
Journal of Parallel and Distributed Computing 184 (2024) 104789

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

journal homepage: www.elsevier.com/locate/jpdc

Scalable atomic broadcast: A leaderless hierarchical algorithm

Lucas V. Ruchel a, Edson Tavares de Camargo b, Luiz Antonio Rodrigues c,∗,
Rogério C. Turchetti d, Luciana Arantes e, Elias Procópio Duarte Jr. f

a Federal Institute of Parana (IFPR), Av. das pombas, 2020, Cascavel, 85814-800, PR, Brazil
b Federal Technology University of Parana (UTFPR), Rua Cristo Rei, 19, Toledo, 85902-490, PR, Brazil
c Western Parana State University (UNIOESTE), Rua Universitária, 2069, Cascavel, 85819-110, PR, Brazil
d Federal University of Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, 97.105-900, RS, Brazil
e Sorbonne Université/CNRS/Inria/LIP6, 4 place Jussieu, Paris, 75252, France
f Federal University of Parana (UFPR), Rua Evaristo F. Ferreira da Costa, 383-291, Curitiba, 82590-300, PR, Brazil

A R T I C L E I N F O A B S T R A C T

Keywords:

Distributed systems

Fault tolerance

vCube

Atomic broadcast

Dependability

Atomic Broadcast is an essential broadcast primitive as it ensures the consistency of distributed replicas.
However, it is notoriously non-scalable. In this work, we introduce the Leaderless Hierarchical Atomic Broadcast
(LHABcast) algorithm, which has two properties to improve scalability. First, it is a fully decentralized algorithm
that does not rely on a sequencer/leader, which is often a significant bottleneck. Processes running LHABcast
send messages with local sequence numbers and order messages received from other processes using timestamps
inspired on Lamport’s logical clocks. A process that receives the required set of timestamps can make a decision
about the overall sequence of message delivery. Second, the algorithm is hierarchical: processes are organized
on a vCube logical overlay network, which has several logarithmic properties and allows the construction of
autonomous spanning trees. vCube also works as a failure detector, assuming crash faults and an asynchronous
system model. In this paper, LHABcast is described, specified, and proven to be correct. Both simulation and
experimental results are presented. A comparison with an all-to-all strategy shows that the number of messages
sent by LHABcast is significantly lower in both fault-free and faulty scenarios. An implementation of LHABcast
in Akka.io achieved up to 3.9 times higher throughput in fault-free scenarios than an implementation of the
Raft-based Apache Ratis.
1. Introduction

Agreement is an essential problem of distributed systems that re-

quires processes to reach any kind of consensus. Atomic broadcast, also
known as total order broadcast, is an alternative agreement strategy
that ensures that all processes in the system receive the same set of
messages in exactly the same order [8,4]. As a communication primi-

tive, it is used to guarantee strong consistency while tolerating faults.
Atomic broadcast algorithms typically rely on a leader [18], including
the Paxos-based approaches [12] and also those that employ Raft [16].
A leader can quickly become a bottleneck, and its failure directly affects
the latency and throughput of the entire system.

Some atomic broadcast algorithms are based on destination agree-

ment [4]. According to this approach, the message delivery order is
the result of an agreement between the destination processes. There

* Corresponding author.

are three variants: i) agreement on a set of messages; ii) agreement on
the adoption of a proposed message order; and iii) agreement on a se-

quence number. Both the first and second variants are implemented
using a consensus algorithm, such as Paxos or Raft, and atomic confir-

mation protocols, such as those proposed in [14,26]. In general, they
elect a leader who acts as a coordinator and is responsible for conduct-

ing rounds of consensus to determine the order of message delivery.

The third variant is completely decentralized: processes agree on a
unique (but non-consecutive) sequence number for each message and
use it to determine the order of delivery. For example, AllConcur [20,

17] and AllConcur+ [19] are leaderless atomic broadcast algorithms
that use a digraph as an overlay network to broadcast messages. They
are fully decentralized and assume perfect failure detectors 𝑃 and ♢ ,
respectively. Although a larger number of messages are required for its
implementation, the third approach has the advantage that it allows all
Available online 23 October 2023
0743-7315/© 2023 Elsevier Inc. All rights reserved.

E-mail address: luiz.rodrigues@unioeste.br (L.A. Rodrigues).

https://doi.org/10.1016/j.jpdc.2023.104789

Received 5 February 2023; Received in revised form 25 July 2023; Accepted 14 Oct
ober 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
mailto:luiz.rodrigues@unioeste.br
https://doi.org/10.1016/j.jpdc.2023.104789
https://doi.org/10.1016/j.jpdc.2023.104789
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2023.104789&domain=pdf

L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

processes to broadcast messages simultaneously without compromising
scalability, since there is no bottleneck caused by a central coordinator.

In this work, we present a fully decentralized atomic broadcast algo-

rithm called LHABcast (Leaderless Hierarchical Atomic Broadcast). All
processes running LHABcast send their messages simultaneously over
autonomic, dynamically constructed spanning trees. All processes exe-

cute the same algorithm, no process is distinguished as a leader. The
order of message delivery is determined by a sequence number (also
called a timestamp) defined by the local counters maintained by each
process. In addition, the trees are autonomically rebuilt when a process
crashes, without the need for any additional messages. The trees are
created and managed using the vCube virtual topology [6], described
in Section 2. The vCube is a hypercube when all processes are fault-free,
but it reconfigures itself when processes fail, maintaining several loga-

rithmic properties. Besides connecting processes on a virtual scalable
topology, vCube is also a failure detector, notifying correct processes as
a failure is detected.

Although LHABcast is the first atomic broadcast algorithm defined
for vCube, several other types of broadcast algorithms have been pro-

posed for that virtual topology [23,10,24,3]. The first algorithm [23]

defines both a best-effort and a reliable broadcast algorithm assum-

ing a synchronous system model. Those algorithms dynamically build
autonomic spanning trees that connect fault-free processes. The tree
autonomically heals itself upon receiving notifications from the vCube
failure detection service: Each process redefines its tree edges inde-

pendently and seamlessly. In [10], the authors developed a reliable
hierarchical broadcast algorithm assuming an asynchronous system. In
order to ensure message delivery to processes that are falsely suspected
of having crashed, the algorithm keeps sending messages to suspect pro-

cesses in the tree.

We simulated both LHABcast and an alternative approach based on
destination agreement, where each process sends a message directly
to all other processes (as opposed to using a hierarchical strategy).
The results show that LHABcast outperforms the all-to-all algorithm
in terms of both latency and number of messages as the number of
processes increases. Furthermore, we implemented LHABcast in Java
using the Akka [13] framework. The implementation was compared
to Apache Ratis, an atomic broadcast solution based on an optimized
implementation of the Raft consensus algorithm in terms of through-

put. Experimental results show that LHABcast achieves up to 3.9 times
higher throughput than Raft in fault-free scenarios.

The remainder of this paper is organized as follows. The system
model is defined in Section 2, including a brief description of the vCube
overlay network and failure detector in an asynchronous system. Sec-

tion 3 presents the proposed algorithm and proof of correctness. Sec-

tion 4 presents the simulation and results of the experimental compar-

ison of the proposed algorithm. Related work is discussed in Section 5.
Finally, Section 6 concludes the paper and discusses future work.

2. System model

We assume a distributed system consisting of a finite set 𝑃 of 𝑛 > 1
processes that communicate by message passing. The network is fully
connected: Each pair of processes can communicate with each other
without using intermediaries. Processes can fail by crashing, and once
a process crashes, it does not recover. If a process never crashes dur-

ing a run, it is considered correct; otherwise, it is considered faulty. The
communication channels are reliable, i.e., messages exchanged between
two correct processes are never lost, corrupted, or duplicated. The sys-

tem is asynchronous, i.e., the relative processor speeds and delays of
message transmissions are unbounded [2].

Processes are organized on a virtual hierarchical topology, the
2

vCube [6], described in the next subsection.
Journal of Parallel and Distributed Computing 184 (2024) 104789

2.1. An asynchronous vCube algorithm

The hypercube-like topology of the virtual Cube (vCube) was origi-

nally proposed in the context of distributed system-level diagnosis as the
Hierarchical Adaptive Distributed System-level Diagnosis (Hi-ADSD) al-

gorithm. The process can be in one of two states: correct or faulty.
The crash fault model is adopted. The processes perform tests on each
other and exchange test information to determine which processes are
faulty/correct. The virtual topology created by the algorithm is hierar-

chical and corresponds to a hypercube when all processes are correct.
However, it retains several logarithmic properties when processes crash
and the correct processes reorganize. In particular, the latency to detect
the crash of a process is a logarithmic function of the total number of
system processes. Later, it was shown that the original algorithm leads
to a quadratic number of tests in some specific cases. As a result, the
vCube algorithm [6] was proposed, which ensures that the number of
tests is a logarithmic function of the total number of processes.

Recently, a new system-level diagnosis model for the specification of
unreliable failure detectors was proposed [5]. The major difference be-

tween the two approaches is that system-level diagnosis [15] is based
on tests (which correspond to the push-based category of failure de-

tectors) and, most importantly, the original diagnosis model assumes
perfect tests and thus implicitly assumes the synchronous system model.
On the other hand, unreliable failure detectors [2] were proposed for
asynchronous systems and allow false suspicions to occur, i.e. a correct
process can be classified as faulty. Although an earlier system-level di-

agnosis model had assumed tests that were not perfect [1], only in the
recent work mentioned above [5] diagnosis algorithms are specified as
failure detectors, including vCube.

vCube organizes processes into increasingly large clusters. Processes
of a 𝑑-dimensional vCube have identifiers consisting of 𝑑 bits. Two pro-

cesses are virtually connected if their binary addresses differ by a single
bit. The major advantage of the vCube is that the virtual topology re-

organizes itself dynamically when processes crash, preserving several
logarithmic properties, in particular the number of neighbors and the
distance between two processes.

