
Vol.:(0123456789)

Computing (2023) 105:2821–2845
https://doi.org/10.1007/s00607-023-01211-8

1 3

REGULAR PAPER

The missing piece: a distributed system‑level diagnosis
model for the implementation of unreliable failure
detectors

Elias P. Duarte Jr.1 · Luiz A. Rodrigues2 · Edson T. Camargo3 ·
Rogério C. Turchetti4

Received: 20 October 2022 / Accepted: 7 August 2023 / Published online: 18 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023

Abstract
Reliable systems require effective monitoring techniques for fault identifica-
tion. System-level diagnosis was originally proposed in the 1960s as a test-based
approach to monitor and identify faulty components of a general system. Over the
last decades, several diagnosis models and strategies have been proposed, based on
different fault models, and applied to the most diverse types of computer systems.
In the 1990s, unreliable failure detectors emerged as an abstraction to enable con-
sensus in asynchronous systems subject to crash faults. Since then, failure detectors
have become the de facto standard for monitoring distributed systems. The purpose
of the present work is to fill a conceptual gap by presenting a distributed diagnosis
model that is consistent with unreliable failure detectors. Properties are proven for
the number of tests/monitoring messages required, latency for event detection, as
well as completeness and accuracy. Three different failure detectors compliant with
the proposed model are presented, including vRing and vCube, which provide scal-
able alternatives to the traditional all-monitor-all strategy adopted by most existing
failure detectors.

Keywords Distributed systems · Fault tolerance · System-level diagnosis · Failure
detection · Fault management · Fault monitoring

Mathematics Subject Classification 68M14 · 68M15

1 Introduction

As computer systems have become part of the fabric of human organizations, fail-
ures can have serious consequences [1, 2]. It is essential to design systems that con-
tinue to work correctly even if some components become faulty. Fault tolerance
emerged soon after the first digital computers were developed. In the 1950s, Von

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-023-01211-8&domain=pdf
http://orcid.org/0000-0002-8916-3302
http://orcid.org/0000-0002-9516-1282
http://orcid.org/0000-0002-6520-9142
http://orcid.org/0000-0002-5242-5057

2822 E. P. Duarte Jr. et al.

1 3

Neumann himself investigated the construction of reliable computers based on unre-
liable components [3]. Today, dependability is a well-structured domain that encom-
passes the properties that reflect the degree of confidence that can be placed in a
system [4].

There are several techniques for building fault-tolerant systems [5, 6]. Most of
those techniques exploit redundancy, both explicitly and implicitly. In explicit
redundancy, components are replicated to avoid single points of failure. For exam-
ple, instead of a single secondary memory unit, multiple units are employed so that
the failure of a single unit does not affect the correct operation of the system as
a whole. Redundancy can also be implicit, meaning that it is part of the system,
such as in fault-tolerant routing [7]. In the case of distributed systems, redundancy
is implicit and intrinsic, since a distributed system by definition consists of a set of
n ≥ 2 processes that communicate and collaborate to accomplish a task [8].

Among the dependability properties, availability indicates the percentage of time
a system is expected to operate correctly, taking into account failures and recoveries.
An effective failure recovery mechanism is required to increase availability. The idea
is to reduce the time the system remains unavailable as much as possible. Recov-
ery usually begins with the determination that a failure has occurred. Although some
dependable systems do not require explicit fault identification—for example, those
that make decisions based on majority voting—most fault-tolerant systems follow the
classical model of fault identification, fault isolation, and system reconfiguration [6].

Fault identification is also an old problem: the first model of diagnosable sys-
tems appeared in the 1960s: the PMC model, named after the authors’ initials [9].
According to the PMC model, system units perform tests on each other. Based on
the test results, you can determine which units are faulty. The PMC model assumes
that a correct tester can accurately determine and report the actual state of each
tested unit. Based on the PMC model, an extraordinary number of results have been
obtained in the field, including various models applied to different types of systems.
These results have made it possible to understand the limits of diagnosis and define
a wide variety of strategies for identifying faults [10, 11].

In the context of distributed systems, the so-called FLP impossibility was published
in 1985, also named after the authors’ initials [12]. According to this key result, it is
impossible to guarantee the correct execution of consensus in asynchronous distrib-
uted systems, where processes may crash. Asynchronous systems have no timing guar-
antees: There are no known bounds on the maximum time required to execute a task
and transfer messages between processes. The root of FLP impossibility is precisely
the difficulty in distinguishing a faulty process from a slow process. Given the impor-
tance of consensus—considered by many to be the central problem of distributed sys-
tems—this result has very important implications for the field as a whole.

In the 1990s, Chandra and Toueg [13] looked at the consensus problem from
a different angle. The main idea was to investigate how the FLP impossibility
would be affected if processes had information on failures. The authors defined
a failure detector that acts as an oracle and provides information about process
states. A process is reported as either correct or suspected to have failed. Failure
detectors are inherently unreliable, which means that the detector may report a
process state that does not correspond to reality. The authors have defined two

2823

1 3

The missing piece: a distributed system‑level diagnosis model…

failure detection properties: completeness and accuracy. Informally, completeness
reflects the ability of the detector to identify processes that have actually failed.
Accuracy, on the other hand, is the ability of the detector to not suspect that cor-
rect processes have failed.

Most failure detectors use a monitoring strategy in which all monitored processes
send heartbeat messages to every other process at regular intervals [14–16]. If the
system runs on a single network segment, it is possible to implement this strategy
efficiently, for example, using multicast. In other environments, the strategy does not
scale well, because it requires periodic transmission of n2 messages. Most efforts to
develop scalable detectors have involved probabilistic broadcasting [17]. In contrast,
going back to distributed diagnosis algorithms, they have been proposed precisely
to reduce the number of messages required for system monitoring, as well as the
latency for detecting new process state changes.

This work presents a model for unifying distributed diagnosis and failure detec-
tion. A new system-level diagnosis model is proposed that enables the specifica-
tion of scalable failure detectors. The results are presented on bounds on the number
of tests/monitoring messages required, latency for event detection, and complete-
ness and accuracy. Three different failure detectors are presented that are consistent
with the proposed model. The first is based on the traditional all-monitor-all strategy
adopted by most existing failure detectors. Then, two classical diagnosis algorithms
are specified in the new model: vRing and vCube, which provide scalable alterna-
tives to the traditional all-monitor-all strategy used by most existing failure detec-
tors. One of the major contributions of the paper is to provide several novel results
for pull-based failure detectors that have not been published before.

The contributions of this work can thus be summarized as follows:

• To the best of our knowledge, this work is the first to unify distributed system-
level diagnosis and unreliable failure detectors. Both approaches are extremely
relevant and have been widely employed for fault monitoring.

• Multiple results are derived for the new model (which are valid for any algorithm
developed under the model). The results are in terms of completeness, accuracy,
number of tests required, amount of information transmitted, and latency. All of
those results are valid for push-based failure detectors and represent a contribu-
tion in that context.

• Three algorithms are specified for the proposed model. Multiple properties are
derived for each of them. Note that an algorithm specified for the new model is
both a diagnosis algorithm and a failure detector.

The remainder of this paper is organized as follows. The next section provides an
overview of the system-level diagnosis. Section 3 defines and gives an overview
of failure detectors. Section 4 introduces the distributed diagnosis/ failure detector
model and presents basic results, including the number of tests needed. Section 5
shows the results for completeness and accuracy of fault diagnosis/detection. Sec-
tion 6 presents proofs of the best and worst detection latency for the model. Sec-
tion 7 presents the three failure detectors for the proposed model. Finally, the con-
clusion can be found in Sect. 8.

