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Abstract: Network function virtualisation (NFV) technology has the potential
to have a deep impact on how networks are built and managed. However,
in order to achieve its full potential, it is necessary to guarantee the
required dependability, and in particular the availability of virtualised network
functions (VNFs) and service function chains (SFCs). This work presents
NHAM: NFV high availability module for the NFV management and
orchestration (NFV-MANO) reference model. NHAM allows the creation and
management of highly-available virtual network services consisting of both
stateless and stateful VNFs and SFCs. The architecture provides multiple
recovery mechanisms that differ in terms of cost and latency. The solution
does not require any modifications of the source code of VNFs/SFCs to
make them highly-available. The strategy is based on VNF checkpoint/restore
together with SFC buffer management. A prototype was implemented and
experimental results are presented showing that carrier grade availability
levels can be achieved.
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1 Introduction

Virtualisation technology represents the most promising solution to the ‘internet
ossification’ issue caused by the unanticipated growth that has taken place since the
design of decades-old internet protocols. With virtualisation, the network becomes
programmable, facilitating its evolution along multiple directions. Network function
virtualisation (NFV) is one of the essential technologies enabling the replacement of
hardware-based middleboxes by software running on off-the-shelf hardware (Mijumbi
et al., 2016). Virtual network functions (VNFs) are used to implement individual
network services, which can be combined to form complex service function chains
(SFCs) consisting of multiple VNFs connected in a predefined order (Halpern and
Pignataro, 2015; Garcia et al., 2019; Fulber-Garcia et al., 2020). Thanks to the
availability of NFV technology, network services that were previously accessible only
from a limited number of vendors can now be downloaded from internet marketplaces
(Bondan et al., 2019). The adoption of NFV technology has brought significant benefits
in terms of network flexibility and management. To standardise the execution and
management of NFV-based services and ensure interoperability of various VNFs, the
European Telecommunications Standards Institute (ETSI) has proposed the NFV-MANO
architecture (Quittek et al., 2014).

Although network services executed as virtualised software offer several advantages,
it is undeniable that they are more susceptible to failures than traditional specialised
hardware alternatives (Han et al., 2017). The transition from hardware devices to
virtualised platforms brings several challenges regarding dependability (Sharma et al.,
2020; Li et al., 2020). Factors such as the integration complexity of multiple software
systems in different layers, the interoperability of hardware and software components
provided by different vendors, and the limited experience in operating virtualised
network environments are some of the challenges that make it difficult to ensure the
dependability of NFV-based networks.

Proprietary hardware-based middleboxes, on the other hand, are generally designed
with strict resilience goals, similar to the standards defined by carrier-grade systems. The
term ‘carrier-grade availability’ refers to the reliability levels that telecommunication
carriers and service providers offer for their network services and infrastructure,
such as voice communication, data transmission, and internet connectivity. Ensuring
carrier-grade availability (at five nines, 99.999%, which corresponds to less than five
minutes of downtime per year) is critical to the widespread adoption of NFV technology.
The ETSI has established several resiliency requirements for services running in
virtualised environments (Lac et al., 2017; Han et al., 2017).
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Several proposals have been put forward to increase the availability of network
functions in virtualised environments (Ghaznavi et al., 2020; Kulkarni et al., 2018;
Khalid and Akella, 2019). However, these solutions come with limitations, such as the
use of particular technologies or the need to modify VNF code. Some proposals do not
include all the mechanisms necessary to guarantee end-to-end availability. Challenges
are compounded by the fact that most network functions are stateful, requiring detailed
function state management. Additionally, none of the existing solutions fully comply
with the NFV-MANO reference architecture established by the ETSI (Quittek et al.,
2014).

In this work we present a novel high availability architecture for NFV-based services,
encompassing both stateful virtualised network functions (VNFs) and service function
chains (SFCs). The architecture, known as NFV high availability module (NHAM), has
been integrated as a module into the NFV-MANO reference architecture, aligning with
the specifications put forth by the ETSI. NHAM adopts a virtualisation-centric approach,
allowing any VNF or SFC instantiated on the NFV platform to seamlessly inherit the
high availability and resiliency attributes.

NHAM’s operations are twofold: it manages the internal state of VNFs, and
performs fault management through a plethora of mechanisms that guarantee high
availability. To monitor and control the internal state of VNFs, NHAM leverages
checkpoint/restore-based techniques, thereby ensuring that after a VNF failure, its
internal state can be recovered, retaining its previous state. NHAM also offers four
different resiliency mechanisms that can be used to configure and update VNF replicas.
These resiliency mechanisms differ in terms of computational resources and recovery
time, enabling different types of VNFs with varying availability requirements to recover
from failures.

NHAM’s implementation-agnostic design ensures that any NFV-based service can
achieve high availability without any modification of the VNF source code. The
virtualised nature of VNFs enables checkpoints to be taken by saving the network
function instance, providing a generic method to preserve the service state without
requiring VNF code alterations.

Moreover, NHAM addresses the availability of stateful SFCs and puts forth a
strategy to build resilient SFCs. This strategy combines checkpointing with buffer
management, enabling the synchronisation of the traffic processed by each VNF with its
corresponding checkpoints. As a result, NHAM guarantees end-to-end service recovery
that is complete and correct, allowing it to tolerate multiple VNF failures and prevent
packet losses and duplications due to failures.

To assess the performance and availability of NFV-based services with NHAM’s
support, a prototype was implemented, and experiments were conducted. We
demonstrate that depending on the strategy and parameters employed, carrier-grade
availability can be achieved. This work is is an extended version of the LADC’2022
paper (Venâncio and Duarte, 2022).

