping (GeSeMa) employs genetic algorithms to map virtualized 
network services across multiple datacenters. GeSeMa is a flexible and customizable 
NFV mapping solution, enabling stakeholders to define service and network topolo-
gies, function and datacenter dependencies, and the evaluation setup (optimization 
metrics, objectives, weights, and constraints). This custom information is specified 
in a request document written in the YAML Ain’t Markup Language (YAML). This 
section starts with a description of GeSeMa’s request model and next presents the 
genetic strategy for multi-datacenter service mapping.

3.1  GeSeMa’s Request Model

GeSeMa’s request model, depicted in Fig. 2, presents three main objects that define 
(i) the service topology and the network functions (SERVICE); (ii) the optimization 
metrics and objectives (METRICS); and (iii) the datacenters and their characteristics 
(DATACENTERS). A string specified according to the rules of the Service ChAin 

Fig. 2  GeSeMa request model
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Grammar (SCAG) [9] represents the service topology in the SERVICE object. Fur-
thermore, for each network function defined in the service topology, there is a corre-
sponding entry in the FUNCTIONS sub-object. This entry, identified by the function 
ID, specifies the minimum resource requirements, including memory, virtualized 
processing cores, and virtualized network interfaces, all defined as integer values.

The METRICS object defines metrics and objectives used by the genetic algo-
rithms of GeSeMa to search, evaluate, and optimize candidate mappings. Metrics 
are of two categories: local or transition. Local metrics are used to evaluate the allo-
cation of network functions to datacenters, which correspond to the vertices of a 
graph representing the infrastructure on which the service is to be mapped. Local 
metrics include for instance the financial cost to allocate a function, the datacenter 
load, among others. Transition metrics are related to inter-datacenter connections—
which correspond to the edges of the infrastructure graph. Examples of transition 
metrics include: delay, distance in hops, and geographical distance. The metrics and 
their categories are defined in the request model using LOCAL and TRANSITION 
sub-objects, respectively. Each of these sub-objects can define multiple metrics. A 
metric must be uniquely identified (by its ID), besides having two mandatory attrib-
utes: OBJECTIVE and CONSTRAINTS. The objective attribute shows the evalua-
tion criteria for a particular metric, which can be either MAXIMIZATION or MINI-
MIZATION. The last attribute (CONSTRAINTS) consists of a list of strings each of 
which refers to the constraints of an optimization metric. Constraints define accept-
ance thresholds for the evaluation results of optimization metrics. In order to check 
results with respect to thresholds, relational operators (“<”, “>”, “ <= ”, “ >= ”, “ == ” 
and “ ! = ”) are employed to compare numerical values with thresholds.

Finally, the DATACENTERS object defines the physical and virtual environments 
available and their transitions (connections). The datacenters attribute is represented 
by a directed graph G = (V ,E) . The set of vertices V corresponds to the set of data-
centers, and the set of edges E represents the logical connections between datacent-
ers. The model keeps information about LOCAL metrics of each datacenter (ver-
tex) and TRANSITION metrics associated with the edges. A particular datacenter 
is thus defined with three sub-objects: RESOURCES, LOCAL, and TRANSITION. 
The RESOURCES sub-object contains information about memory (MEMORY), vir-
tual processing cores (VCPU), and virtual network interfaces (IFACES) made avail-
able by the datacenter. The LOCAL and TRANSITION sub-objects, in turn, define 
the metrics associated with datacenters and their connections obtained either with 
benchmarking or from catalogs; this is used by the optimization process. These sub-
objects are also related to the METRICS object, and there must be a correspond-
ence between metric identifiers and benchmark identifiers for both the LOCAL and 
TRANSITION sub-objects. In special, each entry of the TRANSITION sub-object 
determines to which datacenter the transition corresponds (using the datacenter 
unique identifier) and then defines the values of the optimization metrics for the 
transition.
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3.2  The Proposed Genetic Multi‑datacenter Mapping Method

GeSeMa executes two well-known genetic algorithms: NSGAII [34] and SPEA2 
[35]. Note that the system can be extended, so that other algorithms can be 
included. The stakeholders can choose the genetic algorithm taking into account 
their characteristics, features of the requested service and the datacenters, plus 
the evaluation setup provided. The genetic algorithms model the virtualized ser-
vice mapping problem as follows: 

1. Individuals An individual’s chromosome is modeled as a vector with N > 1 genes 
(i.e., positions), where each gene corresponds to a network function of the service 
topology (i.e., each function is mapped to a position in the vector). Genes contain 
alleles, represented by integer values in the range [0,M − 1] which correspond 
to the M > 0 datacenters available to map the network functions to. Note that, in 
GeSeMa, a valid individual is a candidate mapping.