2824 E. P. Duarte Jr. et al.

1 3

2 System‑level diagnosis: an overview

In 1967, Preparata et al. [9] published the first model for “diagnosable” systems,
called the PMC, named after the author’s initials. In the PMC model, the system
consists of units that can test each other. A test is a procedure that is complete
enough to determine whether the tested unit is faulty or fault-free. The set of all test
results is called the syndrome of the system. A central entity external to the system
collects and processes the syndrome to classify the units as faulty or fault-free.

Interestingly, the PMC model adopted a fault model that corresponds to Byz-
antine errors today. Although no threats or malicious components are assumed, a
faulty unit produces an arbitrary output. More specifically, faulty units perform tests
and report test results that can have arbitrary values. In contrast, the PMC model
assumes that a fault-free unit runs the tests correctly and reports the correct test
results. Thus, depending on the number of tests performed and the state of the test-
ers, the syndrome may or may not allow the correct identification of faulty units.
Figure 1 shows a classic PMC example. The system consists of n = 5 units con-
nected by arcs that represent tests with labels indicating the results: 1 for faulty and
0 for fault-free. In the example, at most a single unit can be faulty in correctly deter-
mining the states of all units from processing the syndrome. If, on the other hand,
there are two or more faulty units, the problem becomes impossible: there is no way
to tell which unit is faulty. The concept of diagnosability was defined to reflect the
ability of a system to diagnose f failures. An f-diagnosable system can correctly
identify up to f faulty units. The system in Fig. 1 is 1-diagnosable.

The set of tests performed on the system was originally called connection assign-
ment and later became called test assignment. In the early years of diagnosis, much
of the research focused on determining testing assignments with a low number of
tests and high diagnosability, which would allow an effective and efficient diagnosis.
In 1974, Hakimi and Amim proved that for a system of n units to be t-diagnosable it
is necessary that (i) n ≥ 2t + 1 and that (ii) each process be tested for at least t other
processes [18].

Ten years later, in 1984, two new diagnosis models were proposed that had a
major impact on the field. The first model by Hakimi and Nakajima [19] allows the
diagnosis to be adaptive, in the sense that the testing assignment is dynamic, i.e., the
next tests to be executed are defined according to the results of the previous tests.
The possibility of employing adaptive tests introduces a time dimension to diagno-
sis: at first, a set of tests is executed, then their results are evaluated, and finally new

Fig. 1 The classic PMC model
example

2825

1 3

The missing piece: a distributed system‑level diagnosis model…

tests are defined for execution in the next round. The other model was proposed by
Hosseini et al. [20], and eliminated the central entity, allowing for a fully distributed
diagnosis. According to that model, the units not only execute tests, but also collect
test results from each other to obtain the syndrome. Each fault-free unit can then
process the syndrome and determine the set of faulty units in the system.

Only in the following decade, in 1992, Bianchini and Buskens [21] proposed the
combination of adaptive and distributed diagnosis. The Adaptive Distributed Sys-
tem-Level Diagnosis algorithm (Adaptive-DSD) was proposed and used to monitor
a large production network. The algorithm is based on a ring topology that presents
the optimal number of tests: at most n, but the latency is up to n consecutive testing
rounds. In 1998, Duarte and Nanya [22] proposed the Hierarchical Adaptive Distrib-
uted System-Level Diagnosis algorithm (Hi-ADSD). Hi-ADSD employs a hierarchi-
cal virtual topology to organize the system units. Latency is at most log2n testing
rounds, and all logarithms in this work are base 2.

The Hi-ADSD algorithm was originally proposed for the construction of efficient
and fault-tolerant network fault management systems, and has been implemented
using the Internet management protocol SNMP (Simple Network Management Pro-
tocol) [23]. Later, the algorithm was slightly modified to ensure that the number of
tests executed does not exceed nlogn per n testing rounds [24]. In the new version,
the algorithm is called vCube, and has been used as a failure detector to build reli-
able distributed algorithms [25, 26].

The system-level diagnosis results presented above assume the PMC model, and
a fully connected system, i.e., the topology is a complete graph. There are actually
several other models, for instance, those that assume a system of arbitrary topology
[27], which are partitionable by definition. In these models, the problem of deter-
mining which units are faulty becomes the problem of computing the reachability.
Other works consider different diagnosis models. Camargo et al. [28] abandoned the
assumption of the PMC model by assuming that correct units can make mistakes
during tests. Comparison-based diagnostics [11, 29] do not assume crash faults.
Faulty units can produce arbitrary outputs. The outputs of multiple units are com-
pared to perform the diagnosis, such as distributed integrity checking [30]. Although
most models assume that faults are permanent, some approaches have been pro-
posed to diagnose intermittent faults [31, 32]. Finally, the probabilistic diagnosis
model also presents an alternative approach, which takes into account the difficulty
in defining deterministic tests [10].

3 An overview of unreliable failure detectors

The output produced by an unreliable fault detector is exactly the same as that pro-
duced by a system-level distributed diagnosis algorithm: the list of processes con-
sidered faulty. However, failure detectors were proposed in a completely different
context [13, 33]. The original motivation for their development was the impossi-
bility of consensus in asynchronous systems with crash faults. Chandra and Toueg
investigated what would happen if a group of processes executing consensus had
access to information about the process state. In a sense, they were investigating the

2826 E. P. Duarte Jr. et al.

1 3

limits of the FLP impossibility. The question that arises here is whether this “extra”
information would enable consensus.

Therefore, failure detectors were not proposed to be efficient strategies for pro-
cess monitoring. The focus was on the properties that a failure detector should have
to help solve consensus. Then two essential properties were then defined: complete-
ness and accuracy. Informally, completeness reflects the ability of a failure detector
to suspect failed processes. Accuracy, on the other hand, requires the failure detec-
tor not to suspect correct processes. With respect to completeness, two observa-
tions can be made. First, as crash faults are assumed, a process that has failed does
not produce any response to any stimulus, so it is not difficult to guarantee that the
failure detector raises suspicions about what has occurred. On the other hand, the
monitored process may fail immediately after the failure detector has successfully
exchanged the messages that were used to determine its correctness. Thus, it may
take some time after the failure occurred for the suspicion to be raised.

Accuracy, on the other hand, can never be guaranteed in asynchronous systems.
The problem is classic: It is difficult (impossible, in fact) to distinguish a process
that has failed from a slow process. A correct process may be slow to execute tasks
or communicate. This is exactly the cause of the FLP impossibility. However, if the
failure detector does not suspect that correct processes have failed, what impact can
it have on consensus? In [34], the authors show that even if eventually a single cor-
rect process is never suspected, then consensus can be solved in an asynchronous
distributed system with crash faults. This is a far-reaching result that has conse-
quences in both theory and practice. The unsuspected correct process can be elected
leader and have multiple responsibilities in a distributed algorithm.

Completeness and accuracy can be classified as weak or strong [13], which com-
prises eight classes of failure detectors, as described below. Completeness is strong
if all failed processes are eventually suspected by all correct processes. On the other
hand, completeness is weak if, after a time interval, all failed processes are suspected
by at least one correct process. It is not difficult to convert weak completeness into
strong completeness. The correct process that detected the failure can broadcast the
information to the other correct processes.

Accuracy can also be strong or weak. Strong accuracy means that the failure
detector does not suspect that any correct processes have failed. Weak accuracy
requires only that at least a single correct process never be suspected. These two
properties are further extended as eventual weak/strong accuracy: no/one (respec-
tively) correct process is eventually suspected of having failed. The weakest class of
failure detectors (called ⋄W) presents weak completeness and eventual weak accu-
racy. Even that class of failure detectors guarantees the correct execution of con-
sensus in asynchronous systems with crash faults, as mentioned above. Note that an
asynchronous system enhanced with failure detection is no longer “purely” asyn-
chronous, since it involves timing properties.