The virtual edges of a vCube correspond to the tests that correct
processes perform on each other. vCube allows processes to obtain di-

agnostic information from each correctly tested process. The diagnostic
information is timestamped to allow processes to distinguish recent
from older events. Initially, each node is assumed to be correct and the
corresponding timestamp is zero. After an event is detected, i.e., a cor-

rect node has become faulty or vice versa, the corresponding timestamp
is incremented by one.

Algorithm 1 presents the pseudocode of the vCube failure detector
adapted from [6] for use in an asynchronous system. Process 𝑖maintains
timestamps for the state of every other process in the 𝑆𝑇𝐴𝑇𝐸𝑖[] array.
The algorithm provides that in the case of a false suspicion, i.e., if a
process 𝑖 was mistakenly suspected by a process 𝑗, the process 𝑖, upon
receiving this information, stops running and exits the system (line 8).
Furthermore, if a process suspects all others it also leaves the system.
This approach is similar to the fail-aware failure detectors proposed by
[7], where a correct process, once suspected by others, suspects itself.
The result is a ⋄𝑃 failure detector that is eventually strongly perfect [2]

if correct processes remain in a single connected component, i.e., there
are no partitions in the testing graph.

A tester process 𝑖 executes tests on a cluster 𝑐𝑖,𝑠 of processes of size
2𝑠−1, such that 𝑠 = 1... log2 𝑛. The function 𝐶𝑖,𝑠 (Equation (1)) returns
the ordered list of processes of each cluster, where ⊕ is the bitwise
exclusive or operator (xor).

𝑐𝑖,𝑠 = {𝑖 ⊕ 2𝑠−1, 𝑐𝑖⊕2𝑠−1 ,1, ... , 𝑐𝑖⊕2𝑠−1 ,𝑠−1} (1)

Table 1 shows the 𝑐𝑖,𝑠 function for 8 processes. In order to determine
the edges of the virtual topology, for each node 𝑖, there is an edge (𝑗, 𝑖),
such that 𝑗 is the first fault-free node in 𝑐𝑖,𝑠, 𝑠 = 1... log2 𝑛. After a process

detects that any other process has crashed, the set of edges (tests) is

Journal of Parallel and Distributed Computing 184 (2024) 104789L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

Table 1

The 𝑐𝑖,𝑠 table for 8 processes.

s 𝑐0,𝑠 𝑐1,𝑠 𝑐2,𝑠 𝑐3,𝑠 𝑐4,𝑠 𝑐5,𝑠 𝑐6,𝑠 𝑐7,𝑠

1 1 0 3 2 5 4 7 6

2 2,3 3,2 0,1 1,0 6,7 7,6 4,5 5,4

3 4,5,6,7 5,4,7,6 6,7,4,5 7,6,5,4 0,1,2,3 1,0,3,2 2,3,0,1 3,2,1,0
Algorithm 1 Asynchronous vCube Failure Detector executed by process
𝑖.

1: 𝑆𝑇𝐴𝑇𝐸𝑖[𝑗] ← 𝑐𝑜𝑟𝑟𝑒𝑐𝑡, ∀𝑗 = 0, .., 𝑛 − 1
2: repeat

3: for 𝑠 ← 1 to log2(𝑛) do

4: for all 𝑗 ∈ 𝑐𝑖,𝑠 | 𝑖 is the first correct process ∈ 𝑐𝑗,𝑠 do

5: TEST(j)

6: if 𝑗 is tested 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 then 𝑖 obtains 𝑆𝑇𝐴𝑇𝐸𝑗 [] and 𝑗 obtains
𝑆𝑇𝐴𝑇𝐸𝑖[]

7: if 𝑆𝑇𝐴𝑇𝐸𝑗 [𝑖] = 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 then ⊳ 𝑖 was suspected by 𝑗 (false
suspicion)

8: Halt execution and leave the system

9: else

10: Update 𝑆𝑇𝐴𝑇𝐸𝑖[] with the received 𝑆𝑇𝐴𝑇𝐸𝑗 []
11: else

12: if 𝑆𝑇𝐴𝑇𝐸𝑖[𝑗] = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 then 𝑆𝑇𝐴𝑇𝐸𝑖[𝑗] ← 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
13: if ∀𝑗 = 0, .., 𝑛 − 1, 𝑗 ≠ 𝑖: 𝑆𝑇𝐴𝑇𝐸𝑖[𝑗] = 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 then

14: Halt execution and leave the system

15: Sleep until the next testing interval

16: until forever

Fig. 1. Clusters of a three-dimensional vCube with 23 = 8 processes; process 4 is
faulty.

recomputed. For instance, in the example shown in Fig. 1, process 𝑝4
originally tests process 𝑝0, but after it has crashed, the tester of a process
𝑝0 in the cluster with 𝑠 = 3 is 𝑝5.

The algorithm by Rodrigues and others [24,22] defines the con-

struction of autonomic spanning trees for message dissemination in the
vCube. Any vCube process can be the tree root. The following functions
are defined in that work and used to specify the LHABcast algorithm:

• 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑠: Let 𝑖 and 𝑗 be two nodes of the system, 𝑖 ≠ 𝑗. Func-

tion 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑠 returns the index 𝑠 of the cluster of node 𝑖
that contains node 𝑗, 1 ≤ 𝑠 ≤ log2𝑁 . For instance, in the 3-VCube
shown in Fig. 1, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(1) = 1, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(2) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(3) = 2 and
𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(4) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(5) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(6) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟0(7) = 3. Note that for
any 𝑖, 𝑗, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗 (𝑖).

• 𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖(𝑠) = 𝑗, the function returns the first node 𝑗 in the
cluster 𝑐𝑖,𝑠 which is considered to be correct by 𝑖. If there is no
such node, the function returns ∅ (empty, no neighbor). For ex-

ample, in Fig. 1, 𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟0(1) = 1, 𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟0(2) = 2 and
𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟0(3) = 5, since process 4 is faulty.

• 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖(ℎ) returns {∀𝑗 | 𝑗 = 𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖(𝑠), 1 ≤ 𝑠 ≤ ℎ}, i.e., a
3

set that contains all fault-free nodes virtually connected to a node
𝑖 according to 𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖(𝑠), for 𝑠 = 1, .., ℎ. The parameter ℎ can
range from 1 to log2 𝑛. If log2 𝑛 is applied, the function returns all
fault-free neighbors of node 𝑖 in the hypercube. For any other value
of ℎ < log2 𝑛, the function returns only a subset of the first fault-free
neighbors that are connected to node 𝑖, i.e., those first fault-free
neighbors whose respective cluster number 𝑠 <= ℎ. For example,
considering the Fig. 1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑0(1) = {1}, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑0(2) =
{1, 2} and 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑0(3) = {1, 2, 5}. If node 𝑝4 was considered
correct by 𝑝0, then 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑0(3) = {1, 2, 4}; if 𝑝1 is also detected
as faulty by 𝑝0, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑0(1) = ∅.

3. The LHABcast algorithm

Atomic Broadcast ensures reliable broadcast while ensuring the to-

tal order of messages delivered, i.e., all correct processes deliver the
same set of messages in the same order. For this purpose, the following
properties must be fulfilled [4]:

• Validity: if a correct process broadcasts a message 𝑚, then it even-

tually delivers 𝑚;

• Integrity: each message 𝑚 is delivered once and only if it was previ-

ously broadcast (no creation);

• Agreement: if one correct process delivers 𝑚, then all correct pro-

cesses deliver 𝑚;

• Total order: if two correct processes 𝑝 and 𝑞 deliver two messages
𝑚1 and 𝑚2, then 𝑝 delivers 𝑚1 before 𝑚2 if and only if 𝑞 delivers 𝑚1
before 𝑚2.

LHABcast is a leaderless hierarchical atomic broadcast algorithm
that organizes processes using the vCube topology described in Sec-

tion 2. vCube not only works as a failure detector, but also provides the
means for message dissemination. When process 𝑖 broadcasts a message
𝑚, it becomes the root of a spanning tree over which 𝑚 is sent as well as
the timestamps that are employed by the processes to reach total order.
Those trees are built dynamically and autonomously within the vCube.
Each correct process 𝑖 determines its position in the tree and outgo-

ing edges independently and autonomically, according to the topology
rules. As soon as a process detects the failure of another process, the tree
is reconfigured without the need for any additional messages. As the al-

gorithm assumes the asynchronous system model, false suspicions can
occur. However, they are equivalent to actual faults, as a suspected pro-

cess eventually terminates its execution and leaves the system as soon
as it discovers it has been suspected.

3.1. Algorithm description

The LHABcast algorithm works as follows. Let process 𝑖 be the
source, i.e., the process that executes the atomic broadcast primitive.
Each process keeps a local sequential counter for the messages it broad-

casts. After the source executes the atomic broadcast primitive, it up-

dates the local sequence number and sends message 𝑚 to its vCube
neighbors, which are its children in the message dissemination tree.
The source’s set of neighbors consists of the first correct process of each
of its vCube clusters. Upon receiving 𝑚, each process 𝑗, which is not
a leaf, becomes itself the root of a subtree and in turn forwards 𝑚 to
its children. Those children are also the first correct processes of 𝑗’s
vCube clusters that are in that particular tree. When a leaf of the tree

receives 𝑚, it sends an acknowledgment message (𝐴𝐶𝐾) back to the

Journal of Parallel and Distributed Computing 184 (2024) 104789L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

Fig. 2. Example of timestamp messages exchanged in a 2D-vCube.
process from which it had received 𝑚 (its parent in the tree). Every pro-

cess, except the leaves and the source, after receiving an 𝐴𝐶𝐾 from all
of its children, sends an 𝐴𝐶𝐾 back to its parent. Thus, when a process
receives 𝐴𝐶𝐾 from all its child processes, all correct processes in those
clusters have surely received 𝑚 too.