2. Population The initial population is created randomly or using a greedy-based 
mechanism. The creation of the initial population must guarantee the non-vio-
lation of function to datacenter dependencies, if there is any (i.e., for instance, 
if a datacenter must host some function, the index corresponding to the specific 
datacenter is fixed to the allele of the constrained gene). To start with, the greedy 
mechanism sets a valid allele to the first gene and executes a greedy heuristic 
to define the other genes. If the population size gets greater than the number of 
possible alleles in the first gene, surplus individuals are created randomly. The 
population size, P > 0 , is a parameter defined by the stakeholders. However, the 
algorithm sets its default value to 50.

3. Objectives and Constraints GeSeMa evaluates objectives (with the evaluation 
setup) and constraints (e.g., policies, network topology, computational resources, 
and dependencies) for all individuals of each generation. We use a taboo list to 
keep invalid individuals and avoid re-evaluations in case of new occurrences. 
Furthermore, mechanisms to recover specific types of invalid individuals are also 
defined (they will be discussed later).

4. Selection The selection chooses individuals of a generation to crossover. GeSeMa 
uses a tournament mechanism that randomizes I individuals and returns the one 
that is the most fitted among them (i.e., the one on the best Pareto frontier). The 
tournament size, I > 1 , is a parameter determined by the stakeholders, with a 
default value of 2.

5. Crossover GeSeMa provides four crossover operators: Simulated Binary Crosso-
ver, Half Uniform Crossover, Partially Mapped Crossover, and Subtour Selection 
Crossover. The choice of a crossover operator should take into account their 
particularities and service request features. However, the default operator is set 
to the Simulated Binary Crossover. The crossover ratio (i.e., operator application 
probability), 0 ≥ Cr ≤ 1 , is also defined by the stakeholders, with a default value 
set to 1.

6. Mutation The proposed solution employs two mutation operators: replacement 
and swap. Replacement chooses a random gene and replaces its allele by a new 
random value. Swap chooses two random genes and exchanges their alleles. 
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Genes with datacenter constraints are never mutated. Similar to crossover, the 
stakeholders can define the mutation operator and ratio ( 0 ≥ Mr ≤ 1 ). The stand-
ard mutation operator is replacement, and the default value for the mutation ratio 
is 0.1.

GeSeMa executes two main procedures: (i) validation and configuration of the 
genetic algorithm; and (ii) creation and evolution of the population. The first proce-
dure uses the model specified in Sect. 3.1 to validate the provided service request, 
thus mapping high-level structures to iterable elements (i.e., dictionaries and lists). 
Next, the procedure checks previously defined genetic parameters (i.e., population 
size, tournament size, crossover operator/ratio, mutation operator/ratio, and number 
of generations) and, if valid, configures the genetic algorithm. Finally, the procedure 
generates a set of software elements employed for the creation and evolution of indi-
viduals by the second procedure.

Figure 3 summarizes the second procedure of GeSeMa. At first, the network ser-
vice, encoded as a string according to the SCAG grammar, is converted to a format 
which is processed by the genetic algorithms (Fig.  3A, B). The initial population 
is generated with valid individuals in terms of the network topology (datacenter 
transitions) and datacenter dependencies (constrained network functions pinned to 
their respective datacenters). Next, the individuals are evaluated (Fig. 3C) consider-
ing the availability of computational resources in the chosen datacenters and other 
constraints. In this way, each candidate is evaluated iteratively gene by gene for all 
metrics. Results of all genes are aggregated to define the overall result for each met-
ric. Finally, GeSeMa executes selections (Fig. 3D) in addition to the crossover and 
mutation genetic operations (Fig. 3E, F, respectively) to evolve the population. All 
the stages depicted in Fig. 3C–F represent the processing done to create a genera-
tion of individuals (Fig.  3G). Finally, after each generation has been created, the 
genetic algorithm saves the best fitted results (local Pareto frontier) to reuse in future 

Fig. 3  Summary of the GeSeMa workflow
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generations. After a predetermined number of generations, GeSeMa returns the last 
Pareto frontier found as the final result (Fig. 3H).