Classical implementations of failure detectors require the periodic transmis-
sion of heartbeat messages by each monitored process to all others [14, 16, 35].
This strategy is efficient when the distributed system runs on a single physical
network based on broadcast, as it requires only a single message to send each
heartbeat to all processes. On the contrary, for systems running on point-to-point

2827

1 3

The missing piece: a distributed system‑level diagnosis model…

networks or on more than one network, the strategy does not scale because it
requires regular transmission of n2 messages. That is one of the motivations to
define the system-level diagnosis model for building failure detectors based on
tests presented in the next section.

4 A system‑level diagnosis model for unreliable failure detection

In this section, we present the new distributed diagnosis model for the imple-
mentation of classical fault detectors. The model assumes a distributed system Π
consisting of n processes that communicate by using message passing. Processes
have sequential identifiers, Π = {0, 1, .., n − 1} . The system is fully connected and
is represented by a complete undirected graph Kn = (Π,E) , where E is the set of
edges, E = {{i, j} ∣ 0 ≤ i, j < n and i ≠ j} . In this model, any two processes can
communicate directly with each other without passing through an intermediary.

The system is asynchronous, i.e., the maximum time required to transmit a
message or execute a task is unknown. The crash model is assumed, so a faulty
process completely loses its internal state and produces no output for any input.
A process can be in one of two states: correct or failed, also referred to as fault-
free/crashed, respectively. The function state(i) returns the state of the process i:
state(i) = { failed ∣ correct} . An event is defined as the transition of the state of
a process from correct to failed. Although it is not difficult to extend the model
to include process recovery and also to allow a process to suffer multiple events
over time, this paper assumes only permanent crash faults without recovery due
to space limitations.

Processes test each other. The purpose of a test is to allow the tester to determine
the state of the tested process. The outcome of a test can indicate either that the
tested process is correct or suspect of having failed. A test consists of a set of stimuli
sent by the tester to the tested process, for which proper replies are expected. The
specific testing procedure adopted varies according to the technology of the system,
and other factors such as specific functionalities can be checked to be correct. After
the tester receives the proper response, it classifies the tested process as correct.
Considering two processes i, j ∈ Π , a test executed by the tester j on the tested pro-
cess i is defined as function testj(i) = {correct ∣ suspect}. A proper timeout mecha-
nism has to be adopted to limit the time the tester will wait for a reply [15]. The test-
ing procedure has to be strong enough to avoid mistakes as much as possible, thus,
for instance, the decision to classify the tested process as suspect must be taken after
more than a single timeout. Corollary 1 establishes a correlation between the states
of a tested process and its classification after a test.

Corollary 1 A process tested as correct is indeed in this state, thus ∀i, j ∈ V , if testj(i)
= correct, then state(i)= correct. On the other hand, a process classified as suspect
can be either failed or correct due to slowness that caused a timeout when tested.
Thus, if testj(i) = suspect, state state(i)={correct ∣ failed}.

2828 E. P. Duarte Jr. et al.

1 3

The set of tests is called testing assignment and is represented by a directed
graph A = (Π,T) . The set of arcs T represents the tests and an arc (i, j) indicates
that process i tests process j (i.e., j is the tested process in this case). The tests are
executed periodically, in testing intervals determined by each tester according to its
local clock. The set of processes does not employ synchronized clocks or a global
clock. Thus, the testing interval of a tester can be different from the testing interval
of another tester. The only assumption is that local clocks move forward asymptoti-
cally. A testing round occurs after all processes have executed their assigned tests,
i.e., all tests in T are performed. Testing rounds can be enumerated as r1, r2, The
first round corresponds to the first time tests are executed, and so on.

The purpose of diagnosis is to allow the correct processes to obtain, after a
finite number of testing rounds, a classification of the state of all processes. Thus,
∀i, j ∈ Π , process j classifies process i with function statej(i) = {correct ∣ suspect}.
Different processes can have different classifications for a given process, depend-
ing on the time instant in which the tests were executed, and the flow of test results
among correct processes.

The latency L is defined as the number of testing rounds it takes for all correct
processes to diagnose an event. Thus in re, re+1, ..., re+L rounds, ∀k, j ∣ state(k) = cor-
rect and state(j) = correct, statek(i) = statej(i) . The latency is proportional to the
diameter of A, the testing assignment graph.

We assume that if a given process fails, all correct testers will suspect the process
in the next testing round after the failure. This assumption is trivial to guarantee. As
a crashed process does not send any reply to any test, all testers will timeout the next
time the crashed process is tested. Corollary 2 makes it clear that a test executed on
a crashed process will always lead to suspicion.

Corollary 2 If process i has crashed and thus state(i) = failed, then for every correct
process j that has tested i statej(i) = suspect.

Corollary 3 presented next determines that each process must be tested peri-
odically by a correct process. Note that if a process is not tested, it is not possi-
ble to detect an event that might occur with that process. In the present model, to
ensure that all processes are properly monitored, each process must be tested by
a correct process in each testing round. In each testing round r, ∀i,∃j such that
state(j)=correct and (j, i) ∈ A.

Corollary 3 Each process i ∈ Π is tested by a correct process at each testing round
if there is one. Thus, it is guaranteed that any event that might occur at i is detected.

Note that instead of having every process tested in each testing round, an alter-
native would be to ensure that each process is tested once in m testing rounds.
Although that alternative would reduce the total number of tests, it would have an
impact in terms of the time it takes to detect an event.

A process obtains diagnostic information by either testing other nodes or obtain-
ing the information from correctly tested nodes. However, if the correct process i

2829

1 3

The missing piece: a distributed system‑level diagnosis model…

tested process j in the current testing round, it should not obtain diagnostic infor-
mation about j from other tested processes. Furthermore, according to Corollary 4,
it must be ensured that each correct process receives information about all system
processes in each testing round. The test assignment A can be defined so that all pro-
cesses can efficiently obtain all the necessary diagnostic information.

Corollary 4 In each testing round, a correct process obtains diagnostic information
about all other processes, either by testing those processes or by receiving informa-
tion from other correctly tested processes.

In an asynchronous system, a correct tester may suspect a correct tested process,
which may be slow to respond to the test. In an extreme situation, all correct pro-
cesses may suspect all other (correct) processes. In this case, all processes will test
all other processes, as shown in Theorem 1.

Theorem 1 Assuming that each correct process executes its assigned tests once per
testing round, any diagnosis algorithm specified according to the proposed model
executes n2 + n tests per round in the worst case.

Proof If in a testing round, all n processes are correct, but each process suspects all
other n − 1 processes, then each process tests all others. As all n processes do the
same, n ∗ (n − 1) = n2 − n tests are performed in total in that round. ◻

Actually, there is no assumption on the speed at which processes execute their
tests. Thus, one process can be much faster than others and execute its assigned tests
multiple times in a given testing round, whereas the slowest process executes its
assigned tests only once. In this way, the assumption in Theorem 1 that processes
execute their assigned tests once per testing round guarantees that the number of
tests is not greater than n2 + n.

In summary, the proposed model is (n − 1)-diagnosable, meaning that all but one
process can fail and the diagnosis can still be completed. The remaining correct pro-
cess tests all the others and completes the diagnosis of the system.

5 Diagnosis completeness and accuracy

In this section, we introduce the two classical properties of failure detection—com-
pleteness and accuracy—for the proposed model. Informally, completeness requires
that faulty processes are suspected by correct processes. Accuracy requires that cor-
rect processes do not raise false suspicions, such that correct processes self-identify
as correct. The properties are then formally defined and, following the original defi-
nition in [13], classified as weak and strong.