The remaining sections of this work are organised as follows. In Section 2, an
overview of NFV and the NFV-MANO architecture, including SFCs, is presented.
Section 3 describes the NHAM architecture, and Section 4 outlines the SFC
fault-tolerance strategy. Section 5 presents the implementation and experiments, and
Section 6 discusses related work. Finally, Section 7 concludes the paper.
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2 Virtualised network functions and services: an overview

NFV has been proposed as a software-based alternative for the implementation of
network middleboxes, such as firewalls, network address translation (NAT) devices,
intrusion detection systems (IDS), among others. Traditionally, middleboxes have been
available as specialised hardware (Sekar et al., 2012), which can be challenging to
manage and troubleshoot (Sherry et al., 2012). These services represent a significant
portion of a network’s capital expenditures (CAPEX) and operational expenses (OPEX)
(Cotroneo et al., 2014). NFV technology has been also proposed as the means to deploy
general computing in the network (COIN) services within the network (Venâncio et al.,
2022). NFV reduces costs, improves flexibility, and simplifies the design, development,
and management of network services (Mijumbi et al., 2016). There are also other
advantages, such as reduced energy and physical space requirements (Han et al., 2015).

The ETSI has promoted the development of the NFV-MANO reference architecture
(Quittek et al., 2014). This architecture enables virtual functions and services from
different developers to interoperate seamlessly, and includes modules for VNF control
and orchestration, as well as lifecycle and resource management. Additionally,
NFV-MANO defines communication interfaces and provides abstractions for the
resources necessary to execute VNFs (Tavares et al., 2018). The NFV-MANO
architecture, along with the NFV infrastructure (NFVI) and the VNFs themselves, are
depicted in Figure 1.

Figure 1 The ETSI NFV-MANO architecture
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The NFVI encompasses the virtualised infrastructure where the VNFs are instantiated,
managed, and executed. This infrastructure comprises physical storage, network,
and computational resources, which are abstracted into virtual resources through a
virtualisation layer. The virtualisation layer is made up of a hypervisor that creates and
manages virtualised devices, such as virtual machines (VMs) and containers, providing
isolation for each VNF to operate independently. In Figure 1, the VNFs symbolise the
instances that execute on the NFVI.

NFV-MANO is composed of three main modules. The first module is the NFV
orchestrator (NFVO), which facilitates the composition of VNFs on SFCs (Huff et al.,
2020; Fulber-Garcia et al., 2021). The NFVO is also responsible for managing the SFCs
lifecycle and VNFs resources. The second module is the VNF manager (VNFM), which
is responsible for VNF lifecycle management, including VNF instantiation, deletion,
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configuration, and auto-scaling (Venâncio et al., 2021). To perform its functions, the
VNFM utilises the VNF descriptor (VNFD), a template that specifies the operational
and deployment requirements for each VNF. The third module is the virtualised
infrastructure manager (VIM), which controls and manages the computing resources of
the NFVI, including the creation, deletion, and reconfiguration of virtual devices.

Regarding VNF availability, the ETSI has defined several resiliency requirements
for NFV platforms and environments (Schöller et al., 2015; Nakamura et al., 2016).
Specifically, an NFV platform must support the resiliency of VNFs of different types
provided by various vendors. Different levels of resiliency may be defined because
different VNFs have different requirements. Additionally, to ensure high availability, an
NFV platform must provide a comprehensive fault management system that can detect
and help recover from VNF failures. Finally, an NFV platform must guarantee that
stateful VNFs retain their internal state in case of failure.

Despite the fact that many NFV platforms are fully compliant with the NFV-MANO
architecture, none of them offers the complete set of functionalities required to ensure
end-to-end availability for VNFs and SFCs. The aim of the present work is to bridge
this gap by proposing a high availability NFV architecture that integrates with the
NFV-MANO reference model.

Although VNFs perform specific functions, they can be integrated into complex
network services called SFCs. An SFC comprises multiple VNFs connected in a
predefined order through which traffic is routed (Halpern and Pignataro, 2015; Huff
et al., 2018; Garcia et al., 2020). According to the Internet Engineering Task Force
(IETF), the architecture of an SFC (as shown in Figure 2) comprises classifiers, service
function forwarders (SFFs), and the VNFs themselves, which are briefly described
below.

Figure 2 The IETF architecture for service function chains (see online version for colours)
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When network traffic enters the SFC, it first reaches the classifier which applies
predefined policies to determine the appropriate service function path (SFP) to forward
the traffic. These policies may consider several parameters such as source and
destination IP addresses, ports, and protocols (e.g., TCP, UDP) among others. Once the
classifier selects the appropriate SFP, the traffic is encapsulated and forwarded to the
corresponding SFP. As an SFC can have multiple SFPs, the header of the encapsulated
traffic includes an identifier that specifies the selected SFP.

The service function forwarder (SFF) has the task of transmitting packets from the
classifier to one or more network functions in a predetermined sequence. It accomplishes
this by utilising the information included by the classifier in the SFC header. Once a
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virtual network function (VNF) has processed incoming traffic, it sends the processed
packets back to a SFF. Subsequently, the SFF forwards the traffic to the next VNF in
the SFP, and this process repeats until all VNFs have processed the traffic. Finally, upon
receiving the traffic from the last VNF in the SFP, the SFF removes the header from
the packets and delivers the traffic to its final destination.

To summarise, SFCs are a way of composing multiple VNFs to provide end-to-end
network services. They enable the flexible and dynamic chaining of functions, allowing
operators to create new services on demand. SFCs also provide an abstraction layer
between the service provider and the underlying network infrastructure, making it
possible to optimise network traffic by steering it through specific paths. However,
ensuring high availability for SFCs can be challenging, especially in complex
environments with many VNFs and SFCs. In the next section, we propose a high
availability architecture that builds upon the NFV-MANO reference model and provides
mechanisms to guarantee service continuity in the presence of component failures or
network disruptions.