Besides the local sequence numbers, processes also maintain a times-

tamp that is assigned to each message. That timestamp was defined
inspired on Lamport’s logical clocks [11]. Initially, the timestamp is
equal to the local sequence number. However, every time a process
broadcasts or receives a new message, the timestamp is incremented to
a value larger than both the current value and the timestamp of the re-

ceived message. As a process receives message 𝑚 for the first time, it
updates and appends its timestamp for 𝑚 before forwarding the mes-

sage. The process then starts a spanning tree to forward the timestamp
to all those processes which are not reached the broadcast message it-
self. All processes keep the complete set of timestamps received for each
message until it is delivered. A message 𝑚 is considered to be “deliv-

erable” by process 𝑖 after it has received timestamps assigned by all
correct processes, and it has the lowest maximum timestamp of all mes-

sages waiting to be delivered.

In order to illustrate the use of timestamps to guarantee that mes-

sages are delivered in total order, consider the following example on a
small (4 processes, 2 dimensional) vCube presented in Fig. 2.

Let the timestamps kept by the processes 𝑝0, 𝑝1, 𝑝2 and 𝑝4 be 𝑡𝑠0, 𝑡𝑠1,
𝑡𝑠2 and 𝑡𝑠3, respectively. Initially, all timestamps are set to zero. Con-

sider that process 0 (𝑝0) broadcasts a message 𝑚1 that carries 𝑡𝑠0 = 0.
Initially, process 0 forwards the message to process 1 and process 2.
Each of their timestamps is incremented to 1, i.e., a value greater than
the current value (zero) and the maximum timestamp the message car-

ries (zero). Process 1 is a leaf, but process 2 forwards the message to
process 3 with timestamps {𝑡𝑠0 = 0, 𝑡𝑠2 = 1}, which makes 𝑡𝑠3 = 2. All
processes also send their timestamps to all others. However, consider
that before any process receives all timestamps and can deliver 𝑚1, they
all receive another message 𝑚2 broadcast by process 3 with timestamp
𝑡𝑠3 = 2. Process 3 forwards 𝑚2 to processes 2 and 1, both of which in-

crement their timestamps: 𝑡𝑠2 = 3 and 𝑡𝑠1 = 3. Process 2 in turn sends 𝑚2
to process 0, which increments 𝑡𝑠0 = 4. Now consider that all processes
have received timestamps of all processes for both messages. The high-

est timestamp for 𝑚1 is 𝑡𝑠3 = 2, while the highest timestamp for 𝑚2 is
𝑡𝑠0 = 4. Thus, all processes deliver first 𝑚1 and then deliver 𝑚2.

Now consider a case in which both messages are sent simultane-

ously, and reach different processes in different orders. Either one of
the messages will be assigned a greater timestamp than the other (es-

tablishing the delivery order) or both messages end up with the same
value for the largest timestamp. In case of a tie, the process id is used
to determine the order, i.e. the messages are ordered according to the
corresponding process identifier order, from lowest to largest. Note that
if the two messages have exactly the same value for their correspond-

ing largest timestamps, that value must have been assigned by different
4

processes, as a single process necessarily assigns different values for the
timestamps of different messages. As a final remark, note that in addi-

tion to the timestamps, each message also carries a sequence number
generated by the broadcast source for the purpose of providing (to-

gether with the source id) a unique identifier for the message.

Before the algorithm is presented in pseudocode, we first describe
the local variables maintained by each process and the two message
types used. Each process 𝑖 that executes the algorithm keeps the follow-

ing local variables:

• 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖: the set of processes that are considered to be correct by
process 𝑖 according to information provided by the vCube failure
detector;

• 𝑠𝑒𝑞𝑖: local message counter incremented sequentially, which to-

gether with the source id (i.e., 𝑖) is used to identify each message
uniquely. The message field 𝑚.𝑠𝑒𝑞 is set with the current value of
𝑠𝑒𝑞𝑖 and is used by the receivers to control which messages have
already been delivered;

• 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖: timestamp of the last message sent/received by 𝑖, so that
each message transmitted by the process has a different timestamp.
It is used to establish the total order after a process receives all
timestamps for a message 𝑚;

• 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑛]: the last message delivered by 𝑖 from each source pro-

cess, respecting the FIFO order;

• 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖: the set of pending ACKs. For each message

𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 ⟩ broadcast by 𝑖 or received from a parent process 𝑗
and retransmitted to a child process 𝑘, an element ⟨𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑,
⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
⟩⟩ is added to the 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 set; 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖

is the set of timestamps currently assigned to 𝑚;

• 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖: the set of messages received by process 𝑖 that can-

not yet be delivered to the application. Each element in this set
contains ⟨𝑚, 𝑡𝑠𝑚

𝑘
⟩, i.e., the message 𝑚 to be ordered plus the times-

tamps 𝑡𝑠𝑚
𝑘

assigned to 𝑚 by each process 𝑘;
• 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖: the set of messages 𝑚 for which all timestamps
𝑡𝑠𝑚
𝑘

have been received, but which still cannot be delivered because
they are out of order with respect to the other messages 𝑚′ ≠𝑚.

The LHABcast algorithm employs two types of messages:

• 𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩, this type is the used to broadcast a mes-

sage 𝑚 with the set 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖

of assigned timestamps 𝑡𝑠𝑚
𝑘

.
𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
has from 1 to 𝑙𝑜𝑔2𝑛 elements (the longest path in the

tree).

• 𝐴𝐶𝐾⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩, this message type is used to send acknowl-

edgments that confirm the receipt of a 𝑇𝑅𝐸𝐸 message.

Each message 𝑚 is broadcast with two fields that together work as a
unique identifier of the message: (i) the source process identifier 𝑚.𝑠𝑟𝑐;
and (ii) the local sequence number 𝑚.𝑠𝑒𝑞 established by the source.

Algorithm 2 presents the proposed solution in pseudo-code. In order

to atomically broadcast a message 𝑚, the source process, say 𝑖, exe-

L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

cutes the A-BROADCAST(𝑚) primitive (line 9), which sets 𝑖 as the 𝑚.𝑠𝑟𝑐
and adds the local message counter 𝑠𝑒𝑞𝑖 to the message. The FORWARD

function is used to send 𝑇𝑅𝐸𝐸 messages to the vCube neighbors of a
process 𝑖. The parameters of this function are the clusters index 𝑠 of 𝑖,
which allows process 𝑖 to locate itself along the dissemination tree, the
message 𝑚 and the timestamp. Initially, 𝑠 = log2 𝑛 which is the dimen-

sion of the vCube and corresponds to the total number of clusters of the
system. In the FORWARD function, message 𝑚 is forwarded only to the
first fault-free neighbor of 𝑖 in each cluster indexed by 𝑠 (line 17).

Algorithm 2 LHABcast Atomic Broadcast at process 𝑖.
1: procedure INITIALIZATION()
2: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖← {0, .., 𝑛 − 1} ⊳ set of processes considered correct by 𝑖
3: 𝑠𝑒𝑞𝑖 ← 0 ⊳ local message counter for messages sent by process 𝑖
4: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖← 0 ⊳ local timestamp of the last message sent/received by 𝑖
5: ∀𝑗 ∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∶ 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑗] ←⟂ ⊳ array with the last message delivered

by 𝑖 from each source process 𝑗
6: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ← ∅ ⊳ set of processes from which an acknowledgment has

not been received

7: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ← ∅ ⊳ set of all messages received but not yet delivered

8: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ← ∅ ⊳ set of messages for which the timestamps have
been received from all correct processes, but have not yet been delivered

9: procedure A-BROADCAST(𝑚)

10: 𝑚.𝑠𝑟𝑐← 𝑖

11: 𝑚.𝑠𝑒𝑞← 𝑠𝑒𝑞𝑖
12: 𝑠𝑒𝑞𝑖 ← 𝑠𝑒𝑞𝑖 + 1
13: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ←𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ∪ {⟨𝑚, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖⟩}

⊳ Forward 𝑚 to all neighbors of 𝑖 in each cluster 𝑠 = 1.. log2 𝑛
14: FORWARD(𝑖, log2 𝑛, 𝑇𝑅𝐸𝐸⟨𝑚, {𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚𝑖 = {𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖}}⟩)
15: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖←MAX(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖, 𝑠𝑒𝑞𝑖)

16: procedure FORWARD(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑠, 𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩)

⊳ Forward message 𝑚 to all neighbors in clusters 1..𝑠 of 𝑖
17: for all 𝑐ℎ𝑖𝑙𝑑𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∈ 𝑣𝐶𝑢𝑏𝑒𝐹𝐷.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖(𝑠) do

18: SEND(𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩) to 𝑐ℎ𝑖𝑙𝑑

19: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ← 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ∪ {⟨𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩⟩}

20: upon receive 𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑗
⟩ from process 𝑗

21: if 𝑗 ∉ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 then

22: RETURN

23: 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖← MAX(∀𝑡𝑠𝑚
𝑘
∈ 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑗
, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 + 1)