The diagnosis satisfies strong completeness if all correct processes classify
every failed process as a suspect after a finite number of testing rounds since
the corresponding failure event occurred. Consider a failure event in the process

2830 E. P. Duarte Jr. et al.

1 3

i ∈ V , thus i’s state changes from correct to failed. Strong completeness requires
that after a finite number of rounds ∀j ∈ V such that j is correct, j classifies i as
suspect. Weak completeness, on the other hand, only requires that at least one
correct process classifies every failed process as suspect. Thus, for i ∈ V , after
a failure event at i, in a finite number of rounds ∃j ∈ V ∣ state(j)=correct, and
statej(i) = suspect.

In the proposed system-level diagnosis model, it is impossible to convert weak
completeness directly to strong completeness, as is done in Ref. [13]. The reason
is that the correct tester j who suspected a failed process i can itself be suspected
(incorrectly and indefinitely) by any other correct process in the system. Figure 2
shows an example: process 0, which is correct, tests the failed process 1 and clas-
sifies it as suspect. However, all other processes suspect 0, so it is not possible
to use the strategy that the only process that correctly raised the suspicion com-
municates that information to the remaining correct processes, as is done in [13].
However, this does not prevent any algorithm designed according to the proposed
model from satisfying strong completeness, as will be shown below.

In the proposed model, to guarantee strong completeness, it suffices to guaran-
tee that a correct process, say k, executes a test on a failed process i or receives
this information from another process tested as correct. By Theorem2, any algo-
rithm specified according to the proposed model satisfies the strong completeness
condition. After a finite number of testing rounds, each correct process will have
tested the failed process or received this information from another correct pro-
cess, which in turn will have tested the failed process or received this information
from another correct process, and so on.

Theorem 2 Any diagnosis algorithm specified according to the proposed model sat-
isfies strong completeness.

Proof The proof is based on the induction of the diameter of the testing assignment
A. Consider a failed process i, such that state(i)=failed. Induction basis: if the diam-
eter is one, then all processes test all other processes. According to Corollary 2,
∀j ∈ V , j ≠ i and state(j)=correct: statej(i) = suspect. Induction hypothesis: If the
diameter of the testing assignment A = d the completeness is strong, i.e., all pro-
cesses at a distance at most of d with respect to the failed process i effectively sus-
pect i. Induction step: increment the diameter to d + 1 , including the processes that
test those processes at a distance d from i. These processes will obtain diagnostic
information on the failure of i from the processes tested. ◻

Fig. 2 Process 1 has failed and
is tested as suspect by process
0. Eventually, correct processes
2, 3 and 4 will also suspect that
process 1 has failed

2831

1 3

The missing piece: a distributed system‑level diagnosis model…

Next, Theorem 3 proves that to guarantee strong accuracy in the proposed model,
in addition to being strongly connected among themselves, correct processes cannot
raise any false suspicion about each other.

Theorem 3 Consider any algorithm specified according to the proposed model.
Strong accuracy is only guaranteed if all correct processes are strongly connected
among themselves in the testing assignment A and no correct process suspects any
other correct process.

Proof The proof is similar to that of Theorem 2: if no correct process suspects any
other correct process and all correct processes are strongly connected among them-
selves in A, then after at most d testing rounds, all correct processes obtain diagnos-
tic information about each other. In other words, ∄k ∈ V such that state(k) = correct
and statek(i) = suspect indefinitely. ◻

It is easy to see that the correct processes must be strongly connected between
themselves in A to guarantee strong accuracy. For example, in Fig. 3, processes 0
and 1 are correct, test each other, and do not suspect each other. However, all other
correct processes suspect both and, thus, all correct processes are not strongly con-
nected, and strong accuracy is not satisfied.

Theorem 3 shows that in addition to being strongly connected between them-
selves, no correct process can suspect any other correct process to ensure strong
accuracy. For example, Fig. 4 shows contradictory tests for processes 0 and 1. Let i
be a correct process. Both j and k test i, and they are the only processes that test i in
A. Suppose that j determines that i is correct, while k suspects i. Some of the other
correct processes will obtain diagnostic information on i from j and others from k,
so the process i may remain suspect indefinitely, which breaks the accuracy.

Fig. 3 Precision can only be
satisfied if all correct processes
are strongly connected in A

Fig. 4 In this example, although
all correct processes are strongly
connected among themselves,
processes 0 and 1 only test and
suspect each other, thus the
accuracy is not strong

2832 E. P. Duarte Jr. et al.

1 3

6 Failure detection latency

Recall that a testing interval defines the frequency with which a process executes
its assigned tests. It is a time interval defined by the local clock. A test round, on
the other hand, occurs after all correct processes have executed their assigned
tests. The length of a testing round depends on the slowest tester. The failure
detection latency is defined as the number of testing rounds required to detect an
event. Thus, after an event occurs on process j, the next round of testing counts
as the first for latency and so on until ∀i ∈ Π is such that i is correct, statei(j) sus-
pect, and the local timestamp i for j is equal to 1.

Next, we prove theorems for latency and failure detection for best and worst
cases for each algorithm specified according to the proposed model. We assume
a single event, i.e., the next event cannot occur until the previous event has been
fully diagnosed, i.e., the failure has been detected by all correct processes.

Theorem 4 In the best case, the failure detection latency of any algorithm specified
according to the proposed model is one test round.

Proof After an event has occurred at process j, in the next testing round every cor-
rect process either tests j and discovers the event, or obtains information about j
from another process tested as correct. The order in which tests are executed in the
next rounds after the event occurs affects the latency. Suppose that the first correct
processes that execute tests in that round are j’s testers. After that, consider that all
tests are executed by processes that do not test j directly, but test j’s testers. If there
are no false suspicions, these processes will obtain information about the event.
Next, assume that all tests are executed on correct processes that already have infor-
mation about the event. Thus in a single testing round, all processes obtain informa-
tion about the event. ◻

Theorem 5 In the worst case, the failure detection latency of any algorithm specified
according to the proposed model is equal to the diameter of the testing assignment
A.

Proof Correct processes learn about some event by testing a failed process j or
by getting the information from another process tested as correct. The proof is by
induction on the length of the testing path in A through which the diagnostic infor-
mation about the event propagates. Each tester i of a failed process j detects its fail-
ure in at most one round of testing. Now, consider k, the tester of j’s tester i. Process
k detects the event in 1 or 2 rounds of testing. If k tests i after i has tested j, k detects
the failure in the same round of testing as i. However, if k tested i before i tested k
and detected the event, k needs an additional round of testing to make the detection.
Thus, if the testing path has a length of 2, the latency is at most 2 testing rounds.

Now assume that if the path has length l, it takes at most l testing rounds for all
processes along the path to detect the event. Extend the testing path by one, say with

2833

1 3

The missing piece: a distributed system‑level diagnosis model…

z. Process z will either detect the event in l testing rounds (a test executed after the
tested process had made the detection) or l + 1 rounds, otherwise.

As a testing path has a length that is at most equal to the diameter of the testing
assignment graph A, the latency in the worst case is equal to the diameter of A. ◻

Figure 5a and b illustrate the two test situations that eventually lead to the best-
and worst-case latencies. These tests are performed in a single testing round. In
Fig. 5a, process B first tests process C and detects the event, updating the local
diagnostic information accordingly. Then, process A tests process B as correct and
receives diagnostic information about the event in process C. In a single testing
round, both processes detect the event. On the other hand, in Fig. 5b, when pro-
cess A tests process B, there is no information about any event, because process B
will only test process C after that, detecting the event. Therefore, process A will not
detect the event until the next testing round.