3 NHAM: a high availability NFV architecture

NHAM is an architecture designed to ensure high availability for NFV. It provides
strategies for building resilient VNFs and SFCs, including failure detection and recovery.
NHAM is capable of handling heterogeneous functions and services from different
providers. In a highly available SFC, the system continues to operate correctly even after
faults occur, such as when one or more VNFs crash. As the recovery time decreases,
the availability of the service increases. Detecting and reacting to failures quickly is
essential to minimise downtime. However, redundancy alone or simply re-instantiating
failed functions is not sufficient to solve the problem (Venâncio et al., 2019, 2021).
Since most VNFs are stateful, their internal state changes according to the processed
packets and the execution flow of the function. Hence, preserving the VNF state after
recovery is crucial.

Figure 3 NHAM within the NFV-MANO architecture (see online version for colours)
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NHAM is a high availability solution for stateful and stateless NFV-based services.
NHAM was designed as a module of the NFV-MANO architecture, and communicates
with the other modules of the NFV-MANO architecture, as shown in Figure 3. NHAM
includes efficient fault management features. VNFs simply inherit high availability
properties, with no need for developers to make any changes to the source code in order
to make a service highly-available. NHAM assumes the classical crash fault model. A
description of the NHAM architecture is presented in the next subsection. The strategy
defined by NHAM to ensure high availability of individual VNFs follows; the strategy
for resilient SFCs is described in the next section.

3.1 NHAM: the architecture

NHAM is composed of two main components, which are shown in Figure 4: the fault
management system (FMS) and the VNF state manager (VSM). These components are
described next. The FMS includes functionalities for failure detection and recovery,
which are critical for ensuring high availability in the context of NFV. Failure detection
involves monitoring VNF instances and identifying crashes (Turchetti and Duarte,
2015). NHAM employs two mechanisms for failure detection. The failure detector (FD)
module uses a polling strategy, where messages are sent periodically to the VNFs being
monitored, and acknowledgements are expected to arrive before a timeout expires. The
timeout is computed adaptively. In addition to the polling messages, the FD checks
the state of the VNF by directly inspecting the corresponding virtual device, a feature
provided by several hypervisors. If a VNF is suspected of having crashed, the FD
immediately adds it to a list of suspects and sends a notification message to the VNFM.

Figure 4 NHAM: architecture
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Furthermore, the FMS incorporates a replica manager that offers a range of resiliency
options which are described in Subsection 3.3 to manage faults and recovery of virtual
network functions (VNFs). Depending on the specific availability requirements of a
given VNF instance, one of four resiliency mechanisms can be selected. Additionally,
the FMS assumes the responsibility of VNF recovery. NHAM has interfaces with the
VIM, VNFM, and NFVO as detailed in Subsection 3.3.

To preserve the internal state of a VNF after recovery and ensure the correct
recovery of stateful VNFs, NHAM employs the VNF state manager (VSM) component.
The VSM includes a state synchroniser, an API for handling the internal state of VNFs,
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and a database responsible for storing the VNF states. A detailed description of the
VSM is in the next subsection.

As mentioned above, NHAM communicates with other NFV-MANO modules,
including the NFVO, VNFM, and VIM, to perform various tasks related to the lifecycle
of virtualised services. During the recovery of a VNF, NHAM requests the VNFM to
create new VNFs, as an example of NHAM-MANO interaction. Additionally, NHAM
can reconfigure SFCs through the NFVO.

3.2 Stateful VNF management

The VSM component is responsible for the recovery of stateful VNFs and is based on
checkpoint/restore (Elnozahy et al., 2002). Since VNFs run on virtual devices, which
can be either virtual machines or containers, capturing the VNF state without modifying
the VNF source code is perfectly feasible and represents a very attractive option. To
achieve this, checkpoints containing a representation of the system state are periodically
captured and saved in non-volatile memory. In the event of a failure, the system can be
restored to the most recent checkpoint, ensuring the correct recovery of the VNF.

The state of a VNF can be classified as either external or internal (Nakamura et al.,
2016). The external state includes static information that either does not change or
changes infrequently over time, such as firewall/IDS rules and NAT port mapping tables.
Recovering the external state is relatively easy once the VNF has recovered.

The internal state of a VNF, on the other hand, includes information that is updated
as packets are processed and the function executes. Memory mapping, TCP connections,
and cache contents are examples of internal state information. The primary challenge
in managing VNF state is to preserve and ensure the consistency of the internal state,
especially as VNFs fail and recover.

The VSM component of NHAM is responsible for recovering stateful VNFs
after a failure, and it achieves this through the state synchroniser. The state
synchroniser captures internal state information and saves VNF checkpoints, which are
representations of the system state at a particular point in time. To do this, the state
synchroniser employs an agent that periodically collects internal state information from
each VNF.

NHAM defines an API for VNF state management, which consists of two main
operations: export vnf state and import vnf state. These operations are used to save and
restore the state of a VNF respectively and are described below:

• export vnf state: this NHAM operation saves a checkpoint of a specific VNF by
momentarily pausing the virtual device to obtain the required state information for
the checkpoint. After the information is obtained and the VNF execution is
resumed, the checkpoint is sent to either the VNF state database or directly to a
replica, depending on the resiliency mechanism adopted. This operation is
necessary to ensure that the internal state of a VNF is captured and can be
restored in case of a failure.

• import vnf state: this operation is used to restore the state of a VNF with a
previously saved checkpoint. The operation requires two parameters:
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1 vnf, which is the VNF instance identifier

2 checkpoint, which indicates from where the corresponding checkpoint has to
be imported.

To execute the operation, the first step is to momentarily pause the VNF that will
be updated with the checkpoint. Then, the checkpoint is imported and the VNF is
updated. Once the operation is completed, the VNF outputs a code indicating that
it was successfully updated with the new checkpoint.