⊳ Next, check if 𝑚 is a new message, i.e never received before

24: if (𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑚.𝑠𝑟𝑐] =⟂ or 𝑚.𝑠𝑒𝑞 > 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑚.𝑠𝑟𝑐])
and 𝑚 ∉ {𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ∪ 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖} then

25: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
← {𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖}

⊳ Next, forward 𝑚 to all neighbors of 𝑖 except those overlapping the
subtree of 𝑗

26: for all 𝑝 ∈ 𝑣𝐶𝑢𝑏𝑒.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖(log2 𝑛)
∖ 𝑣𝐶𝑢𝑏𝑒.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝑖(𝑣𝐶𝑢𝑏𝑒.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) − 1) do

27: SEND(𝑇𝑅𝐸𝐸⟨𝑚, {𝑡𝑠𝑚
𝑖
}⟩) to 𝑝

28: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖← 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ∪ {⟨𝑖, 𝑝,⟨𝑚, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖⟩⟩}
29: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
← 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
∪ 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑗

30: for all 𝑡𝑠𝑚
𝑘
∈ 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
do

31: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ←𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ∪ {⟨𝑚, 𝑡𝑠𝑚
𝑘
⟩}

⊳ Next, forward the bundled timestamps in the overlapping subtrees of 𝑗
and 𝑖

32: FORWARD(𝑗, 𝑣𝐶𝑢𝑏𝑒.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗) − 1, 𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩)

33: CHECKDELIVERABLE(𝑚)

34: CHECKACKS(𝑗, ⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩)

35: upon receive 𝐴𝐶𝐾⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩ from process 𝑗

36: 𝑝 ← 𝑥:⟨𝑥, 𝑗,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
)⟩⟩∈ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖

37: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ← 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖∖ ⟨𝑝, 𝑗,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚𝑖)⟩⟩
38: CHECKDELIVERABLE(𝑚)

39: CHECKACKS(𝑝, ⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩)

40: procedure CHECKDELIVERABLE(𝑚)

41: if received ⟨𝑚, 𝑡𝑠𝑚
𝑘
⟩ from all 𝑘 ∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 and 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ∩ ⟨∗, ∗,⟨𝑚,∗⟩⟩

= ∅ then
5

42: 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖
← MAX(𝑡𝑠𝑚

𝑘
| ⟨𝑚, 𝑡𝑠𝑚

𝑘
⟩ ∈ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖)
Journal of Parallel and Distributed Computing 184 (2024) 104789

43: LHABDELIVER(𝑚, 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖
)

44: for all ⟨𝑚′ =𝑚, 𝑡𝑠𝑚
𝑘
⟩ ∈𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 do

45: if 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑚.𝑠𝑟𝑐] =⟂ or 𝑚′.𝑠𝑒𝑞 = 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑚.𝑠𝑟𝑐] + 1 then

46: 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑚.𝑠𝑟𝑐] ←𝑚′

47: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ←𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖∖{⟨𝑚′,∗⟩}

48: procedure LHABDELIVER(𝑚, 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖
)

49: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ← 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ∪ {⟨𝑚,𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖
⟩}

50: 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖 ← ∅
51: for all ⟨𝑚′,𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚

′

𝑖
⟩ ∈ 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖

| ∀ ⟨𝑚′′, 𝑡𝑠𝑚
′′

𝑘
⟩ ∈𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ∶𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚

′

𝑖
) < 𝑡𝑠𝑚′′

𝑘
) do

52: 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖 ←𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖 ∪ {⟨𝑚′,𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
′

𝑖
⟩}

53: Deliver all messages in 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖 in order (𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖
, 𝑚.𝑠𝑟𝑐)

54: 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ← 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖 ∖𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖

55: procedure CHECKACKS(𝑝𝑎𝑟𝑒𝑛𝑡, ⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩)

56: if 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ∩ ⟨𝑝𝑎𝑟𝑒𝑛𝑡, ∗,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩⟩ = ∅ then

57: if 𝑚.𝑠𝑟𝑐 ≠ 𝑖 and {𝑝𝑎𝑟𝑒𝑛𝑡} ∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 then

58: SEND(𝐴𝐶𝐾⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩) to 𝑝𝑎𝑟𝑒𝑛𝑡

59: upon notifying crash(process 𝑗)
60: 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖← 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 ∖ {𝑗}
61: for all 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑝:⟨𝑝, 𝑗,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
⟩⟩ ∈ 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 do

62: if {𝑝𝑎𝑟𝑒𝑛𝑡} ∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖 then

⊳ Next, check if there is a correct neighbor (𝑐ℎ𝑖𝑙𝑑) in the same cluster of 𝑗
63: if 𝑐ℎ𝑖𝑙𝑑 = 𝑣𝐶𝑢𝑏𝑒.𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗)) ≠ ∅ then

64: SEND(𝑇𝑅𝐸𝐸⟨𝑚, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩) to 𝑐ℎ𝑖𝑙𝑑

65: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ← 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ∪ ⟨𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖
⟩⟩

66: 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖← 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 ∖ ⟨𝑝𝑎𝑟𝑒𝑛𝑡, 𝑗,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚𝑖 ⟩⟩
67: CHECKACKS(𝑝𝑎𝑟𝑒𝑛𝑡, ⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
⟩)

68: for all ⟨𝑚,∗⟩ ∈𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 do

69: CHECKDELIVERABLE(𝑚)

Upon receiving a 𝑇𝑅𝐸𝐸 message from process 𝑗, process 𝑖 checks
whether 𝑗 is in the set of correct processes (line 21). If it is not, the
message is ignored. Otherwise, 𝑖 updates its local timestamp 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖
based on the newly received timestamp (line 23). Then 𝑖 checks whether
it is receiving the message for the first time, i.e., it is not yet in any of
the delivered, received or timestamped sets of messages. In this case
(the first time the message is received) then 𝑖 forwards the message
with the updated 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 along the tree, according to its tree loca-

tion determined with the 𝑠 index. Note that when 𝑚 is first received by
process 𝑖, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 is aggregated to 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
(line 29). Message 𝑚

is forwarded with the updated set of timestamps 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚
𝑖

(line 32).
Furthermore, process 𝑖 will start a new tree to send its timestamp for
the message to the process that the message dissemination tree does not
reach (line 26).

Fig. 3 shows an example execution of LHABcast on a three-

dimensional vCube. Process 𝑝0 is the source, the figure shows how
message 𝑚 is forward along its spanning tree. The dark blue arrows
show 𝑝0 forwarding message 𝑚 to its neighbors in clusters 𝑠 = 1, 2, 3.
Fig. 3a shows process 𝑝1 as it receives message 𝑚 for the first time. 𝑝1
determines through cluster index 𝑠 {𝑐𝑙𝑢𝑠𝑡𝑒𝑟1(0) − 1 = 0} that it is in the
last level of the 𝑝0 tree (it is a leaf). Therefore, 𝑝1 starts another tree to
send its timestamp to the processes {0, 3, 5} (represented in the arrows
by 𝑡𝑠1). Fig. 3b shows the algorithm executed by process 𝑝2, which re-

ceives 𝑚 from 𝑝0, computes its location in the tree with cluster index
𝑠 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟2(0) − 1 = 1), and forwards 𝑚 with its timestamp to processes
{0, 6}. In 𝑝0’s tree, 𝑝2 adds its own timestamp to 𝑚 and forwards it to
process 𝑝3. Thus, 𝑚 now contains the timestamps of 𝑝0 and 𝑝2.

Upon receiving the message 𝑇𝑅𝐸𝐸 and forwarding the messages
to the next process of the respective (sub)tree(s), process 𝑖 adds the
timestamps contained in 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑚

𝑖
to the list of received timestamps

of 𝑚 (line 31) and calls function CHECKDELIVERABLE(𝑚). This func-

tion checks if the timestamps of all correct processes for 𝑚 (line 41)
have been received. If it is the case, 𝑖 computes the highest times-

tamp of 𝑚 (line 42), denoted 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖

, and function LHABDE-
LIVER(𝑚, 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖

) is called (line 43). Then, 𝑖 updates the register

Journal of Parallel and Distributed Computing 184 (2024) 104789L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

Fig. 3. Examples of LHABcast execution with 8 processes.
of delivered messages 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖 and all timestamps associated with 𝑚
are removed from the set 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖.

In the LHABDELIVER function, message 𝑚 is added to the set
of timestamped messages (𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖) with the highest re-

ceived timestamp – 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑚
𝑖

(line 49). On the other hand,
a message 𝑚′ in 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖 is added to the deliverable
set (𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖) only if there is no received message 𝑚′′ in
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 whose timestamp is lower than 𝑚′ (line 51). Otherwise,
𝑚′ should be delivered after 𝑚′′ (line 51). Messages in 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑎𝑏𝑙𝑒𝑀𝑠𝑔𝑠𝑖
are ordered by the timestamp associated with 𝑚 and the identifier of
the source process of 𝑚 (𝑚.𝑠𝑟𝑐) (line 54). In this way, messages are
delivered in order and then removed from 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑀𝑠𝑔𝑠𝑖.

Confirmation of receipt of the message is performed by the CHECK-

ACKS function. The tuple ⟨𝑝𝑎𝑟𝑒𝑛𝑡, ∗,⟨𝑚,𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑚
𝑖
⟩⟩ represents

which 𝐴𝐶𝐾s are being waited for message 𝑚, given the timestamp
received from the 𝑝𝑎𝑟𝑒𝑛𝑡 process and forwarded to any process (∗)
(line 56). For example, in Fig. 3a, as 𝑝1 is a leaf in 𝑝0’s tree, it has
not forwarded a message with 𝑝0 ’s timestamp. Therefore, an 𝐴𝐶𝐾 can
be sent to 𝑝0 immediately. The same holds for 𝑝3 relative to 𝑝2. Never-

theless, after receiving the 𝐴𝐶𝐾 from 𝑝3, 𝑝2 removes the message from
the set of pending messages and notifies 𝑝0, which originally sent the
message with 𝑇 𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑒𝑑𝑚

𝑖
, with an 𝐴𝐶𝐾 .