7 Three failure detectors

In this section, we present three failure detectors specified according to the proposed
system-level diagnosis model. The first is the brute-force failure detector, where
each process tests every other process in every testing interval. Next, the vRing
failure detector is presented, which organizes tests on a virtual ring topology [21].
Finally, the vCube failure detector is described, which uses a hierarchical virtual
topology as the testing assignment graph [24].

Figure 6 shows the proposed architecture for the deployment of the failure detec-
tion service based on the distributed diagnosis. The user is a distributed application
that accesses the failure detection service through an API that allows both configura-
tion (such as which processes are to be monitored or the algorithm to be employed)
and obtaining the results (e.g. failure notifications). The specific algorithm to be
employed defines a virtual testing topology, and monitoring tests are issued among
the corresponding processes. Whenever a test detects a failure, the information flows
back to the distributed application.

In comparison with traditional diagnosis models, the most important difference
is that the new model allows tests to give incorrect results, i.e., a correct process
can be suspected of having crashed. In traditional PMC-based diagnosis, the main

Fig. 5 Two examples of tests executed in a single testing round

2834 E. P. Duarte Jr. et al.

1 3

assumption is that a correct tester can always accurately determine the state of
the tested process. In addition, the classic properties of failure detectors—com-
pleteness and accuracy—are defined for the new model with several results being
derived, completeness and accuracy have never before been considered in the
context of diagnosis.

As proven in Sect. 5, any detector designed according to the proposed model
satisfies the strong completeness condition, but can satisfy the strong accuracy
condition only if no correct process suspects any other correct process, and all
correct processes in the testing assignment graph A are strongly connected to
each other. As proved in Sect. 3, any failure detector specified according to the
proposed model requires n2 tests in the worst case, but this is an extreme situation
where every correct process incorrectly suspects every other correct process. All
of these results are valid for the three failure detectors.

We describe the three detectors and show the trade-off in terms of the number
of tests required, the amount of information transferred between testers, and the
latency in worst-case failure detection. In Sect. 6, it was shown that, in the best
case, each fault detector corresponding to the proposed model has the latency of
a single testing round. The results in this section consider the worst-case latency,
which is shown to be equal to the diameter of the testing assignment graph A.
The results in this section assume that each correct process performs a single test
per round. However, if some process is faster and performs more tests, this only
affects the total number of tests executed.

As a process starts the execution of any of the three failure detection algo-
rithms presented, all processes are considered to be in the unknown state, except
the tester itself, which always assumes itself to be correct. The procedure + Test
(i,j) + is executed by the tester process i on the tested process j. +Test(i,j)+ allows
i to classify the tested process j either as correct or suspect. A test consists of a
procedure that is tailored for the system technology and may involve a sequence

Fig. 6 Architecture: distributed failure detection based on diagnosis

2835

1 3

The missing piece: a distributed system‑level diagnosis model…

of message exchanges, including retransmissions, as well as the execution of mul-
tiple tasks by j. The +Test(i,j)+ procedure encapsulates timing assumptions, as
it is necessary to give up waiting for a response eventually. As mentioned above,
a correct process assumes itself to be correct, and there is no self-test, i.e., ∄
+Test(i,i)+. A tester may obtain diagnostic information from a correctly tested
process.

Diagnostic information consists of the process identifier and the corresponding state:
−1 (unknown), 0 (correct), or 1 (suspect).

7.1 The Brute‑force failure detector

The Brute-force failure detector requires every process to monitor directly all other
processes. In the proposed model, this means that each process tests all other n − 1
processes in every testing round. Thus, the procedure +Test(i,j)+ is executed by
every correct process i at the beginning of each new testing interval on each process
j, ∀j ∈ Π ∣ j ≠ i . The pseudocode of the Brute-Force failure detector is presented in
Algorithm 1.

The Brute-force failure detector algorithm requires the execution of n2 − n tests per
test interval when no process executes more than one test per round. On the other hand,
the tester does not need to obtain any diagnostic information from the tested processes.
The latency for detecting an event is at most 1 test round after the event has occurred.

7.2 The vRing failure detector

The vRing (Virtual Ring) Failure Detector is inspired by the Adaptive Distributed
System-level Diagnosis (Adatptive-DSD) algorithm [21]. The pseudocode is presented
in Algorithm 2. According to vRing, each process i performs a test on the process
j = (i + 1) mod n . If this process tests correctly, then process i receives diagnostic
information about all processes except itself and the processes it tested in the current
interval. Otherwise, if process j is suspected, process i tests the next process in the ring
until a correct process is found or all processes are suspected. After testing a correct
process and receiving diagnostic information, the tester is done for the test interval.

2836 E. P. Duarte Jr. et al.

1 3

Figure 7a shows a vRing with n = 6 processes, none of which have crashed and
no test has raised a false suspicion. Figure 7b shows the same example system, but
after processes 1, 2, and 5 have crashed. Therefore, process 0 tests 1 as suspected,
2 as suspected, and finally stops after testing process 3 as correct, from which it
receives information about processes 4 and 5. Process 4 tests process 5 as suspected,
tests process 0 as correct and receives information about processes 1, 2 and 3.

In the proposed model, in the best case, each process running vRing tests a single
process per round of testing. If some processes crash, more tests are performed. On
the other hand, if there are no false suspicions, even in the worst case, each pro-
cess (whether correct or crashed) is tested once per round. As shown in Corollary 5,
vRing uses the optimal (minimum) number of tests required by the proposed model,
namely n tests per testing interval. However, the worst case remains the one proved
in Theorem 1, and every correct process i tests every process j, ∀j ∈ Π ∣ j ≠ i . If all
processes raise false suspicions about all other processes, n2 − n tests are executed.

Corollary 5 According to Corollary 3, each process must be tested once per testing
round by a correct tester, if there is one. Thus, if there are n processes, the minimum
number of tests that can be executed per testing round is n, if fewer than n tests are

Fig. 7 A vRing with n = 6 process

2837

1 3

The missing piece: a distributed system‑level diagnosis model…

executed, one or more processes are left untested. If there is a single correct process
and all others have crashed, then n − 1 tests are executed.

If there are at least two correct processes and no false suspicions, the vRing fail-
ure detector requires the execution of n tests per testing interval. On the other hand,
if all processes are correct, each tester needs to obtain diagnostic information about
n − 2 other processes from each tested process. Thus, at most n2 − 2n items of diag-
nostic information could theoretically be transferred between processes in each test-
ing round. This amount of information can be easily reduced by having each tested
process record locally which information it had previously sent to its tester so that
the next time it is tested only new information is transferred. Furthermore, if the cor-
responding timestamp is equal to −1 (unknown), the tester does not obtain the item.
This information is transferred as processes learn the states of each other.

In terms of latency, according to Theorem 1, the best case requires a single test-
ing round, and the worst case latency is the diameter of the test assignment graph A,
which in this case is n − 1 testing rounds.

7.3 The vCube failure detector

The vCube (virtual Cube) Failure Detector is inspired by the VCube distributed
diagnosis algorithm [24]. Similar to the vRing failure detector, each process has a
sequential identifier that is used as a parameter to define the tests to be executed.
However, instead of a ring, vCube builds a hierarchical virtual topology that is a
hypercube when all processes are correct. Figure 8a shows a vCube with n = 8 cor-
rect processes. Bidirectional edges indicate that both processes test each other. The
virtual topology corresponds to the graph A = (V , T) . In each testing round, each
correct process i performs its assigned tests, i.e., process i tests process j if (i, j) ∈ T .
If all processes are correct and there are no suspicions, the tests correspond to the

Fig. 8 Testing graph in a vCube with n = 8 processes

2838 E. P. Duarte Jr. et al.

1 3

hypercube edges. Thus, each process performs log2n tests per round, for a total of
n log2n tests.