In particular, the evaluation stage (Fig. 3C) produces information that is relevant 
for the next stages. The evaluation mechanism executes an iterative process, pro-
cessing the chromosome of an individual, gene by gene. Local optimization metrics 
are computed with the current gene’s allele. Transition optimization metrics, in turn, 
are processed when a datacenter transition occurs. The transition metrics use the 
current gene’s allele and the alleles of previously related genes. Besides the allele, 
for each gene there is a so called relation array with indexes of previously related 
genes (i.e., previous network functions that have a connection with a particular net-
work function in the requested service topology). In this way, linear chromosomes 
can represent branched service topologies. The set of partial evaluation results (i.e., 
by gene/allele) are jointly processed, and the individuals are classified in terms of 
Pareto frontiers.

A taboo list includes all the invalid individuals. In case new invalid individuals 
occur, if they have already been included in the taboo list, three actions are possible: 
(i) discard individual (standard action); (ii) replace the individual by a new random 
individual (in case policies or network topology constraints are violated); or (iii) 
reduce datacenter redundancy (in case computational resources constraints are vio-
lated). The evaluation process does not consider datacenter dependencies since they 
are never violated, given the individuals of the initial population and the specifica-
tion of constrained genes as static and non-mutable. Note that after GeSeMa returns 
the Pareto frontier, the user—which can be an automated system that requested the 
service mapping—has to determine which of the returned candidate mappings will 
be effectively adopted. This selection has to be done based on local priorities/needs 
that are defined individually, case-by-case.

4  Experimental Evaluation

In this section we present an evaluation of GeSeMa with two case studies.1 The first 
case study is presented in Sect.  4.1 and consists of the mapping of a hierarchical 
cache service on a network consisting of 114 datacenters. This case study allows 
the evaluation of GeSeMa’s convergence and execution time, among other metrics. 
In this case study, we also compare GeSeMa with other service mapping solutions 
that are based on classic heuristics. In the second case study (Sect. 4.2), we compare 
GeSeMa with the GA+LCB solution. In this case study, we employ the same net-
work topology (consisting of 114 datacenters) on which we map a generic service 
chain that consists of 9 network functions. GeSeMa was configured with the same 
constraints of GA+LCB, and both were executed in the same evaluation setup.

1 The implementation is available at https:// github. com/ ViniG arcia/ NFV- FLERAS.

https://github.com/ViniGarcia/NFV-FLERAS
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4.1  Multimedia Hierarchical Cache Mapping

We evaluated GeSeMa through a case study in which a hierarchical multimedia 
cache is mapped onto a topology that corresponds to the Amazon AWS network, 
consists of 114 datacenters [41]. The service connects n individual cache functions 
on a linear topology. The first function is the master cache that receives and spreads 
content updates from a multimedia server. The other cache functions both receive 
and make requests for content updates from/to their respective predecessor cache. 
In this way content is spread hierarchically across the service topology. The follow-
ing constraints apply. Each datacenter can host at most one cache. The stakehold-
ers objective is to maximize a local metric and a transition metric: the density of 
users of the multimedia service of the datacenter (local) and geographical distance 
between neighboring caches (transition). The objective is to map caches to regions 
that are geographically distant to each other and which have high user density.

The network topology is fully connected, in the sense that each node can com-
municate directly with any other, without having to employ intermediaries, thus the 
topology can be represented by a complete graph. Note that we could have employed 
an arbitrary topology (instead of a complete graph), however we opted to employ 
the complete graph in order to make the search space more challenging for GeSeMa. 
Each datacenter x (vertex) has an associated value for user density vdu

x
 (local met-

ric). Each connection between two datacenters (edge) x and y has a value that cor-
responds to their geographical distance vgdxy  (transition metric). In a preliminary step, 
we tested multiple genetic configurations to determine the operators and ratio of 
both crossover and mutation, tournament size, initial population mode, and popula-
tion size.

For this case study we employed the SPEA2 algorithm; the results for NSGA2 
were slightly inferior. SPEA2 was configured with the following parameters: SBX 
crossover ratio of 30%, replacement mutation ratio of 5%, selection by binary 
tournament, random initial population, and population size of 50 individuals. The 
service topologies consisted of 7, 9, and 11 caches. The tests were executed on a 
machine based on an Intel Core I5-3330 (3.0GHz) CPU with 8GB RAM (DDR3, 
1600MHz), running Ubuntu 16.04, and Python 3.5.2. We chose service sizes (i.e., 
the number of network functions) that could not be computed using exhaustive 
search in feasible time (on the same machine).2 Experiments were executed 30 times 
with a confidence level of 95%.