The vCube failure detector notifies processes about failures. For
all processes, when 𝑖 receives a notification that 𝑗 crashed (line 59),
𝑗 is removed from the list of correct processes. Thus, for each mes-

sage 𝑚 forwarded to 𝑗 not confirmed, i.e., there is a message 𝑚 sent
to 𝑗 in 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 (line 61), this message 𝑚 must be forwarded to
the next correct process in the cluster to which 𝑗 belongs, if there is
one (the 𝐹𝐹 _𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖(𝑠) function determines this information, where
𝑠 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖(𝑗)) (line 63). For example, consider the three-dimensional
hypercube in Fig. 3c where 𝑝0 is the source of the message. If 𝑝4 fails
during the broadcast, 𝑝0 will not receive a confirmation from that clus-

ter. When 𝑝0 detects the failure, it forwards its timestamp to the next
correct process of this cluster, in this case, 𝑝5. If there are no more cor-

rect processes in the cluster, the CHECKACKS function is called to check
if there are any pending messages to be forwarded from 𝑝, the process
that sent 𝑚 to 𝑖 (line 67). Furthermore, process 𝑖 may not have received
the timestamp from 𝑗. In this case, 𝑖 will keep waiting until the times-

tamp is received or 𝑗 is detected as faulty. Therefore, for each message
𝑚 in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖, function CHECKDELIVERABLE (line 69) is called to
6

check if 𝑚 can be delivered, since the timestamp of 𝑗 is no longer needed.
3.2. Proof of correctness

In this section, we prove that Algorithm 2 ensures the validity, in-

tegrity, agreement, and total order properties of atomic broadcast.

Lemma 3.1 (Validity). Algorithm 2 ensures that if a correct process A-

BROADCASTS a message 𝑚, then it eventually delivers 𝑚.

Proof. When process 𝑖 broadcasts a message 𝑚, it includes

{⟨𝑚, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖⟩} into the set 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 (line 13) and forwards
𝑚 to all correct vCube neighbors (line 17). For each process 𝑗 to which
𝑖 sent 𝑚, 𝑖 added a pending ack in 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖. If 𝑗 is correct, it re-

sponds with an 𝐴𝐶𝐾 message (CHECKACKS procedure) and 𝑖 removes
the pending ack in 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 on line 37. If 𝑗 is faulty, 𝑖 will eventu-

ally detect the crash and remove the pending ack in line 37.

As a result, all outstanding acks for 𝑚 will eventually be removed
from 𝑃𝑒𝑛𝑑𝑖𝑛𝑔𝐴𝑐𝑘𝑠𝑖 and, after receiving the timestamps to 𝑚 from all
correct processes (line 41), 𝑖 will deliver 𝑚 on line 43. □

Lemma 3.2 (Integrity). Algorithm 2 ensures that each message 𝑚 is deliv-

ered at most once and only if it was previously A-BROADCAST by a sender
process 𝑖.

Proof. A process only delivers a message 𝑚 if it either has broadcast
𝑚 itself (Lemma 3.1) or if 𝑚 is in its 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 set (line 43).
Messages broadcast by the sender are added to 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 in
line 13. Messages received from other processes are included into the
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 in line 31. Since links are reliable and do not gener-

ate messages, a message is delivered only if it was previously sent (no
messages are generated).

To show that there is no duplication of messages, let us consider two
cases:

• 𝐬𝐨𝐮𝐫𝐜𝐞(𝐦) = 𝐢. Process 𝑖 called A-BROADCAST broadcasting 𝑚. As
proved in Lemma 3.1, 𝑖 will deliver 𝑚 on line 43. Since the pro-

cedure A-BROADCAST is called only once for any given message,
the only way that 𝑖 could deliver 𝑚 a second time would be on ex-

ecuting line 43. Since 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑖] was set to 𝑚 in line 46 after the
delivery on 𝑚, it follows that 𝑚 will never be qualified to pass the
test again.

• 𝐬𝐨𝐮𝐫𝐜𝐞(𝐦) ≠ 𝐢. Process 𝑖 is not the source of the message 𝑚, and did
not call the procedure A-BROADCAST with 𝑚. Therefore, the only

way for 𝑖 to deliver 𝑚 is in line 43. Before 𝑖 delivers 𝑚 for the first

L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

time, it sets 𝑙𝑎𝑠𝑡𝑀𝑠𝑔𝑖[𝑚.𝑠𝑟𝑐] to 𝑚 in line 46. Thus, 𝑚 will never pass
the test again, and 𝑖 may therefore deliver 𝑚 at most once. □

Lemma 3.3 (Agreement). Algorithm 2 ensures that if a correct process de-

livers a message 𝑚, all correct processes eventually deliver 𝑚.

Proof. Let 𝑚 be a message broadcast by process 𝑖. We consider two
cases:

• 𝐢 is correct. It can be shown by induction that every correct process
receives 𝑚.

As a basis for induction, consider the case that 𝑛 = 2 and 𝑃 = {𝑖, 𝑗}.
It follows that 𝑐𝑖,1 = {𝑗}. Therefore, 𝑖 will send 𝑚 to 𝑗 on line 17. If
𝑗 is correct, it will eventually receive 𝑚, since the links are reliable,
and will deliver 𝑚 on line 43. Process 𝑖 will also deliver 𝑚 due to
the validity property.

We now need to prove that if every correct process receives 𝑚 for
𝑛 = 2𝑘, this is also the case for 𝑛 = 2𝑘+1. The system of size 2𝑘+1 can
be seen as two subsystems 𝑃1 = {𝑖} ∪⋃𝑘

𝑥=1 𝑐𝑖,𝑥 and 𝑃2 = 𝑐𝑖,𝑘+1 such
that |𝑃1| = |𝑃2| = 2𝑘.
Procedure FORWARD ensures that for each 𝑠 ∈ [1, 𝑘 + 1], 𝑖 will send
𝑚 to at least one process in 𝑐𝑖,𝑠. Let 𝑗 be the first process in 𝑐𝑖,𝑘+1. If
𝑗 is correct, it will eventually receive 𝑚. Process 𝑖 will continue to
do so until it has sent the 𝑇𝑅𝐸𝐸 message to a non-suspect process
in 𝑐𝑖,𝑘+1.
If 𝑗 is faulty and if 𝑖 detects the crash only after the broadcast, the
𝑆𝑒𝑛𝑑 procedure will be called again in line 63, which ensures once
again that 𝑖 sends the message to a not faulty suspicious process in
𝑐𝑖,𝑘+1. As a result, unless all the processes in 𝑐𝑖,𝑘+1 are faulty, at least
one correct process in 𝑐𝑖,𝑘+1 will eventually receive 𝑚. This correct
process will then broadcast 𝑚 to the rest of the subsystem 𝑃2 on the
line.

Since a correct process broadcasts 𝑚 over both subsystems 𝑃1 and
𝑃2, the two of them have size 2𝑘, it follows that every correct pro-

cess in 𝑃 will eventually receive 𝑚.

• 𝐢 is faulty. If 𝑖 crashes before 𝑚 is sent to any process, then no
correct process delivers 𝑚 and the agreement property is verified.
If 𝑖 crashes after having broadcast 𝑚 to all its neighbors, then the
broadcast of 𝑚 happens as if 𝑖 was correct. On the other hand, if
𝑖 crashes while sending 𝑚 and a correct process 𝑗 receives 𝑚, then
𝑗 will eventually detect the failure of 𝑖. If 𝑗 detects the crash be-

fore receiving 𝑚, it waits to receive 𝑚 from other correct processes
because 𝑚 is forwarded with the local timestamp to all correct pro-

cesses on lines 26 and 32. Since 𝑗 is correct, each correct process
will eventually receive 𝑚. □

Lemma 3.4 (Total Order). Algorithm 2 ensures that if two correct processes
𝑝 and 𝑞 both deliver messages 𝑚 and 𝑚′, then 𝑝 delivers 𝑚 before 𝑚′, if and
only if 𝑞 delivers 𝑚 before 𝑚′.

Proof. We prove from Lemma 3.3 that all correct processes receive all
broadcast messages. If we consider two messages 𝑚 and 𝑚′, we have
two possible scenarios:

• 𝑚.𝑠𝑟𝑐 = 𝑚′.𝑠𝑟𝑐. If both messages are from the same source process
and 𝑚 was sent before 𝑚′, so 𝑚.𝑠𝑒𝑞 < 𝑚′.𝑠𝑒𝑞 and 𝑡𝑠𝑚

𝑎
< 𝑡𝑠𝑚

′
𝑏

. By agree-

ment, both messages and their respective timestamps are included
in 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑠𝑔𝑠𝑖 by all correct processes. Finally, both messages
are delivered in the same order in line 54.

• 𝑚.𝑠𝑟𝑐! = 𝑚′.𝑠𝑟𝑐. When 𝑚 and 𝑚′ are sent by different processes,
there is no direct precedence between their timestamps. Each cor-

rect process receives the messages in any order and assigns the
timestamp according to the local order. Once all correct processes
have received all timestamps from each message, both messages
7

are delivered in the same order in line 54. □
Journal of Parallel and Distributed Computing 184 (2024) 104789

Theorem 3.5. Algorithm 2 implements an atomic broadcast.