After a process crash, vCube autonomously reconfigures itself, maintaining
several logarithmic properties, thus being scalable by definition. vCube organizes
processes in increasingly larger clusters for testing. Each correct process i executes
tests on log2n clusters, which are ordered lists of processes returned by the function
c(i, s) = (i⊕ 2s−1, c(i⊕ 2s−1, 1), .., c(i⊕ 2s−1, s − 1)) . Table 1 shows all clusters for
a vCube with 8 processes.

The procedure for determining the tests to be performed is as follows. For each
node i, there is an edge (j, i), if j is the first correct process in c(i, s), s = 1, .., log2n .
Thus, each process is tested by exactly log2n testers, unless all processes in a clus-
ter have crashed. After detecting a new event, the set of tests is recalculated. For
example, in the example shown in Fig. 8b, process 4 has crashed. The tests that are
different from those that are executed when all processes are correct are highlighted.
The three tests that were executed by process 4 on 0, 5, and 6 have disappeared, but
they still execute process 4. Two new tests have also been added: Process 5 tests pro-
cesses 0 and 6 because it is the first correct process in c(0, 3) and c(6, 2).

When a process tests another process as correct, it receives all the information
that the tested process has. The diagnostic information is timestamped to identify
the most recent events, i.e. whenever the timestamp received for a particular process
is greater than the local timestamp of the same process, it is updated with the larg-
est value. The next time the same test is run, the tester only receives information
about new events. Algorithm 3 presents the vCube failure detector in pseudocode as
executed by any process i.

Table 1 Function c(i, s) returns the clusters for n = 8 processes

s c(0,s) c(1,s) c(2,s) c(3,s) c(4,s) c(5,s) c(6,s) c(7,s)

1 1 0 3 2 5 4 7 6
2 2,3 3,2 0,1 1,0 6,7 7,6 4,5 5,4
3 4,5,6,7 5,4,7,6 6,7,4,5 7,6,5,4 0,1,2,3 1,0,3,2 2,3,0,1 3,2,1,0

2839

1 3

The missing piece: a distributed system‑level diagnosis model…

Note that this algorithm is different from the original hierarchical distributed
diagnosis algorithms [22, 24], since in this version each process tests all clusters
in each test interval. In distributed diagnosis algorithms, each process tests a single
cluster per interval. According to Corollary 6, the maximum number of tests per-
formed is n log2n when there are no false suspicions, since each node is tested by
the first correct process of each of its log2n clusters. The number of tests will be less
than n log2n only if all processes in a given cluster have crashed.

Corollary 6 Each process i running vCube checks ∀j ∈ V in which clusters
c(j, s), s = 1... log2n it is the first correct process. As each process j has log2n clus-
ters, if there are no false suspicions, there are at most log2n testers. Thus, consider-
ing all n processes, at most n log2n tests are executed per testing round.

Regarding latency, the best case is one testing round, as proven in Theorem 1.
Theorem 6 proves that in the worst case, there are at most log2n testing rounds, even
if there are false suspicions.

Theorem 6 In the worst case, the failure detection latency of vCube is of log2n test-
ing rounds.

Proof If there are no false suspicions, the diameter of the testing assignment graph
created by vCube is equal to log2n [24]. In case there are false suspicions, the diam-
eter can only reduce as more edges are added to T. ◻

Finally, the amount of diagnostic information transferred between a tester and the
tested process is at most n − 2 items. The worst case corresponds to a situation in
which the tester obtains information about every other process (except the tester and
the tested processes) in a given testing round. As a tester only gets diagnostic infor-
mation that is novel, and if the timestamp is not equal to −1 (unknown), the average
amount of information transferred should be much less than that.

7.4 A comparison

In this section, we present a brief comparison of the three failure detectors listed
in Table 2. The detectors are compared based on the worst-case latency (the best
case is one testing round for all); the number of tests per round of tests for the case

Table 2 A comparison of the
three failure detectors

Algorithm Latency (in
rounds)

No. tests No. data
items
transf.

Brute force 1 n
2 − n 0

vRing n − 1 n n − 2

vCube log2n n log2n (n − 2)

2840 E. P. Duarte Jr. et al.

1 3

where there are no false suspicions (in the worst case, all employn2 − n tests); plus
the amount of information transferred per test per round in the worst case.

In terms of the number of tests, the Brute-Force algorithm always requires n2 − n
tests per round, while vRing is optimal and requires n tests and vCube requires
n log2n tests. On the other hand, the latency of the Brute-Force algorithm is optimal
as it requires one testing round for all processes to detect an event, while vRing may
require up to n − 1 testing rounds, and vCube is logarithmic. Brute force is also the
best solution in terms of the amount of information transferred between the tester
and the tested processes, as it does not require any information. Both vRing and
vCube can require up to n − 2 items of information transferred per test, but can eas-
ily be configured to transfer only new information, which should be very small in a
steady state.

It is important to highlight that depending on the scenario, one or another failure
detector may be the best. When the number of processes is small, the Brute-Force
algorithm should be the best option, as it presents a latency of a single round, and
the cost in terms of the number of tests (n2) should not be a problem. Whenever
it is important to keep the number of tests at the minimum, i.e. requiring the least
amount of effort by the processes running the detector, vRing is the best option, as
each process is tested exactly once (in case there are no false suspicions). However,
vRing presents the largest latency, which means that either detecting failures quickly
is not an issue, or an additional event-based notification strategy should be adopted.
vCube is the scalable alternative that presents several logarithmic properties and
should be used as the size of the system grows. Whenever a quadratic number of
tests has to be avoided as well as a linear latency, vCube is the best option.

7.5 Simulation

The algorithms were implemented and compared using the Neko framework [36].
Two scenarios were evaluated: (a) without failures or false suspicions; (b) with
crash failures. For each scenario, systems with n = 4, 8, 16, ..., 256 processes. The
time interval since a message is sent until it is received is of 1.0 time unit, of which
0.1 time unit is spent by the source to send the message, and 0.9 time units are for
transmission across the network. All experiments were performed in log2

2
(n) rounds,

which is vCube’s worst-case latency, in order to guarantee that all processes will be
tested by all others. The testing interval for all algorithms was set to 30.0 time units.
The timeout is 4.0. Next, the experiment scenarios are described.

No failure. Fig. 9 shows the execution time and the number of messages of the
Brute-Force, vCube and the vRing. The execution time varies for the three algo-
rithms, but increases faster for Brute-Force as the number of processes increases.
vRing has the same execution time as vCube. The number of messages for Brute-
Force is also noticeably higher, as it requires n2 tests per round. vCube generates
n log2 n tests per round and vRing just n tests, due to its sequential testing strategy.
Each test consists of request and response messages.

Crash. In the scenario with a single failure, the execution time is very close to
the scenario without failures, since each execution includes more than one round

2841

1 3

The missing piece: a distributed system‑level diagnosis model…

of tests and the detection latency is diluted across the time. The same happens
with the number of messages, although it is slightly lower as the processes detect
the failure and stop testing the failed process. Figure 10 shows the latency. A
crash occurred at time 0.0. As process 0 is the first to be tested by all processes in
Brute-Force, the latency is constant and corresponds to the timeout interval.

In the first round of vCube, only neighbors virtually connected to the crashed
process identify the event. In the second round, neighbors two hops away identify
the failure, and so on. The diagnostic latency of the vRing is always n − 1 rounds.
This result is exactly the same for false suspicion, since information propagation
follows the same strategy in each algorithm.