The first experiment consists of a convergence test. The purpose of this experi-
ment is to validate the feasibility of GeSeMa on the exploration and exploitation 
of the search space, thus converging to a Pareto frontier (despite of that being the 
global best frontier or not). Frontiers consist of a framework for evaluating multi-
objective results. This framework relies on the concepts of Pareto dominance and 
Pareto optimality [42]. In summary, Pareto dominance states that a particular multi-
objective result dominates another comparable one if the first contains at least one 

2 All the files, programs, and scripts used are available at https:// github. com/ ViniG arcia/ NFV- FLERAS/ 
tree/ Gesem aExpe rimen ts.

https://github.com/ViniGarcia/NFV-FLERAS/tree/GesemaExperiments
https://github.com/ViniGarcia/NFV-FLERAS/tree/GesemaExperiments
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better partial result (for a specific objective) while all other partial results are at least 
equal to those of the second one. Thus, a Pareto optimal result is not dominated by 
any other result in a given set. A set of Pareto optimal results forms the Pareto fron-
tier (denoted as frontier 0). Next frontiers (1, 2, 3, and so on) are dominated by the 
previous frontiers and dominate the following ones.

Service mappings evolve for an undetermined number of generations, stopping 
when no modification occurs in the Pareto frontier after a set of 1500 generations. 
In case a modification has occurred, a new set of 1500 generations is executed. The 
results of this experiment are shown in Figs. 4, 5, and 6 for the service topologies 
with 7, 9, and 11 functions, respectively. The lines represent the mean of the relative 
Pareto frontiers of best-fitted candidates at a particular generation, error bars show 

Fig. 4  GeSeMa’s convergence 
(7 VNFs)

Fig. 5  GeSeMa’s convergence 
(9 VNFs)
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the best and worst Pareto frontiers found among the best candidates of the same 
generation.

The relative frontiers are computed as follows: (i) a predefined number of genera-
tions (in our case, 1500 generations) are evaluated by a preconfigured evolutionary 
algorithm in round r; (ii) the frontiers are computed and the fittest individuals from 
round r (hereby called “Pareto frontier r”) are obtained and saved; (iii) the Pareto 
frontier r is merged with the Pareto frontier r − 1 , creating set s[r−1,r] ; (iv) the relative 
frontiers of s[r−1,r] are computed and its Pareto frontier identified; (v.i) if no indi-
vidual that appears exclusively in the Pareto frontier r occurs in the Pareto frontier 
of s[r−1,r] , we consider that the algorithm has converged, and the next step—(vi)—is 
executed; (v.ii) if there is at least one individual that appears both in Pareto frontier 
r and in the Pareto frontier of s[r−1,r] (but not in frontier r − 1 ), we consider that the 
population is still evolving, and steps (i), (ii), (iii), (iv), and (v) are repeated; (vi) 
the Pareto frontiers from each round ([1; r]) are merged in another in set s[1,r] ; (vii) 
the relative frontiers of s[1,r] are computed; and finally, (viii) information about the 
relative frontiers they appear in s[1,r] are assigned to each individual in the Pareto 
frontiers of rounds [1; r].

In the first experiment, the execution of GeSeMa with the previously described 
configuration resulted in a positive correlation between the number of generations 
required to make the genetic algorithm converge and the problem complexity. This is 
a consequence of the large number of suboptimal candidates generated in the begin-
ning of the execution of GeSeMa (exploration is more significant than exploitation 
in that phase), which are replaced in few generations. Thus, typically, the larger the 
search space (number of datacenters available) the more complex the problem is 
(number of VNFs in the service topology), and more exploration is needed to find 
appropriate regions of the search space to exploit. For the same reason, the number 
of frontier transitions increases as the search space and the problem complexity do. 
In the experiment, the mapping of the service topology with 7 functions converged 
after 36,000 generations over 8 frontiers; with 9 functions it converged after 72,000 

Fig. 6  GeSeMa’s convergence 
(11 VNFs)
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generations over 13 frontiers; and with 11 functions it converged after 100,500 gen-
erations over 19 frontiers.