Note that NHAM also allows the recovery of stateless VNFs, for which it is not
required to save state information. Stateless VNFs do not maintain any internal state
that needs to be saved or recovered. These VNFs are designed to be stateless, as they
perform a simple forwarding operation based on an incoming packet, without storing
any information about the previous packets or connections. Therefore, when a failure
occurs, these VNFs can be easily recovered by simply restarting them. Since they do
not have any internal state that needs to be saved, the import and export VNF state
operations are not needed for stateless VNFs.

3.3 NHAM: resiliency and recovery mechanisms

The choice of resiliency strategy for ensuring high availability of VNFs is dependent
on the specific requirements of each network function (Schöller et al., 2015). For
instance, functions handling real-time traffic have more rigorous resiliency requirements
compared to those handling best-effort traffic. Thus, the NFV platform should support
various strategies that have different properties and costs.

NHAM features four resiliency mechanisms that rely on two different replication
methods: active-standby and active-active, both of which are defined by an ETSI
standard (Nakamura et al., 2016). In the active-standby method, the VNF replica is
already instantiated but is in standby mode, ready to take over in case the primary
instance fails. On the other hand, in the active-active method, the replica has also
been instantiated but is actively running and periodically updating its state, allowing
for a more seamless transition in case of a failover. The choice between these two
replication methods ultimately depends on the specific resiliency requirements of the
network function in question.

The cost and recovery time of the different resiliency mechanisms vary, and the
selection of a mechanism for a specific VNF depends on its features and requirements.
Each mechanism employs a different recovery procedure. The resiliency mechanisms
and their corresponding recovery procedures are described in detail below.

3.3.1 No redundancy

The no redundancy (0R) mechanism does not employ any type of redundancy.
Therefore, in the event of a VNF failure, the only way to recover is to import the
last checkpoint and restart the VNF execution from there. This implies that the service
will suffer a downtime proportional to the time it takes to restore the VNF checkpoint,
which can be significant for stateful VNFs with large state sizes. As shown in Figure 5,
the state synchroniser periodically takes (in the figure, label 1) and exports (label 2)
checkpoints from the VNF to the VNF state database.
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After a failure occurs (label 3), the first step of the recovery process is to instantiate
a new VNF (label 4), replacing the one that has failed. Next, NHAM updates the
internal state of the new VNF. To do so, the state synchroniser imports the most recent
checkpoint from the VNF state database (label 5) to the newly created VNF (label 6).
Once the recovery process is complete, a reconfiguration process begins. The first step is
to obtain the updated information of the newly instantiated VNF, including its IP address
and other identifiers. Then, NHAM sends this updated information to the corresponding
NFV-MANO modules.

Figure 5 The 0R mechanism (see online version for colours)

3.3.2 Primary replica active-standby

The primary replica active-standby (1R-AS) resiliency mechanism employs the
active-standby method (i.e., warm-standby) with a replica that is instantiated but remains
in a standby mode. As shown in Figure 6, the state synchronizer exports the VNF
checkpoints to the VNF state database (in the figure, labels 1 and 2), exactly like the
0R mechanism does. However, unlike 0R, 1R-AS uses virtual resources to maintain a
replica in standby mode, making it more expensive but with a shorter recovery time.
In case of a failure (label 3), the replica is already created and the state synchroniser
imports the most recent checkpoint into the replica to update its internal state (labels 4,
5 and 6). Once the internal state is updated, the replica becomes the primary VNF,
and NHAM sends a request to NFV-MANO to update the required information. A new
replica is then instantiated (label 7) and left in standby mode, ready to take over in case
of a future failure.

Figure 6 The 1R-AS mechanism (see online version for colours)

3.3.3 Primary replica active-active

The primary replica active-active (1R-AA) resiliency mechanism is designed to handle
the high availability of VNFs that require a lower recovery time than the previous
mechanisms. As shown in Figure 7, in the 1R-AA mechanism, each VNF executes as
two instances, a primary and a backup. The primary replica processes incoming traffic,
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while the backup replica remains in standby mode. The backup replica receives updates
from the primary through the state synchroniser (in the figure, labels 1 and 2).

Figure 7 The 1R-AA mechanism (see online version for colours)

In the event of a failure (label 3), the 1R-AA mechanism switches to the backup
replica, which becomes the primary VNF (label 4). As the backup replica has received
all updates from the primary replica, the failover is immediate. A new backup replica
is then created, and the state synchroniser imports the most recent checkpoint to that
replica, updating its internal state (label 5). Finally, the reconfiguration process is
executed.

The 1R-AA mechanism is the most expensive in terms of virtual resource
consumption because it requires two replicas for each VNF to remain constantly
updated, but provides the fastest recovery time.

3.3.4 Multiple replicas active-active

The multiple replicas active-active (MR-AA) resiliency mechanism is a generalisation of
the 1R-AA mechanism. As shown in Figure 8, the VNF is considered to be a member of
a group of 1 +M replicas that are continuously synchronised by the state synchroniser
(in the figure, labels 1 and 2). Any of the replicas in the group can be accessed to
obtain the service, and the states of the replicas are kept consistent. MR-AA is the most
expensive of all mechanisms, as it requires the synchronisation of all the M replicas,
but it presents the shortest downtime in case of failures. No reconfiguration is required
after a failure (label 3), as users can simply access any replica in the group (label 4). It
is possible to specify a minimum and maximum number of replicas in the group. If the
number of correct replicas falls below the minimum threshold, new replicas are created
(label 5).