Proof. The proof follows directly from Lemmas 3.1, 3.2, 3.3 and

3.4. □

4. Evaluation

This section presents the results of both a simulation of LHABcast
done with Neko [27] and a Java implementation based on the Akka
framework [13]. In the simulation, LHABcast was compared to an all-to-

all strategy (called All2All), in which instead of employing the vCube to
communicate, all processes send all messages to all processes. The Java
Akka implementation of LHABcast was compared to a highly customiz-

able implementation of the Raft protocol, called Apache Ratis [21].

4.1. Simulation

In the All2All strategy, each process communicates directly with the
other processes. Upon receiving a message, a process sends the times-

tamp (ts) of the message to 𝑛 − 1 processes. Different scenarios and
system sizes were considered in the simulation. In each experiment, the
number of processes 𝑛 varied from 8 to 1024. The simulation was run on
an AMD A8-5500B processor with 16 GB RAM. In the All2All strategy,
the failure detector communicates directly with the processes and there-

fore has lower latency compared to LHABcast which relies on vCube to
propagate messages, including failures, providing greater scalability but
increasing latency for failure detection.

For the number of messages, we considered all messages exchanged
between processes, including delivery acknowledgments (ACKs) while
latency is defined as the unit of time 𝑡 that a message takes to be deliv-

ered to all non-faulty processes.

In the experiments, when a message is broadcast, the time to send
it to a given process takes 𝑡𝑠. Thus, if the message is broadcast to more
than one process, 𝑡𝑠 must be considered for each copy of the message
sent. A process takes 𝑡𝑟 time units to receive a message. The network
transmission time of a message is given by 𝑡𝑡. Hence, as 𝑡 = 𝑡𝑟 + 𝑡𝑠 + 𝑡𝑡,
we have defined 𝑡𝑟 = 𝑡𝑠 = 0.1 and 𝑡𝑡 = 0.8 time units for all executions.
The test interval for failure detection was set to 30.0 time units in each
experiment. A process is considered to have crashed if the failure detec-

tor does not receive a response within 4 * (𝑡𝑠 + 𝑡𝑡 + 𝑡𝑠)1 time units. Next,
the results of the experiments conducted in scenarios with and without
process failures are presented.

4.1.1. Simulation scenario in which all processes are correct

Fig. 4 shows the number of messages and the latency when pro-

cess 𝑝0 broadcasts a message 𝑚. In the hierarchical strategy, the longest
path of a vCube consists of subtrees of size log2 𝑛. Therefore, in the worst
case, each copy of 𝑚 and its timestamp is forwarded 2𝑙𝑜𝑔2𝑛 times. Re-

member that 𝑝0 must receive ACKs from all other processes to be sure
that 𝑚 and its timestamp were received by them. Hence, the time 𝑝0
takes to deliver 𝑚 is the time taken by the process in the longest subtree
of 𝑝0 to forward 𝑚 and its timestamp. In the All2All strategy, latency is
calculated based on the time a process takes to forward its timestamp
to the other processes after receiving a message. Therefore, the latency
is higher for the hierarchical strategy for systems with up to 128 pro-

cesses. However, the situation reverses when the number of processes
exceeds the threshold of 128. The hierarchical strategy actually exhibits
lower latency (see Fig. 4b) because it takes longer for the single sender
𝑝0 to send copies of 𝑚 to all other processes. The larger the number of
processes, the longer it takes 𝑝0 to send individual messages to each of
them. The latency to forward a message with the hierarchical strategy
(vCube) grows roughly linearly with the number of neighbors of each
process, while the All2All strategy shows an exponential behavior.
1 This value is twice the time from sending to receiving a message.

Journal of Parallel and Distributed Computing 184 (2024) 104789L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

Fig. 4. Atomic broadcast executed in fault-free scenarios.
In order to ensure the total order delivery of all messages, all pro-

cesses must receive the timestamp of each message 𝑚. When using the
All2All strategy, all processes send their timestamps directly to the other
processes. On the other hand, the hierarchical strategy aggregates mul-

tiple timestamps into a single message. Thus, the number of messages
in LHABcast is on average 21.45% lower than in All2All (Fig. 4a).

4.1.2. Simulation scenario with faulty processes

The latency and number of messages from three different scenarios
with faulty processes are presented next. In the first scenario the source
process fails. The second scenario shows the impact of a failure of any
system process before that process is detected as faulty. Finally, in the
third scenario, the algorithms are executed after the detection of a faulty
process by all other processes in the system.

The source fails. We assume that at least one fault-free process received
the message before the source fails. This assumption is consistent with
the termination property (liveness) inherited from the reliable broad-

cast. According to the LHABcast algorithm, if a process fails and this is
detected, all processes simply ignore the timestamps from that process,
even if the process is the source of the message. Furthermore, since the
algorithm uses hierarchical message broadcasting, processes that do not
receive acknowledgments for a message sent to a faulty process must
forward the same message to the next non-faulty process in the clus-

ter of that faulty process, if there is one. To perform the experiment,
we assumed that 𝑝0 broadcasts a message at time 0 and fails shortly
thereafter.

Fig. 5a shows a small fluctuation in the number of messages be-

cause a failed process does not receive the timestamps. Consequently,
the number of messages of LHABcast is 21.74% lower in comparison
with All2All, a similar result to that of the fault-free scenario. How-

ever, the message delivery latency as shown in Fig. 5b is significantly
different when there are process failures. vCube’s failure detector runs
in rounds. For all non-faulty processes to detect a failure, more than
one round of the algorithm must be executed, which directly affects
the latency of message delivery. The difference of the message deliv-

ery latency without failures and in the presence of a failure is of 29.63
time units in this experiment. The All2All approach exhibited higher la-

tency when the total number of processes grew above 512, as the times
to send and receive messages (𝑡𝑠 and 𝑡𝑟) increase significantly with a
larger number of processes.

Sending a message before the failure of the receiver is detected.
We consider that process 𝑝1 fails during the broadcast of message 𝑚 by
𝑝0. A process that forwards 𝑚 to a failed process will never receive an
acknowledgment of receipt from that process and will eventually detect
it as faulty. Note that the failure of any process implies the removal of
8

the timestamp of that process from the set of received messages, and
also on the transmission of ACKs, if any. Therefore, the latency and the
number of messages in these scenarios are identical to the scenario in
which the source fails.

Sending a message after the failure of the receiver is detected. In
this experiment, process 𝑝1 fails at time 0. In the simulated scenario,
source process 𝑝0 only starts the broadcast after all processes have
detected that 𝑝1 is faulty. Thus, all processes running the algorithm
reorganize themselves in the dissemination tree excluding faulty pro-

cess 𝑝1 from the topology. The simulation results in Fig. 6 show that
for the All2All approach, the number of messages is lower in compari-

son with the fault-free scenario, since there are fewer processes. On the
other hand, LHABcast presents fewer messages than All2All (Fig. 6a).

4.2. Implementation

We implemented the LHABcast algorithm in Java using the Akka
framework [13]. Akka automatically handles concurrency issues, since
each component of the system is an actor. Each actor has a mailbox

that is used to receive messages from other processes and each message
received is retrieved and processed sequentially by the mailbox handler.
Our implementation uses the default failure detector of the framework,
which is the phi accrual detector [9].

The experiment was executed on a cluster consisting of 16 physical
machines connected to an Ethernet gigabit network. Each machine was
based on an AMD A8-5500B processor, each supporting 4 threads and
equipped with 16 GB of RAM. Half of the machines (eight) were used to
run either LHABcast or Apache Ratis, while the others were configured
as clients that broadcast messages.

4.2.1. Experiments executed in a fault-free scenario

In this experiment, each client broadcasts a new message after re-

ceiving confirmation from the previous one. The number of clients
ranged from 8 to 512, with each host running from 1 to 64 clients.

LHABcast significantly outperforms Apache Ratis in a fault-free
scenario with up to 256 clients (Fig. 7a), showing a throughput of
390.01%, 301.72%, 174.38%, 119.78%, 55.45%, and 0.66% for 8, 16,
32, 64, 128, and 256 clients, respectively. However, for 512 clients and
above, LHABcast performance is 53.45% lower compared to Apache
Ratis.

The throughput of LHABcast decreases due to both the number of
messages received by each client and the number of messages processed
by the algorithms. As the number of clients increases, more messages
are received simultaneously by each client as each of them receives all
the messages in total order, which affects client performance. More-

over, the leaderless approach induces an additional cost for ordering

messages and, in LHABcast, these costs are related to the number of

Journal of Parallel and Distributed Computing 184 (2024) 104789L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

Fig. 5. Scenario in which the source fails.

Fig. 6. Sending a message after the failure of the receiver is detected.

Fig. 7. Results of LHABcast and Apache Ratis implemented with Akka.io.
messages exchanged by the algorithm. As the number of clients in-

creases, more messages are sent, and therefore LHABcast exchanges
more messages among processes than Apache Ratis.

4.2.2. Experiments with faulty processes

We examined the impact of process faults on client requests in both
Apache Ratis and LHABcast. The number of clients was set to 64, i.e. 8
machines with 8 clients each while the other 8 machines are dedicated
9

to running the algorithms. This configuration was chosen because it
presented one of the highest throughputs in the fault-free scenario, as
shown above.

Fig. 7b shows the results obtained when running LHABcast with the
failure of one and two processes. In the case of Apache Ratis, the leader
fails. It is important to remember that processes in Raft can take one
of three roles: Follower, Leader, and Candidate. The leader is responsible
for receiving requests and coordinating consensus. If the leader fails, a

new leader is elected.