Furthermore, to assess the convergence capability of GeSeMa towards global 
optima results (i.e., the global Pareto frontier), we conducted an experiment using a 
reduced network and service. This setup allowed us to run an exhaustive algorithm 
and obtain the global optimal frontier. The network topology consisted of 15 data-
centers, where direct communication between any pair of datacenters is possible, 
resulting in a complete graph. The results, depicted in Fig. 7 (we have used two dif-
ferent Y-axis scales in the image to improve the visualization), show the mean fron-
tier where the non-dominated candidates, obtained at different stages of GeSeMa’s 
execution over 128000 generations for a virtualized service with 5 network func-
tions, are located. The global optima frontier (0) is the reference for comparison, 
with values closer to zero indicating better performance.

Based on the results presented in Fig. 7, we can observe the capability of GeSeMa 
to approach the global optima results. It is important to note that the convergence 
gets slower as the algorithm gets closer to the Pareto frontier. It is due to the exten-
sive exploration and exploitation of the search space throughout the generations, 
making it progressively more challenging to find new promising areas. However, 
given enough time, GeSeMa converges to the global Pareto frontier with a high 
probability.

Fig. 7  Global Pareto frontier convergence (5 VNFs)
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The second experiment shows the execution time (in seconds) of GeSeMa as 
the number of generations increases. This experiment was executed for the topol-
ogies with 7 (Fig. 8), 9 (Fig. 9), and 11 (Fig. 10) functions. The results reveal a 
positive correlation of the execution time and the number of generations. How-
ever, we also noted that the execution time presents little variation as the service 

Fig. 8  GeSeMa execution time (7 VNFs)

Fig. 9  GeSeMa execution time (9 VNFs)
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topology sizes vary for the same number of generations. This is a consequence 
of the constraint that specifies that each datacenter hosts at most a single cache. 
Thus, the probability of creating invalid candidates increases as the number of 
chromosomes does. However, these invalid candidates are discarded before they 
are evaluated, which reduces the impact on the execution time. But, despite main-
taining the execution time stable, this makes it more difficult to improve the can-
didates and also delays the convergence of the genetic algorithm.

The third experiment modifies the evaluation setup employed to map the net-
work service. These modifications do not imply any changes of the algorithm. All 
the modifications are done in the service request document through the METRICS 
object. We considered three evaluation setups: (i) the standard setup with the maxi-
mization of both the user density and the geographic distance between neighbor-
ing caches; (ii) a mono-objective setup with the maximization of the user density; 
and (iii) a mono-objective setup with the maximization of the geographic distance 

Fig. 10  GeSeMa execution time (11 VNFs)

Table 2  Modifications on the evaluation setup

Maximization

User density geo-
graphical distance

User density Geographical distance

User density 129,261 141,176 156,314.20
Geographical distance 144,831.67 (423,13.69, 141,176) (156,314.20, 106,576)
User density – 150153 –
Geographical distance – – 162,025.35
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between neighboring caches. Each evaluation setup was submitted to GeSeMa with 
the previous configurations. In this experiment, our halting criteria is based on time, 
with the main loop of GeSeMa being executed for 10 s.

The results of the third experiment are shown in Table 2. The first column shows 
results for the multi-objective setup with the best cost-benefit relation and the same 
weight (i.e. equal to 0.5) for each particular optimization metric. The second col-
umn shows the best candidate in the Pareto frontier for the multi-objective optimi-
zation problem, but only considering the user density. Furthermore, we present the 
best result for the mono-objective user density evaluation in the second row of the 
same column. The last column shows the best candidate in the Pareto frontier for 
the multi-objective optimization problem, taking into account only the geographi-
cal distance in the first row. We also present the best result for the third evaluation 
setup (mono-objective geographical distance) in the third row of the third column. 
In the second and third columns, for the multi-objective evaluation setup row, data 
between parenthesis represent the results for both metrics employed to evaluate the 
candidate: (geographical distance, user density).

The results demonstrate the capacity of GeSeMa to deal with different evaluation 
setups by just modifying the service request document. For sure, the most specific 
the evaluation setup is, the best the resulting mapping candidates tend to be. So, in 
the experiment, if only the user density is relevant for some specific problem, it is 
better to employ mono-objective optimization. The same occurs for the geographic 
distance between neighboring caches. However, multi-objective optimizations are 
the best options when the evaluation setup relies on multiple metrics. Thus, later it is 
possible to evaluate the returned Pareto frontier according to some criteria, such as 
using weighs.