Figure 8 The MR-AA mechanism (see online version for colours)

3.4 A comparison of the resiliency mechanisms

Table 1 shows a comparison of the different resiliency mechanisms both in terms of
resource usage (e.g., memory and CPU utilisation) and recovery time.
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The 0R mechanism presents the lowest cost, and has the longest recovery time. It
is ideal for VNFs that execute low priority functions and can tolerate longer failover
times. The 1R-AA mechanism has a shorter recovery time than the 1R-AS mechanism,
as its backup replica is kept up-to-date. The MR-AA mechanism provides the shortest
downtime, making it ideal for VNFs that require the highest level of resiliency.
However, it is also the most expensive mechanism due to the need to synchronise the
multiple replicas.

Table 1 Comparison of the different resiliency mechanisms

Resiliency Method #Replicas Database Recovery Resource Reconfiguration
mechanism time usage

0R None 0 Yes Very high Very low Yes
1R-AS Active-standby 1 Yes Moderate Low Yes
1R-AA Active-active 1 No Low High Yes
MR-AA Active-active M No Very low Very high No

Therefore, the choice of resiliency mechanism depends on the specific requirements and
priorities of each VNF. It is important to evaluate the trade-offs between cost, recovery
time, and resiliency when selecting a mechanism. The 1R-AA and MR-AA strategies are
more expensive in terms of resource utilisation, but they provide the shortest recovery
times, making them suitable for critical VNFs that require higher levels of availability.
In addition, the MR-AA mechanism can provide even higher levels of availability, as
it ensures that multiple replicas to be continuously synchronised, so that any of the
replicas in the group can be accessed to obtain the service.

In addition to the higher cost of maintaining multiple synchronised replicas,
the MR-AA mechanism also requires more complex synchronisation algorithms and
monitoring strategies to ensure the consistency of the states across all replicas. The
state synchroniser plays a crucial role in this mechanism and needs to keep track of
all replicas in the group to guarantee the synchronisation of the states. A monitoring
strategy is needed to detect failures of any of the replicas and to take appropriate actions
to replace replicas that have failed with new ones.

NHAM must also ensure the consistency of replica states in two specific situations:

1 when a VNF is falsely suspected to have failed

2 when a VNF fails while the state is being updated.

In the first case, NHAM performs the same recovery procedure as if the replica had
actually failed, and a reconfiguration step is executed to replace the replica with a
new instance or an existing one. In the second case, to prevent inconsistencies, the
state synchroniser halts the update process and rolls back all replicas to their previous
state, using the most recently saved checkpoint. The failed VNF is eliminated, and the
remaining replicas remain consistent.

4 Highly available SFCs

This section presents the NHAM strategy for making SFCs fault-tolerant.
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4.1 Traffic buffering

NHAM employs a high availability strategy that ensures the complete recovery of
stateful SFCs, which are made up of one or more stateful VNFs, after any number of
VNFs fail along the service chain. In most SFC implementations, a buffer precedes each
VNF along the SFP, which is used by the SFF to store packets before delivering them
to the VNF. NHAM, on the other hand, uses two buffers for each VNF in the chain,
as illustrated in Figure 9. The first buffer, called buffer rx, is located before the VNF
in the chain and receives the traffic that needs to be delivered to the VNF. This buffer
stores packets that have not yet been processed by the VNF. The second buffer, known
as buffer tx, is located after the VNF in the chain and receives the traffic output by the
VNF. This buffer stores traffic that has already been processed by the VNF.

Figure 9 NHAM: high availability for SFCs (see online version for colours)
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The data flow begins when the first packets from the SFF are stored in the buffer rx of
the first VNF, which will be processed by that VNF. Subsequently, the SFF forwards
the packets from buffer rx to the VNF. After processing the traffic, the VNF outputs
the resulting packets into buffer tx. The SFF then takes over and moves packets from
buffer tx of one VNF to the buffer rx of the next VNF in the chain. This process is
repeated for all other VNFs in the chain. When the final VNF processes the traffic and
places the packets in the last buffer tx, the SFF is responsible for delivering the traffic
to the final destination correctly.

We make the assumption that the buffers, the SFF, and other MANO components
do not fail. This is a practical assumption since the environment on which these SFCs
operate must have been designed to be fault-tolerant to support highly available SFCs.
Additionally, each VNF is assigned to a single SFC and is not shared by multiple
SFCs. It is advisable to deploy VNFs and buffers on physically separated hardware.
Furthermore, the recovery strategy assumes that all VNFs along the chain process traffic
in first-in, first-out (FIFO) order. Therefore, if two packets are sent to the VNF in a
specific sequence and are not dropped by the VNF, they are output in the same order.

The hold/release approach is proposed to ensure the reliable recovery of an SFC after
a failure. This method employs a blend of VNF checkpointing and buffer management,
as detailed below.
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4.2 The hold/release strategy

The recovery of a stateful SFC consists of into two key components:

1 the recovery of each failed VNF, which involves the restoration of state for
stateful VNFs (outlined in Section 3.2)

2 the retransmission of traffic that was lost as a result of VNF failures.

This retransmission is accomplished using the hold/release approach, which is explained
in detail in the following section.

Prior to storing a packet into the initial buffer rx of the first VNF in the SFC, the
SFF encapsulates each packet in order to enable routing along the SFP. Along with
the explicit data used to identify the SFP (Halpern and Pignataro, 2015), the SFF also
incorporates a timestamp in the form of a counter as it encapsulates the packet. This
timestamp works as a unique identifier for each sequential packet.

NHAM continuously monitors the VNFs, and as soon as it detects any VNF failure,
it promptly alerts the SFF to change the state of the SFC to recovering. While the SFC
remains in this state, traffic ceases to flow through the VNF until the VNF has fully
recovered. In this recovering state, a VNF neither accepts packets from buffer rx nor
forwards packets to buffer tx.

The hold/release strategy retains packets in buffer rx until a checkpoint is taken.
This is the ‘hold’ part of the hold/release strategy. In this way NHAM ensures that no
packets are lost due to a VNF failures. Once a VNF checkpoint has been taken after it
has processed a sequence of packets, we say that the checkpoint includes those packets.
The SFF can then remove those packets from buffer rx. This is the release part of the
hold/release strategy.