Fig. 9 Simulation results in a fault-free execution

Fig. 10 Latency of diagnosis for the one-faulty process

2842 E. P. Duarte Jr. et al.

1 3

8 Conclusion

Both distributed diagnosis and failure detection represent abstractions for moni-
toring processes in distributed systems, with both providing as output a list of
processes that are considered to have crashed. The purpose of the proposed model
is to bring together the best of both approaches, creating the synergy to foster the
development of the next generation of fault monitoring techniques in distributed
systems. Several properties are defined and bounds are proved, in particular those
related to completeness, accuracy, latency, number of tests, and amount of infor-
mation transmitted.

In terms of diagnosis, the most significant contribution of the proposed model
is to allow a test result to be a mistake, i.e., a correct process can be suspected
of having crashed. In addition, the classic properties of failure detectors—com-
pleteness and accuracy—were defined for the model and results were derived.
From a failure detector perspective, several results were derived for pull-based
detectors, including their performance in terms of latency, number of tests, and
amount of information transmitted. Three failure detectors were presented and
compared: Brute-Force (the traditional all-monitor-all), vRing and vCube. The
purpose of the model proposed in this work is thus to bridge the gap between the
two abstractions by providing a common framework for defining distributed diag-
nosis algorithms as unreliable failure detectors.

Future work includes the investigation of other efficient failure detectors based
on the proposed model. The model itself can be extended in several ways, for
example, to allow the recovery of processes and network partitions. Furthermore,
the implementation and empirical evaluation of the proposed detectors based on
the quality of service metrics [35] and the adoption of machine learning [37] are
also planned as future work. Also planned as applications of the proposed model
and algorithms for failure detection in large-scale asynchronous systems, cloud
computing [38], and the Internet of Things [39].

Acknowledgements This work was partially supported by the Brazilian Research Council (CNPq—
Conselho Nacional de Desenvolvimento Científico e Tecnológico) Grant 308959/2020-5 and FAPESP/
MCTIC/CGI Grant 2021/06923-0

Declarations

Conflict of interest The authors hereby ensure that there are no conflicts of interest regarding this manu-
script and its publication on Computing. The research/paper is fully compliant with all ethical standards.
Elias P. Duarte Jr. is an Associate Editor of the Computing journal.

References

 1. NYT: gone in minutes, out for hours: outage shakes facebook (2021) https:// www. nytim es. com/
2021/ 10/ 04/ techn ology/ faceb ook- down. html

 2. Codestone: the true impact of IT failures (2017) https:// www. codes tone. net/ our- thoug hts/ true-
impact- of- it- failu res

https://www.nytimes.com/2021/10/04/technology/facebook-down.html
https://www.nytimes.com/2021/10/04/technology/facebook-down.html
https://www.codestone.net/our-thoughts/true-impact-of-it-failures
https://www.codestone.net/our-thoughts/true-impact-of-it-failures

2843

1 3

The missing piece: a distributed system‑level diagnosis model…

 3. Neumann J, Shannon CE, McCarthy J (1956) Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Princeton University Press, Princeton, pp 43–98

 4. Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of depend-
able and secure computing. IEEE Trans Dep Secure Comput 1(1):11–33. https:// doi. org/ 10. 1109/
TDSC. 2004.2

 5. Beyer B, Jones C, Petoff J, Murphy NR (2016) Site reliability engineering: how Google runs pro-
duction systems. O’Reilly, Sebastopol, United States http:// landi ng. google. com/ sre/ book. html

 6. Jha NK (1996) Fault-tolerant computer system design. IEEE Parallel Distrib Technol Syst Appl
4(4):84–84. https:// doi. org/ 10. 1109/ MPDT. 1996. 71023 41

 7. Duarte Jr EP, Santini R, Cohen J (2004) Delivering packets during the routing convergence latency
interval through highly connected detours. In: DSN, pp 495–504. https:// doi. org/ 10. 1109/ DSN.
2004. 13119 19

 8. Reynal M (2005) A short introduction to failure detectors for asynchronous distributed systems.
SIGACT News 36(1):53–70. https:// doi. org/ 10. 1145/ 10527 96. 10528 06

 9. Preparata FP, Metze G, Chien RT (1967) On the connection assignment problem of diagnosable
systems. IEEE Trans Electron Comput 16(6):848–854. https:// doi. org/ 10. 1109/ PGEC. 1967. 264748

 10. Masson GM, Blough DM, Sullivan GF, Pradhan DK (1996) System diagnosis. Prentice-Hall Inc,
USA, pp 478–536

 11. Duarte EP, Ziwich RP, Albini LCP (2011) A survey of comparison-based system-level diagnosis.
ACM Comput Surv. https:// doi. org/ 10. 1145/ 19226 49. 19226 59

 12. Fischer MJ, Lynch NA (1985) Impossibility of distributed consensus with one faulty process. J
ACM 32(2):374–382. https:// doi. org/ 10. 1145/ 3149. 214121

 13. Chandra TD, Toueg S (1996) Unreliable failure detectors for reliable distributed systems. J ACM
43(2):225–267. https:// doi. org/ 10. 1145/ 226643. 226647

 14. Bertier M, Marin O, Sens P (2002) Implementation and performance evaluation of an adaptable
failure detector. In: DSN, pp 354–363. https:// doi. org/ 10. 1109/ DSN. 2002. 10289 20

 15. Turchetti RC, Duarte EP, Arantes L, Sens P (2016) A QoS-configurable failure detection ser-
vice for internet applications. J Internet Serv Appl (JISA) 7(1):1–14. https:// doi. org/ 10. 1186/
s13174- 016- 0051-y

 16. Turchetti RC, Duarte EP (2017) NFV-FD: implementation of a failure detector using network virtu-
alization technology. Int J Netw Manag 27(6):1988. https:// doi. org/ 10. 1002/ nem. 1988

 17. Gupta I, Chandra TD, Goldszmidt GS (2001) On scalable and efficient distributed failure detectors.
In: 20th PODCP, ACM, New York, pp 170–179 https:// doi. org/ 10. 1145/ 383962. 384010

 18. Hakimi SL, Amin AT (1974) Characterization of connection assignment of diagnosable systems.
IEEE Trans Comput 23(1):86–88. https:// doi. org/ 10. 1109/T- C. 1974. 223782

 19. Hakimi N (1984) On adaptive system diagnosis. IEEE Trans Comput 33(3):234–240. https:// doi.
org/ 10. 1109/ TC. 1984. 16764 20

 20. Hosseini, Kuhl, Reddy (1984) A diagnosis algorithm for distributed computing systems with
dynamic failure and repair. IEEE Trans Comput 33(3):223–233. https:// doi. org/ 10. 1109/ TC. 1984.
16764 19

 21. Bianchini RP, Buskens RW (1992) Implementation of online distributed system-level diagnosis the-
ory. IEEE Trans Comput 41(5):616–626. https:// doi. org/ 10. 1109/ 12. 142688

 22. Duarte EP, Nanya T (1998) A hierarchical adaptive distributed system-level diagnosis algorithm.
IEEE Trans Comput 47(1):34–45. https:// doi. org/ 10. 1109/ 12. 656078

 23. Duarte EP, De Bona LCE (2002) A dependable snmp-based tool for distributed network manage-
ment. In: DSN, IEEE, pp 279–284. https:// doi. org/ 10. 1109/ DSN. 2002. 10289 11

 24. Duarte EP, Bona LCE, Ruoso VK (2014) Vcube: a provably scalable distributed diagnosis algo-
rithm. In: 2014 5th Workshop on latest advances in scalable algorithms for large-scale systems, pp
17–22. https:// doi. org/ 10. 1109/ ScalA. 2014. 14

 25. Rodrigues LA, Arantes L, Duarte EP (2016) An autonomic majority quorum system. In: 2016 IEEE
30th international conference on advanced information networking and applications (AINA), IEEE,
pp 524–531. https:// doi. org/ 10. 1109/ AINA. 2016. 73