The next experiments compare results from GeSeMa with two alternative map-
ping solutions based on heuristic search: random search and k-stochastic greedy 
search. The random search randomizes the datacenters that will allocate the net-
work functions of a given service topology. This solution must guarantee the crea-
tion of valid candidates regarding datacenter dependencies and network topology 
constraints. The stochastic k-greedy search randomizes k ≥ 1 datacenters that can 
possibly allocate a network function of a service topology. It uses a greedy strategy 
to find the best local option taking into account the evaluation setup. Similar to the 
random search, the stochastic k-greedy algorithm must also guarantee that only valid 
candidates are created, with respect to datacenter dependencies and network topol-
ogy constraints. Both solutions were adapted to process the same service request 
document used by GeSeMa, thus enabling the customization of their evaluation set-
ups and a fair comparison with GeSeMa.

We configured all the solutions to execute their main loop for 10 s. The main loop 
consists of the creation and evaluation of individuals. Thus, we did not take into 
account in the execution time other internal routines, such as request processing, 
graph instantiation, and output recording. Other relevant configurations are the fol-
lowing. For GeSeMa running the SPEA2 algorithm: we employed a SBX crossover 
ratio of 30%, a replacement mutation ratio of 5%, selection was done with a binary 
tournament, the random initial population, and population size was of 50 individu-
als. In the Figures, results for the Classic random search is labeled as “Random”; 
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stochastic k-greedy search with k = 2 and k = 4 are labeled with “S2-Greedy” and 
“S4-Greedy”, respectively. Each execution of the mapping solutions returns the 
local Pareto frontier, which is afterwards used to compute the relative Pareto fron-
tiers (i.e., candidates in the relative Pareto frontier dominate all the other candidates 
in the local Pareto frontiers found in any execution of any algorithm).

Fig. 11  Frontiers comparison (7 VNFs)

Fig. 12  Frontiers comparison (9 VNFs)



 Journal of Network and Systems Management           (2023) 31:71 

1 3

   71  Page 22 of 31

The fourth experiment presents the mean of the relative Pareto frontiers from the 
candidates returned by the mapping solutions. Figures 11, 12, and 13 show these 
results for the topologies with, respectively, 7, 9 and 11 functions. Grey bars show 
results obtained for all the candidates in the relative frontiers (case “complete”), 
while white bars show results for the top ten candidates of the relative frontiers of 
each solution (case “top 10”). GeSeMa applied for mapping services consisting of 
7 and 9 network functions presented the best relative Pareto frontier mean for both 
the “complete” and “top 10” cases. For mapping 11 functions, GeSeMa presented 
a worse result for the “complete” case in comparison with S4-Greedy. However, 
for 11 functions, GeSeMa still reaches better results than S4-greedy in the “top 
10” case. The degradation of the GeSeMa in the “complete” case occurs due to the 
higher number of candidates in the Pareto frontiers (373 candidates) in comparison 
with the number of candidates of S4-Greedy (200 candidates). Thus, the best can-
didates from GeSeMa are better than the best candidates from S4-Greedy (see “top 
10” case), but GeSeMa returns more results that include candidates less fitted than 
the ones returned from S4-Greedy. The total number of candidates recovered from 
each mapping solution during the experiments are presented in Table  3. Another 
relevant observation is that within the top ten candidates, only GeSeMa presented 

Fig. 13  Frontiers comparison (11 VNFs)

Table 3  Number of candidates 
recovered from mapping 
solutions

Random S2-Greedy S4-Greedy GeSeMa

7 functions 291 241 225 353
9 functions 338 299 312 422
11 functions 274 242 200 373



1 3

Journal of Network and Systems Management           (2023) 31:71  Page 23 of 31    71 

all candidates in the relative Pareto frontier (i.e., 0). This fact shows the efficiency 
and stability of the proposed solution for mapping the service topology even as the 
number of functions varies.