In case the VNF fails before the checkpoint is taken, it is rolled back to the previous
checkpoint, and all packets it had received from that point (which are still in buffer rx)
must be sent again and processed by the VNF. Conversely, if the VNF does not fail,
the SFF waits for the checkpoint to be saved before proceeding. Once the checkpoint is
saved, it can be inferred that the last packet in buffer tx has been both processed by the
VNF and included in the checkpoint. The SFF then removes from buffer rx the packets
up to and including that last packet.

Consider as an example that all packets up to packet i have been processed by
a VNF when a checkpoint starts. Consider that packet i+ 1 had also been sent from
buffer rx to the VNF, but was not included in the checkpoint. As the checkpoint
completes, the SFF confirms that the last packet that was already in buffer tx is packet
i and can conclude that this packet was included in the checkpoint. Now all packets
up to i can be removed from buffer rx. Note that packet i+ 1 cannot be removed: if
it is necessary to rollback, packet i+ 1 must be reprocessed by the VNF. NHAM also
keeps track of the last packet delivered to the next VNF along the chain, thus it avoids
sending duplicate packets along the SFC.

The hold/release strategy aims to ensure the consistent recovery of an SFC after
a VNF failure by combining VNF checkpointing with buffer management. It involves
temporarily retaining packets in buffer rx until a VNF checkpoint is taken after those
packets are processed. If a VNF fails before the checkpoint is taken, it is rolled back
to the previous checkpoint, and all packets it had received from that point must be
sent again and processed by the VNF. If the VNF does not fail, the SFF waits until
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the checkpoint is saved, and then removes all packets up to the last packet that was
included in the checkpoint. The SFF also keeps track of the last packet delivered to the
next VNF along the chain to avoid sending duplicate packets. Overall, the hold/release
strategy allows for efficient recovery of an SFC by minimising packet loss and avoiding
duplicate packet delivery.

Consider a scenario where packets i, i+ 1, and i+ 2 are transmitted from buffer rx
to the VNF. The VNF processes only packet i when a checkpoint is initiated. Upon the
completion of the checkpoint, the SFF verifies that packet i is the last packet in buffer tx
and thus removes all packets up to and including packet i from buffer rx. Next, the
VNF continues, and processes packets i+ 1 and i+ 2, which are then forwarded to the
next VNF through buffer tx. The SFF maintains a record of the last packet in buffer tx,
which in this case is packet i+ 2. If the VNF fails, packets i+ 1 and i+ 2 must be
reprocessed by the VNF after it recovers since they were not included in the most recent
checkpoint. Nonetheless, they have already been transmitted to the subsequent VNF in
the chain. The SFF keeps track of that, and only forwards new packets from i+ 3 along
the SFC.

The VNF recovery process follows the adopted resiliency mechanism, as discussed
in Section 3.3. Once the VNF is operational again, with its state restored based on the
last checkpoint stored, the next step is the retransmission of all the traffic in buffer rx,
including packets the VNF had received since the checkpoint was saved.

The hold/release strategy guarantees SFC recovery regardless of the number of VNFs
that have failed, and works correctly even if multiple VNFs fail simultaneously, such as
due to a power outage. Notably, the buffer rx of a particular VNF is only cleared after
a VNF checkpoint is saved, and the processed packet is placed in buffer tx. Thus the
traffic handled between each VNF checkpoint is not forfeited, and the integrity of the
entire SFC is assured.

5 Implementation and experimental evaluation

NHAM was implemented as a prototype on an NFV platform compliant with the
NFV-MANO reference model. The prototype was developed in Python, utilising Docker
containers (Merkel, 2014). For VNF state management, a REST API was created.
VNF checkpoints were taken using checkpoint/restore in userspace (CRIU) (CRIU,
2023), containing the essential information to restore a non-operational VNF, such as
the network function itself and some associated resources, like memory maps and the
process tree. The VNFs employed in the experiments were packet forwarders.

One of the major advantages of NHAM is that it offers multiple alternatives
that a user can choose to turn its VNFs fault-tolerant. A VNF descriptor (VNFD) is
employed to specify the desired strategy. Next we present an example VNFD. This
VNFD specifies that NFV-MANO should instantiate the VNF on an Ubuntu container,
employing 4 CPUs and 512 MB of RAM. The MR-AA resiliency mechanism is chosen,
with three VNF active replicas (besides the primary). The replicas are kept updated
according to the state of the primary. The checkpoint interval is defined to be of 250ms.
The packets processed by the VNFs have 1,024 bytes, while the captured state of each
VNF is in average 512 KBytes (actually this may vary according to the specific VNF
being processed).
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The experiments were executed on an Intel Core i7 processor with 8 cores, 16 GB
RAM, a 1 Gbps Ethernet NIC, and Linux Ubuntu 20.04. Each VNF comprises an
Ubuntu server with 256 MB RAM and 1 CPU, while the MR-AA mechanism defaults to
three replicas. NHAM does not need any kernel patches to operate. The first experiment
set examines and compares the impact of the four distinct VNF resiliency mechanisms
on SFC recovery time as the SFC’s VNF count increases. The second experiment
set evaluates the resource utilisation of each recovery strategy, in terms of memory
and CPU consumption. The third experiment set measures the impact of NHAM on
throughput. Finally, the last experiment assesses the availability of NFV-based services
supported by NHAM. Each experiment was repeated ten times, and the outcomes are
averages presented with a 95% confidence interval.

5.1 Failure recovery time

The goal of the first set of experiments is to measure the time it takes for the SFC
to recover from a failure. The downtime during a failure is particularly critical to
improve the availability of virtual services. The failures were introduced by scripts that
disconnect all connections from the VNFs, thereby triggering failure suspicions. The
experiment measures the time it takes from the detection of a failure until the recovery
process completes.