L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

In Fig. 7b, it can be seen that Apache Ratis presents little variation
in the message delivery rate despite the leader failure, while LHABcast
reaches 53.18% and 56.44% lower throughput with 1 and 2 failed pro-

cesses, respectively. While Raft shows a decrease in the delivery rate
of 8.97% compared to error-free execution, this drop is 80.61% and
81.96% when one and two processes failed, respectively.

For LHABcast, the decrease of the message delivery rate is due to the
time it takes for the all processes to detect failures, which is affected by
the values of the failure detector parameters set in the Akka frame-

work. The latter defines how conservative the failure detector is. The
more conservative it is, the lower the rate of false suspicions. However,
despite using the recommended values for local networks, the perfor-

mance levels observed cannot be considered satisfactory. In Apache
Ratis, failure detection is performed by the algorithm itself. Thus, pro-

cesses that detect the failure of the leader initiate the election of a new
leader, and new messages can be processed by the newly elected leader.

5. Related work

AllConcur is a leaderless atomic broadcast algorithm that uses a di-

graph as an overlay network to disseminate messages [20]. Similar to
the preliminary version of LHABCast [25], AllConcur assumes a per-

fect failure detector (P), which implies on a synchronous system model.
Both algorithms (AllConcur and LHABcast) allow concurrent message
dissemination by all processes. However, the initialization of AllConcur
requires a reliable centralized service such as Zookeeper [28], which
allows servers to agree on the initial configuration (i.e., the identity
of participating servers and the digraph). In contrast, LHABCast uses
vCube as a failure detector and dynamically reconfigures itself at run-

time in the presence of failures.

AllConcur uses a technique called early termination to reduce mes-

sage delivery latency. This technique requires each server to keep track
of all messages in the system. In each round, each correct process broad-

casts message 𝑚, registers the messages of the round using the early
termination mechanism, and can deliver the messages received in the
round in a deterministic order after message tracking is complete. When
a server fails, its successors detect the failure and disseminate failure
notifications to the other servers. The algorithm was implemented and
compared with Libpaxos, an implementation of the Paxos consensus al-

gorithm.

In the paper, the authors discuss the implications of relaxing the
accuracy property of the detector, which implies on having to deal
with false suspicions. In this case, the authors point to the use of addi-

tional messages that take advantage of the proposed topology to ensure
that messages are received by all processes. However, there is still the
problem of one process being isolated from the others, because such a
constraint is imposed that only a majority quorum can deliver messages
if some of the processes are isolated.

Later, an implementation of AllConcur was presented [17], based on
the Java Akka framework. The authors showed that even when using a
♢ detector (the default setting of the framework), the properties of the
algorithm are preserved. Although this implementation has been tested
for performance in shared and distributed memory environments, it is
not compared to other consensus algorithms.

AllConcur+ [19] assumes a failure detector ♢ . In that algorithm,
two overlapping networks are used for communication between pro-

cesses. The authors assume that failures rarely occur in real environ-

ments, so an unreliable overlay network can be used to achieve higher
performance. When failures are detected, the algorithm takes a more
conservative stance and uses a reliable overlay network that ensures a
vertex-connectivity larger than the maximum number of tolerated fail-

ures. The algorithm was evaluated in a simulated environment and was
able to achieve up to 6.5x higher throughput and up to 3.5x lower la-

tency than AllConcur and up to 318x higher throughput and 158x lower
10

latency than Libpaxos.
Journal of Parallel and Distributed Computing 184 (2024) 104789

6. Conclusion

In this work, we presented the LHABcast distributed algorithm, a
hierarchical, autonomous and fully decentralized atomic broadcast al-

gorithm. LHABcast employs a scalable strategy to allow processes to
deliver messages in total order without the need for a leader. LHABcast
is built on top of vCube, a scalable virtual topology that also works as a
failure detector. In case of process failures, LHABcast relies on the prop-

erties of vCube so that fault-free processes autonomically reorganize
themselves in a new configuration that preserves multiple logarithmic
properties. LHABcast was described, specified and proven to guarantee
the properties required of any atomic broadcast algorithm.

LHABcast was implemented and evaluated, both by simulation and
through a Java implementation based on the Akka framework. We sim-

ulated scenarios both with and without process failures. LHABcast was
compared to an all-to-all strategy (called All2All) where processes com-

municate directly. In scenarios without failures, the number of messages
of LHABcast was significantly lower than that of the All2All strategy.
As the number of processes grew above 128, the latency of the All2All
strategy surpassed that of LHABcast. In scenarios with failures, there
were no significant differences in the number of messages of both strate-

gies. We also observe that the execution interval of the failure detector
rounds has an impact on the latency. Nevertheless, LHABcast presented
a lower latency as the number of processes increases and outperforms
the All2All approach for more than 256 processes, confirming that the
proposed solution tends to be more scalable.

The experimental evaluation conducted with the Java Akka imple-

mentation was also done on scenarios with and without failures. The
comparison, in this case, was with Apache Ratis, an optimized im-

plementation of Raft. Without failures, LHABcast showed significant
performance gains over Apache Ratis. However, with more than 256
processes, the number of messages processed by LHABcast decreases
compared to Apache Ratis. As a fault occurs as a message broadcast is
still going on, the performance of LHABcast is affected by the failure
detection latency, and there is a performance drop compared to Apache
Ratis.

In the future, we will investigate optimizations aimed at further re-

ducing the number of messages required to establish the total order of
distributed application messages, thereby improving performance. We
also intend to compare LHABcast with other solutions such as AllCon-

cur and AllConcur+. Other research directions include evaluating the
impact of changing the LHABcast in the crash-recovery model.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work was partially supported by the Brazilian Research
Council (CNPq – Conselho Nacional de Desenvolvimento Cientí-

fico e Tecnológico) grant 308959/2020-5; FAPESP/MCTIC/CGI grant
2021/06923-0; and the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior – Brasil (CAPES) – Finance Code 001.

References

[1] E.T.d. Camargo, E.P. Duarte, Running resilient mpi applications on a dynamic group
of recommended processes, J. Braz. Comput. Soc. 24 (2018) 1–16, https://doi .org /
10 .1186 /s13173 -018 -0069 -z.

[2] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems,
J. ACM 43 (2) (1996) 225–267, https://doi .org /10 .1145 /226643 .226647.

[3] J.P. de Araujo, L. Arantes, E.P. Duarte, L.A. Rodrigues, P. Sens, VCube-PS: a causal
broadcast topic-based publish/subscribe system, J. Parallel Distrib. Comput. 125

(2019) 18–30, https://doi .org /10 .1016 /j .jpdc .2018 .10 .011.

https://doi.org/10.1186/s13173-018-0069-z
https://doi.org/10.1186/s13173-018-0069-z
https://doi.org/10.1145/226643.226647
https://doi.org/10.1016/j.jpdc.2018.10.011

Journal of Parallel and Distributed Computing 184 (2024) 104789L.V. Ruchel, E. Tavares de Camargo, L.A. Rodrigues et al.

[4] X. Défago, A. Schiper, P. Urbán, Total order broadcast and multicast algorithms:
taxonomy and survey, ACM Comput. Surv. 36 (4) (2004) 372–421, https://doi .org /
10 .1145 /1041680 .1041682.

[5] E.P. Duarte Jr, L.A. Rodrigues, E.T. Camargo, R. Turchetti, The missing piece: a
distributed system-level diagnosis model for the implementation of unreliable fail-

ure detectors, Computing 105 (12) (2023), https://doi .org /10 .1007 /s00607 -023 -
01211 -8.

[6] E.P. Duarte, L.C.E. Bona, V.K. Ruoso, VCube: a provably scalable distributed diag-

nosis algorithm, in: 2014 5th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, 2014, pp. 17–22, https://doi .org /10 .1109 /ScalA .2014 .14.

[7] C. Fetzer, M. Cristian, Fail-aware failure detectors, in: Proceedings 15th Sympo-

sium on Reliable Distributed Systems, 1996, pp. 200–209, https://doi .org /10 .1109 /
RELDIS .1996 .559722.

[8] V. Hadzilacos, S. Toueg, Fault-Tolerant Broadcasts and Related Problems, ACM
Press, 1993, pp. 97–145, https://dl .acm .org /doi /10 .5555 /302430 .302435.

[9] N. Hayashibara, X. Defago, R. Yared, T. Katayama, The /spl phi/ accrual fail-

ure detector, in: Proceedings of the 23rd IEEE International Symposium on Reli-

able Distributed Systems, 2004, pp. 66–78, https://doi .org /10 .1109 /RELDIS .2004 .
1353004.

[10] D. Jeanneau, L.A. Rodrigues, L. Arantes, E.P.D. Jr., An autonomic hierarchical reli-

able broadcast protocol for asynchronous distributed systems with failure detection,
J. Braz. Comput. Soc. 23 (1) (2017) 15:1–15:14, https://doi .org /10 .1186 /s13173 -
017 -0064 -9.

[11] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Com-

mun. ACM 21 (7) (1978) 558–565, https://doi .org /10 .1145 /359545 .359563.

[12] L. Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998)
133–169, https://doi .org /10 .1145 /279227 .279229.

[13] LIGHTBEND, Akka: documentation, Available in: https://akka .io /docs/, 2020.

[14] S. Luan, V.D. Gligor, A fault-tolerant protocol for atomic broadcast, IEEE Trans.
Parallel Distrib. Syst. 1 (3) (1990) 271–285, https://doi .org /10 .1109 /71 .80156.

[15] G.M. Masson, D.M. Blough, G.F. Sullivan, System Diagnosis, Prentice-Hall, Inc.,
1996, pp. 478–536.