Finally, the last experiments compare the total execution time (in seconds) for 
the solutions to map topologies with 7 (Fig. 14), 9 (Fig. 15), and 11 (Fig. 16) func-
tions. Note that 10 s of the total execution time is reserved to execute the main loop 
of each of the solutions. The extra time spent by the various solutions to run inter-
nal operations, such as request processing, graph creation, object instantiation, and 

Fig. 14  Exec. time comparison (7 VNFs)

Fig. 15  Exec. time comparison (9 VNFs)
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output recording, were very similar. The differences of the total execution times did 
not exceed 1.05  s—7.6%—even in the worst scenario (mapping of 11 functions, 
which presented the largest difference between S2-Greedy and Random). In par-
ticular, GeSeMa presents slightly smaller execution times than Random (0.39, 0.29, 
and 0.21 s to map 7, 9, and 11 functions respectively), and slightly larger execution 
times than S2-Greedy (0.31, 0.55, and 0.84  s to map 7, 9, and 11 functions) and 
S4-Greedy (0.2, 0.39, and 0.59 for 7, 9, and 11 functions, respectively).

4.2  Comparison Between GeSeMa and GA+LCB

GA+LCB is a mapping solution based on a mono-objective genetic algorithm 
[17]. In addition to the traditional mapping process (mapping the main network 
functions of a network service), GA+LCB includes a backup mapping mecha-
nism that creates a backup schema for the requested network service. How-
ever, as GeSeMa does not create backups, for comparison purposes GA+LCB 
is executed to map the main functions, not the backups. The GA+LCB objec-
tive function was configured as a maximization of the modified datacenter 
importance ( impk from [17]), which consists of the maximization of three 
metrics—link availability ( dak ), bandwidth availability ( dck ), and the avail-
ability factor ( Ak)—and the minimization of a single metric—inter-data-
center delay ( ddk ). The GA+LCB solution computes this evaluation setup as 
E = w1 ∗ nor(dak) + w2 ∗ nor(dck) + w3 ∗ nor(Ak) + w4 ∗ (1 − nor(ddk)) , where 

nor indicates a normalization function and wn the metric weight ( 
∑4

n=1
wn = 1 ). 

GeSeMa, in turn, evaluates the candidates using the same metrics and objectives 
but evaluating the Pareto frontiers.

In this case study, GeSeMa and GA+LCB are employed to map a network service 
with 9 generic network functions. The network topology is the same consisting of 

Fig. 16  Exec time comparison (11 VNFs)
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114 AWS global datacenters used in the experiments of Sect. 4.1. The mapping of 
network functions should not exceed the computational resource limits of the data-
centers, and no more than two network functions should be mapped to each data-
center. Both solutions were configured to obey both maximum delay and minimum 
availability constraints. The values for metrics dck and Ak are defined randomly in 
the intervals [100, 500] and [0.95, 0.99], respectively; the value of dak is 114 for all 
the datacenters (the network topology is a complete graph); and the value of ddk is 
defined considering the geographical distance between pairs of datacenters gdk,k+n in 
the curve gdk,k+n ∗ (1 − enor(gdk,k+n)∗−4) ∗ 0.05 . As required by GA+LCB, the initial 
datacenter and the final datacenter are specified in the request document.

The genetic parameters of both GA+LCB and GeSeMA were configure to be as 
similar as possible. GA+LCB includes a crossover of half of the population using a 
native algorithm. Thus, we configured GeSeMa with a crossover ratio of 0.5 using the 
SBX algorithm (SBX has similar behavior to the GA+LCB crossover algorithm). The 
mutation ratio is set to 0.05, GA+LCB uses a specific, simple mutation algorithm; 
GeSeMa uses a replacement mutation algorithm. GA+LCB executes a traditional 
roulette selector; GeSeMa employs a binary tournament selector. GA+LCB creates 
the initial population based on a k-shortest path algorithm; GeSeMa creates the ini-
tial population randomly. GA+LCB uses a self-designed mono-objective genetic algo-
rithm with elitism features; GeSeMa adopts SPEA2. The population size of 50 was 
the same for both solutions, as well as the execution of 20000 generations. The experi-
ments were performed in the same machine used for the first case study (Sect. 4.1).3 
Experiments were repeated 30 times with a confidence level of 95%.