The first experiment in this set compares the four different resiliency mechanisms
and measures the average recovery time after a single VNF in the SFC fails. The number
of VNFs in the SFC is increased from 1 to 8, and the results are shown in Figure 10.

The results of the first set of experiments confirm the hypothesis that the 0R
mechanism presents the longest recovery time, with up to 3.6 s of downtime for an
SFC with eight VNFs. This is due to the time it takes to instantiate a new VNF, which
takes approximately 2.4 s on average, and the time needed for the VSM to restore the
most recent checkpoint. On the other hand, the 1R-AS mechanism shows better results
compared to the 0R mechanism, and this can be explained by the fact that a replica has
already been instantiated and is in standby mode. As NHAM uses the active-standby
method, only importing a checkpoint into the replica is necessary, resulting in a total
recovery time of 1.14 s for an SFC with eight VNFs.
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Figure 10 Average time a single VNF takes to recover (see online version for colours)
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On the other hand, the 1R-AA and MR-AA mechanisms achieved the best results, with
recovery times of 0.05 s and 0.0002 s, respectively. The results show that:

1 NHAM maintains similar levels of performance even when the SFC length
increases

2 the recovery time remained unchanged, regardless of the SFC length, for all
strategies.

In the experiment shown in Figure 11, the impact on recovery time due to multiple
failures occurring simultaneously is evaluated. SFCs with eight VNFs were used, and
the number of failures per SFC ranged from 1 (single VNF failure) to 8 (failure of the
entire SFC).

Figure 11 Time to recover multiple failures per SFC (see online version for colours)
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The impact of recovering multiple VNFs in parallel was evaluated in the next
experiment. NHAM is designed to recover multiple VNFs simultaneously, as described
in Section 4. The experiment measured the impact of increasing the number of VNFs
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that fail at the same time on the recovery time. For the 0R resiliency mechanism, the
recovery time increased from 3.56 s for a single failure to 7.8 s for eight failures, which
is an increase of 2.1 times. On the other hand, for the 1R-AS mechanism, the difference
in recovery time between a single failure and the failure of the entire SFC was smaller,
increasing from 1.14 s to 2.52 s.

It is noteworthy that for the 1R-AA and MR-AA mechanisms, the impact of
increasing the number of failures on the recovery time is minimal, since the time to
recover from a single failure is already very low compared to the other strategies. For
instance, the recovery time for 1R-AA varies from 0.004 s for one failure to 0.009 s for
eight failures, while for MR-AA, it varies from 0.0004 s to 0.0009 s. Therefore, it can
be concluded that all recovery mechanisms are scalable concerning the number of VNF
failures.

5.2 Overhead

In next experiment we investigated the cost of the resiliency mechanisms in terms of
memory and the CPU utilisation, including the cost to monitor, recover, and synchronise
the internal state of VNFs. Figures 12 and 13 show the results for memory and CPU
utilisation for each of the resiliency mechanisms as the length of the SFC length varies
from 1 to 8 VNFs. The 0R mechanism presents a longer recovery time in exchange
for lower cost. The 0R mechanism scales well as the number of VNFs grow: its CPU
utilisation remains roughly constant. For memory usage, the increase is proportional to
the number of VNFs, ranging from 1.88% (1 VNF) to 13.04% (8 VNFs). On the other
hand, although the 1R-AS mechanism has a shorter recovery time than 0R, it maintains
the same performance levels as 0R, both in terms of CPU and memory.

Figure 12 Overhead: CPU consumption (see online version for colours)

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8

A
v
e
r
a
g
e
 
C
P
U
 
U
s
a
g
e
 
(
%
)

SFC Length

0R

1R−AS

1R−AA

MR−AA

In contrast, the mechanisms based on the active-active method, 1R-AA and MR-AA,
present higher resource utilisation due to the constant synchronisation of the internal
state of their replicas. The 1R-AA mechanism presents a CPU utilisation of 21% and
memory usage of 38% to synchronise up to eight VNFs, while the MR-AA mechanism
has similar memory usage but higher CPU usage, reaching up to 45% for a SFC with
eight VNFs. It is worth noting that the memory usage of the approaches based on
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the active-active method is significantly higher than the others, as they perform their
operations in memory, avoiding non-volatile memory I/O overheads.

Figure 13 Overhead: memory consumption (see online version for colours)
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It is also important to highlight that the cost of the resiliency mechanisms can be
adjusted according to the service provider’s needs. For example, in scenarios where
resource utilisation is a critical factor, the 0R mechanism can be the best option,
whereas, in scenarios where fast recovery is a priority, the MR-AA mechanism can be
the most suitable.

5.3 Throughput

The next experiment evaluates the impact of NHAM’s hold/release strategy on the
throughput in two different scenarios using SFCs with four VNFs. In the first scenario,
no failures occur, and the performance of each resiliency mechanism is compared to a
baseline SFC that is not running NHAM. In the second scenario, failures occur every
30 seconds, and the impact of the hold/release strategy is evaluated.
In the absence of failures (Figure 14), the 0R and 1R-AS mechanisms showed similar
throughput, as expected, as both mechanisms take checkpoints in the same way. These
mechanisms reduced the throughput by approximately 11.5%, owing to the time taken
to obtain, compress, and save checkpoints in non-volatile memory, which increases the
downtime of the VNF.

The 1R-AA mechanism shows a decrease in throughput of only 4.7%. This
mechanism operates in memory, as the internal state is transferred to an active
replica, which results in a significant improvement in throughput, as discussed in the
previous section. In contrast, the MR-AA mechanism exhibits the greatest degradation
of throughput. Although it has a very low recovery time, the throughput decreases by
14.1%. The MR-AA mechanism also runs in memory, but the processing required to
ensure the consistency of the group of replicas for each VNF has a noticeable impact
on throughput.