[16] D. Ongaro, J. Ousterhout, In search of an understandable consensus algorithm, in:
2014 USENIX Annual Technical Conference (USENIXATC 14), 2014, pp. 305–319,
https://dl .acm .org /doi /10 .5555 /2643634 .2643666.

[17] A.A. Paznikov, A.V. Gurin, M.S. Kupriyanov, Implementation in actor model of
leaderless decentralized atomic broadcast, in: 2020 9th Mediterranean Confer-

ence on Embedded Computing (MECO), 2020, pp. 1–4, https://doi .org /10 .1109 /
MECO49872 .2020 .9134220.

[18] F. Pedone, A. Schiper, Modular Approach to Replication for Availability, Springer,
2010, pp. 41–57, https://doi .org /10 .1007 /978 -3 -642 -11294 -2 _3.

[19] M. Poke, C.W. Glass, A dual digraph approach for leaderless atomic broad-

cast, in: 2019 38th Symposium on Reliable Distributed Systems (SRDS), 2019,
pp. 203–20317, https://doi .org /10 .1109 /SRDS47363 .2019 .00031.

[20] M. Poke, T. Hoefler, C.W. Glass, Allconcur: leaderless concurrent atomic broadcast,
in: 26th International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’17, Association for Computing Machinery, New York, NY, USA,
2017, pp. 205–218, https://doi .org /10 .1145 /3078597 .3078598.

[21] Apache Ratis™, Open source java implementation for raft consensus protocol, Avail-

able in: https://ratis .apache .org/, 2021.

[22] L.A. Rodrigues, J. Cohen, L. Arantes, E.P. Duarte, A robust permission-based hi-

erarchical distributed k-mutual exclusion algorithm, in: 2013 IEEE 12th Interna-

tional Symposium on Parallel and Distributed Computing, IEEE, 2013, pp. 151–158,
https://doi .org /10 .1109 /ISPDC .2013 .28.

[23] L.A. Rodrigues, L. Arantes, E.P.D. Jr., An autonomic implementation of reliable
broadcast based on dynamic spanning trees, in: EDCC, IEEE Computer Society, 2014,
pp. 1–12, https://doi .org /10 .1109 /EDCC .2014 .31.

[24] L.A. Rodrigues, E.P. Duarte, L. Arantes, A distributed k-mutual exclusion algorithm
based on autonomic spanning trees, J. Parallel Distrib. Comput. 115 (2018) 41–55,
https://doi .org /10 .1016 /j .jpdc .2018 .01 .008.

[25] L.V. Ruchel, L.A. Rodrigues, R.C. Turchetti, L. Arantes, E.P. Duarte Jr., E.T. Ca-

margo, A leaderless hierarchical atomic broadcast algorithm, in: Proceedings of
the 11th Latin-American Symposium on Dependable Computing, LADC ’22, Asso-

ciation for Computing Machinery, New York, NY, USA, 2023, pp. 61–66, https://

doi .org /10 .1145 /3569902 .3569914.

[26] P. Thanisch, Atomic commit in concurrent computing, IEEE Concurr. 8 (4) (2000)
34–41, https://doi .org /10 .1109 /4434 .895104.

[27] P. Urban, X. Defago, A. Schiper, Neko: a single environment to simulate and pro-

totype distributed algorithms, in: Proceedings 15th International Conference on
Information Networking, 2001, pp. 503–511, https://doi .org /10 .1109 /ICOIN .2001 .
905471.

[28] P. Hunt, M. Konar, F. Junqueira, B. Reed, ZooKeeper: Wait-Free Coordination for
Internet-Scale Systems, in: Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference, USENIX Association, USA, 2010, pp. 1–11, https://

dl .acm .org /doi /10 .5555 /1855840 .1855851.

Lucas V. Ruchel is a Laboratory Technician at the Insti-

tuto Federal do Paraná (IFPR), Cascavel, Brazil. He completed
his master from the University of Western Paraná in 2022 in the
area of Distributed Systems. He has a degree from the Federal
University of Paraná in Internet Systems since 2017. His main
research interests include Computer Networks, Distributed Sys-

tems, Software Defined Networks and Cybersecurity.

Edson Tavares de Camargo is an Associate Professor at Fed-

eral University of Technology – Paraná (UTFPR), Toledo, Brazil.
He received a Ph.D. degree in Computer Science from the Fed-

eral University of Parana (UFPR) in 2017. During his Ph.D., he
spent 1 year as a Ph.D. student at the Universitá della Svizzera
Italiana (USI). He is a member of the Brazilian Computer Soci-

ety where he served as chair of the Special Committee on Fault
Tolerant Systems (CE-TF). Camargo coordinates projects in the
area of Internet of Things and Smart Cities. His research interests
include Computer Networks, Parallel Computing and Distributed

Systems, their Dependability and Algorithms.

Luiz Antonio Rodrigues is an associate professor at West-

ern Parana State University (Unioeste), Brazil, and a member of
the GPISC (Computer Systems Research and Innovation Group).
He received his PhD in Computer Science from the Federal Uni-

versity of Parana (UFPR) and spent a year in the Computer
Science Laboratory (LIP6) at Sorbonne University. He is an ef-

fective member of the Brazilian Computing Society (SBC) and
was the coordinator of the Special Committee on Fault-Tolerant
Systems of the SBC (CE-TF 2019-2020). His main interests are
in computer science, with a focus on computer networks, fault

tolerance, distributed systems, and Dependability.

Rogério C. Turchetti is an Associate Professor at Federal
University of Santa Maria, Santa Maria, Brazil. He received a
Ph.D. degree in computer science from Federal University of
Parana, Brazil, 2017, the M.Sc. degrees in production engineer-

ing with emphasis on information systems from Federal Univer-

sity of Santa Maria, Santa Maria, Brazil, in 2006. His research
interests include Computer Network and Distributed Systems,
their Dependability and Algorithms. His recent research is fo-

cused on the dependability in Network Function Virtualization
and Software Defined Network.

Luciana Arantes Luciana Arantes received the PhD degree
in computer science from Paris 6 University (UPMC), France, in
2000. She has been working as an associate professor at Sorbonne
University (ex-UPMC), France, since 2001. She was a research
member of INRIA/LIP6 Regal project-team from 2005–2017 and
now research member of INRIA/LIP6 Delys Group. She was mem-

ber of the program committee of several conferences in the area
of distributed systems and parallelism (ICDCS, EDCC, ISSRE,
NCA, SBAC-PAD, DAIS, etc.) and local organized chair of SBAC-

PAD 2014 and EDCC 2015.

Elias Procópio Duarte Jr. is a Full Professor at Federal Uni-

versity of Parana, Brazil. His research interests include computer
networks and distributed systems, their dependability and algo-

rithms. With over 300 peer-reviewer papers, and 130 students
supervised, Prof. Duarte is Associate Editor of the Computing
(Springer) journal and IEEE Transactions on Dependable and Se-

cure Computing, and has served as chair of more than 25 confer-

ences and workshops, including TPC Chair of GLOBECOM’2024,
SRDS’2018 and ICDCS’2021. He chaired the Brazilian National
Laboratory on Computer Networks (2012–2016), and is a mem-

ber of the Brazilian Computing Society and a Senior Member of the IEEE.
11

https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1145/1041680.1041682
https://doi.org/10.1007/s00607-023-01211-8
https://doi.org/10.1007/s00607-023-01211-8
https://doi.org/10.1109/ScalA.2014.14
https://doi.org/10.1109/RELDIS.1996.559722
https://doi.org/10.1109/RELDIS.1996.559722
https://dl.acm.org/doi/10.5555/302430.302435
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1186/s13173-017-0064-9
https://doi.org/10.1186/s13173-017-0064-9
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
https://akka.io/docs/
https://doi.org/10.1109/71.80156
http://refhub.elsevier.com/S0743-7315(23)00159-4/bib4B24B165B0956751A2E6D8D8987CED57s1
http://refhub.elsevier.com/S0743-7315(23)00159-4/bib4B24B165B0956751A2E6D8D8987CED57s1
https://dl.acm.org/doi/10.5555/2643634.2643666
https://doi.org/10.1109/MECO49872.2020.9134220
https://doi.org/10.1109/MECO49872.2020.9134220
https://doi.org/10.1007/978-3-642-11294-2_3
https://doi.org/10.1109/SRDS47363.2019.00031
https://doi.org/10.1145/3078597.3078598
https://ratis.apache.org/
https://doi.org/10.1109/ISPDC.2013.28
https://doi.org/10.1109/EDCC.2014.31
https://doi.org/10.1016/j.jpdc.2018.01.008
https://doi.org/10.1145/3569902.3569914
https://doi.org/10.1145/3569902.3569914
https://doi.org/10.1109/4434.895104
https://doi.org/10.1109/ICOIN.2001.905471
https://doi.org/10.1109/ICOIN.2001.905471
https://dl.acm.org/doi/10.5555/1855840.1855851
https://dl.acm.org/doi/10.5555/1855840.1855851

	Scalable atomic broadcast: A leaderless hierarchical algorithm
	1 Introduction
	2 System model
	2.1 An asynchronous vCube algorithm

	3 The LHABcast algorithm
	3.1 Algorithm description
	3.2 Proof of correctness

	4 Evaluation
	4.1 Simulation
	4.1.1 Simulation scenario in which all processes are correct
	4.1.2 Simulation scenario with faulty processes

	4.2 Implementation
	4.2.1 Experiments executed in a fault-free scenario
	4.2.2 Experiments with faulty processes

	5 Related work
	6 Conclusion
	Declaration of competing interest
	Acknowledgments
	References