 26. Araujo JP, Arantes L, Duarte EP Jr, Rodrigues LA, Sens P (2019) VCube-PS: a causal broadcast
topic-based publish/subscribe system. J Parallel Distrib Comput 125:18–30. https:// doi. org/ 10.
1016/j. jpdc. 2018. 10. 011

 27. Duarte EP, Weber A, Fonseca KVO (2012) Distributed diagnosis of dynamic events in partitionable
arbitrary topology networks. IEEE Trans Parallel Distrib 23(8):1415–1426. https:// doi. org/ 10. 1109/
TPDS. 2011. 284

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
http://landing.google.com/sre/book.html
https://doi.org/10.1109/MPDT.1996.7102341
https://doi.org/10.1109/DSN.2004.1311919
https://doi.org/10.1109/DSN.2004.1311919
https://doi.org/10.1145/1052796.1052806
https://doi.org/10.1109/PGEC.1967.264748
https://doi.org/10.1145/1922649.1922659
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/226643.226647
https://doi.org/10.1109/DSN.2002.1028920
https://doi.org/10.1186/s13174-016-0051-y
https://doi.org/10.1186/s13174-016-0051-y
https://doi.org/10.1002/nem.1988
https://doi.org/10.1145/383962.384010
https://doi.org/10.1109/T-C.1974.223782
https://doi.org/10.1109/TC.1984.1676420
https://doi.org/10.1109/TC.1984.1676420
https://doi.org/10.1109/TC.1984.1676419
https://doi.org/10.1109/TC.1984.1676419
https://doi.org/10.1109/12.142688
https://doi.org/10.1109/12.656078
https://doi.org/10.1109/DSN.2002.1028911
https://doi.org/10.1109/ScalA.2014.14
https://doi.org/10.1109/AINA.2016.73
https://doi.org/10.1016/j.jpdc.2018.10.011
https://doi.org/10.1016/j.jpdc.2018.10.011
https://doi.org/10.1109/TPDS.2011.284
https://doi.org/10.1109/TPDS.2011.284

2844 E. P. Duarte Jr. et al.

1 3

 28. Camargo ET, Duarte EP (2018) Running resilient MPI applications on a dynamic group of recom-
mended processes. J Braz Comput Soc 24(1):1–16. https:// doi. org/ 10. 1186/ s13173- 018- 0069-z

 29. Ziwich RP (2016) A nearly optimal comparison-based diagnosis algorithm for systems of arbitrary
topology. IEEE Trans Parallel Distrib 27(11):3131–3143. https:// doi. org/ 10. 1109/ TPDS. 2016. 25240
04

 30. Ziwich RP, Duarte EP, Albini LCP (2005) Distributed integrity checking for systems with replicated
data. In: 11th ICPADS’05, vol 1, pp 363–3691. https:// doi. org/ 10. 1109/ ICPADS. 2005. 130

 31. Song J, Lin L, Huang Y, Hsieh SY (2023) Intermittent fault diagnosis of split-star networks and
its applications. IEEE Trans Parallel Distrib Syst 34(4):1253–1264. https:// doi. org/ 10. 1109/ TPDS.
2023. 32420 89

 32. Guo C, Wu C, Xiao Z, Lu J, Liu Z (2023) The intermittent diagnosability for two families of inter-
connection networks under the PMC model and mm* model. Discret Appl Math 339:89–106.
https:// doi. org/ 10. 1016/j. dam. 2023. 05. 029

 33. Delporte-Gallet C, Fauconnier H, Guerraoui R, Hadzilacos V, Kouznetsov P, Toueg S (2004) The
weakest failure detectors to solve certain fundamental problems in distributed computing, ACM,
New York, pp. 338–346 https:// doi. org/ 10. 1145/ 10117 67. 10118 18

 34. Chandra TD, Hadzilacos V, Toueg S (1996) The weakest failure detector for solving consensus. J
ACM 43(4):685–722. https:// doi. org/ 10. 1145/ 234533. 234549

 35. Chen W, Toueg S, Aguilera MK (2002) On the quality of service of failure detectors. IEEE Trans
Comput 51(1):13–32. https:// doi. org/ 10. 1109/ 12. 980014

 36. Urban P, Defago X, Schiper A (2001) Neko: a single environment to simulate and prototype distrib-
uted algorithms. In: 15th ICOIN, pp 503–511. https:// doi. org/ 10. 1109/ ICOIN. 2001. 905471

 37. Jan SU, Lee YD, Koo IS (2021) A distributed sensor-fault detection and diagnosis framework using
machine learning. Inf Sci 547:777–796. https:// doi. org/ 10. 1016/j. ins. 2020. 08. 068

 38. Bui KT, Van Vo L, Nguyen CM, Pham TV, Tran HC (2020) A fault detection and diagnosis
approach for multi-tier application in cloud computing. J Commun Net 22(5):399–414. https:// doi.
org/ 10. 1109/ JCN. 2020. 000023

 39. Zhang W, Lu Q, Yu Q et al (2020) Blockchain-based federated learning for device failure detection
in industrial IoT. IEEE Internet Things J 8(7):5926–5937. https:// doi. org/ 10. 1109/ JIOT. 2020. 30325
44

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1186/s13173-018-0069-z
https://doi.org/10.1109/TPDS.2016.2524004
https://doi.org/10.1109/TPDS.2016.2524004
https://doi.org/10.1109/ICPADS.2005.130
https://doi.org/10.1109/TPDS.2023.3242089
https://doi.org/10.1109/TPDS.2023.3242089
https://doi.org/10.1016/j.dam.2023.05.029
https://doi.org/10.1145/1011767.1011818
https://doi.org/10.1145/234533.234549
https://doi.org/10.1109/12.980014
https://doi.org/10.1109/ICOIN.2001.905471
https://doi.org/10.1016/j.ins.2020.08.068
https://doi.org/10.1109/JCN.2020.000023
https://doi.org/10.1109/JCN.2020.000023
https://doi.org/10.1109/JIOT.2020.3032544
https://doi.org/10.1109/JIOT.2020.3032544

2845

1 3

The missing piece: a distributed system‑level diagnosis model…

Authors and Affiliations

Elias P. Duarte Jr.1 · Luiz A. Rodrigues2 · Edson T. Camargo3 ·
Rogério C. Turchetti4

 * Elias P. Duarte Jr.
 elias@inf.ufpr.br

 Luiz A. Rodrigues
 luiz.rodrigues@unioeste.br

 Edson T. Camargo
 edson@utfpr.edu.br

 Rogério C. Turchetti
 turchetti@redes.ufsm.edu.br

1 Federal University of Paraná, Curitiba, Brazil
2 Western Paraná State University (UNIOESTE), Cascavel, Brazil
3 Technological Federal University of Paraná (UTFPR), Toledo, Brazil
4 Federal University of Santa Maria (UFSM), Santa Maria, Brazil

http://orcid.org/0000-0002-8916-3302
http://orcid.org/0000-0002-9516-1282
http://orcid.org/0000-0002-6520-9142
http://orcid.org/0000-0002-5242-5057

	The missing piece: a distributed system-level diagnosis model for the implementation of unreliable failure detectors
	Abstract
	1 Introduction
	2 System-level diagnosis: an overview
	3 An overview of unreliable failure detectors
	4 A system-level diagnosis model for unreliable failure detection
	5 Diagnosis completeness and accuracy
	6 Failure detection latency
	7 Three failure detectors
	7.1 The Brute-force failure detector
	7.2 The vRing failure detector
	7.3 The vCube failure detector
	7.4 A comparison
	7.5 Simulation

	8 Conclusion
	Acknowledgements
	References