Fig. 17  Frontiers comparison (genetic)

3 All the algorithms, scripts, datasets, and requests used to compare GA+LCB and GeSeMa are avail-
able at https:// github. com/ ViniG arcia/ NFV- FLERAS/ tree/ Gesem aExpe rimen ts.

https://github.com/ViniGarcia/NFV-FLERAS/tree/GesemaExperiments
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The first experiment compares the quality of the candidates returned by 
GeSeMa and GA+LCB. We use the mean of the relative Pareto frontiers for the 
comparison. Figure 17 shows the mean frontiers of candidates returned for two 
cases: “complete” (frontiers of all candidates from all executions are used to 
compute the mean value) and “top 10” (frontiers of top ten candidates of all exe-
cutions are used to compute the mean value). The GA+LCB solution presented 
a better mean of the relative frontiers in the “complete” case. However, GeSeMa 
surpasses the GA+LCB results in the “top 10” experiment. This behavior occurs 
due to the number of candidates returned from GA+LCB at each execution: pre-
cisely one. Thus, GA+LCB returns a total of 30 candidates with the best E value 
achieved in each execution of the solution. GeSeMa, in turn, returns the entire 
Pareto frontier, which typically contains multiple candidates. In this experiment, 
GeSeMa provided approximately 49 candidates per execution, from a total of 
1463 candidates evaluated in the “complete” case. Some of these candidates are 
not better fitted than the ones returned by the GA+LCB, but, as demonstrated by 
the “top 10” case, the best candidates of GeSeMa are more fitted than the best 
candidates of GA+LCB.

The second experiment compares the mean execution times of GA+LCB and 
GeSeMa to map the service in the AWS network topology. Figure 18 shows the 
results. GeSeMa presented a better mean execution time, being 104% faster than 
GA+LCB. These results can be explained as follows. First, GeSeMa employs a 
lightweight random initial population strategy, while GA+LCB uses a k-small-
est path heuristic to create a possibly more fitted initial population. Thus, the 
GA+LCB strategy requires the execution of shortest path algorithms that take 
quite a lengthy amount of time to run in large network topologies. Second, 
the evaluation of multiple optimization metrics with a mono-objective genetic 

Fig. 18  Exec. time comparison (genetic)
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algorithm requires an aggregated index (in GA+LCB, called E). The creation 
of this index imposes an extra time to process the normalization and weighting 
required by each generation. Third, GA+LCB does not have any mechanism to 
avoid the evaluation of candidates which have been already discarded but reap-
pear during the execution of the genetic algorithm. GeSeMa, in turn, uses a 
taboo list to ignore those candidates.

5  Conclusion

The deployment of virtualized network functions and services is one of the most 
important process of their lifecycle. Resource allocation (NFV-RA) is the core 
of the deployment process and consists of three tasks: composition; embedding; 
and scheduling. In this context, multi-datacenter mapping allows embedding a 
network service across a distributed environment consisting of multiple admin-
istrative datacenters. Current multi-datacenter mapping solutions do not enable 
the stakeholders to customize their evaluation setups. In this paper we presented 
Genetic Service Mapping (GeSeMa), an intelligent mapping solution that uses 
genetic metaheuristics to execute a customizable mapping of service topolo-
gies across multi-datacenter environments. We evaluated the feasibility and per-
formance of GeSeMa compared with other alternatives. Results confirm that 
GeSeMa produces mappings of superior quality in comparison with both classic 
and state-of-the-art solutions, while presenting low execution times.

Providing a flexible, customizable evaluation setup to solve the NFV-RA prob-
lem allows stakeholders to get exactly what they need, also taking into account 
their restrictions. That is the main purpose of GeSeMa: to optimize service map-
ping according to network policies defined by those that are able to describe 
their specific scenarios, services, resource availability, constraints, and also the 
requirements of their end-users. This flexibility also brings further possibili-
ties. A fine-grained customized evaluation setup can include aspects that are not 
purely technical and commercial. In this way, social and environmental objectives 
can also be included in the evaluation setup, such as favoring the service map-
ping to some regions due to humanitarian reasons or due to the use of renewable 
energy sources.

In future work, we aim to make GeSeMa dynamic and adaptive, continuously 
evolving the service mapping and suggesting migrations in real-time as both the 
network topology and the evaluation setup change. In this way, the solution will 
be able to tackle the dynamism of devices in particular networks, such as 5  G 
and IoT. Furthermore, we envision that an adaptive GeSeMa can work well in 
catastrophic scenarios and battlefield networks, where the available resources are 
unstable and can change at any time. Finally, taking advantage of the flexibil-
ity of the evaluation setup customization, we aim to release a service version of 
GeSeMa to be explored in the context of NFV marketplaces, such as FENDE [3] 
and T-NOVA [43].
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