In the scenario in which VNF failures are injected every 30 s, shown in Figure 15,
the reduction in throughput is more significant for the 0R and 1R-AS mechanisms
compared to the active-active-based methods. This is because both mechanisms (0R and
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1R-AS) have longer recovery times. It is worth noting that even in this scenario, the
throughput remains constant for the 1R-AA and MR-AA mechanisms.

Figure 14 Throughput of fault-free SFCs (see online version for colours)
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Figure 15 Throughput of SFCs with failures (see online version for colours)
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5.4 Availability

The objective of this experiment is to evaluate the availability of NFV-based services
using NHAM. The availability was measured under a varying mean time between
failures (MTBF). The results for each resiliency mechanism are displayed in Table 2.
Each experiment lasted for three hours and the MTBF indicates the frequency (in
minutes) at which failures were injected. In this experiment, SFCs with eight VNFs
were employed.
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Table 2 SFC availability with a varying MTBF

MTBF (min) Availability (%)

0R 1R-AS 1R-AA MR-AA

1 98.057 98.240 99.916 99.999
5 99.605 99.643 99.983 99.999
10 99.802 99.821 99.991 99.999
15 99.868 99.880 99.994 99.999
20 99.901 99.910 99.995 99.999
25 99.920 99.928 99.996 99.999
30 99.934 99.940 99.997 99.999

As anticipated, the 0R mechanism shows the lowest figures in terms of availability.
However, it can still be useful for network functions that can tolerate longer recovery
times. Even for tests with a higher MTBF (for example, one failure every 30 minutes),
the 0R mechanism achieves only 99.3% availability. Similarly, the 1R-AS mechanism
also fails to reach the levels of availability necessary to ensure carrier-grade availability
of VNFs, although it performs better than 0R.

In the experiment, the 1R-AA mechanism presented superior performance in
comparison with 0R and 1R-AS, even in the scenario with a higher probability of
failures. With an MTBF of 1 minute, VNFs using this mechanism achieved a 99.9%
availability (three nines), while an MTBF of 10 minutes resulted in 99.99% availability
(four nines). On the other hand, the MR-AA mechanism delivered the best results, with
99.999% availability (five nines) achieved in all cases.

The experiments presented in this section demonstrate that the NHAM framework
is capable of providing high availability for VNFs, with the active-active mechanisms
achieving the best results. The 1R-AA mechanism achieved an availability of 99.9%
(three nines) even in the most failure-prone scenario, while the MR-AA mechanism
reached an availability of 99.999% (five nines) in all cases. In contrast, the 0R and
1R-AS mechanisms had longer recovery times and lower availability rates, making them
less suitable for carrier-grade NFV deployments. However, it is important to note that
the availability of the cloud platform used to deploy the VNFs and SFCs also affects
the overall availability of the system. In general, cloud platforms which are used to
deploy NFV environments reach up to approximately 99.9% (three nines) of availability
(Han et al., 2017). Despite this constraint, the NHAM framework provides a promising
solution for improving the reliability and availability of NFV-based services.

6 Related work

The REINFORCE framework (Kulkarni et al., 2018) aims to enhance the resilience
of VNFs and SFCs by replicating the network functions’ states. Unlike the NHAM
approach, which offers various resiliency mechanisms, REINFORCE adopts a single
active-standby method. Moreover, the VNF developers are responsible for identifying
the stateful VNF operations in REINFORCE. It is worth noting that the REINFORCE
framework is not compliant with the NFV-MANO standard.

The fault tolerant chain (FTC) approach (Ghaznavi et al., 2020) enhances the
resiliency of SFCs without relying on checkpointing or packet replay. Instead, FTC



22 G. Venâncio and E.P. Duarte

embeds VNF state information in packets that traverse the chain. Each VNF acts
as a replica for its predecessor, eliminating the need for dedicated replicas. When a
VNF fails, it is re-instantiated, and its state is retrieved from the succeeding VNF
in the chain. It is important to note that FTC does not comply with the IETF SFC
reference architecture, as it assumes that each VNF sends traffic directly to the next one.
Additionally, it is not compliant with NFV-MANO. Exactly like in the REINFORCE
framework, the VNF developer is responsible for indicating which operations cause state
changes by modifying the VNF source code.

Remus (Cully et al., 2008) is a system designed to provide high availability for
virtual machines, rather than NFV. It periodically saves checkpoints from one virtual
machine onto a backup virtual machine. Therefore, in the event of a failure, the backup
virtual machine can take over seamlessly. Remus also synchronises checkpoints through
buffering, where packets are temporarily stored in a buffer until the synchronisation of
a new state is complete. This approach is similar to NHAM’s buffer management and
checkpointing mechanism, but the contexts in which they are used differ.

The authors of a proposal centered on buffers, named pico replication (PR)
(Rajagopalan et al., 2013a), introduce a framework for enhancing the availability of
middleboxes. Instead of preserving the internal state of the middleboxes, PR takes
checkpoints on individual data flows, while the middlebox carries on processing
other flows. Several adaptations are necessary to guarantee the high availability of
middleboxes with PR, which involves modifications to both the kernel and SDN
controller.

Decoupling the internal state of network functions from their processing is another
proposed strategy for enhancing fault tolerance of stateful network functions, as
described in Kablan et al. (2017) and Khalid and Akella (2019). This strategy involves
saving the internal state to a distributed database. If a failure occurs, a new instance
can retrieve the updated state from the database, which does introduce an overhead.
The authors of both works claim that the solutions they propose adds a small latency
per processed packet, as replicas are not pre-instantiated. However, if a VNF fails,
a new instance must be created and its state updated, which inevitably impacts the
overall recovery time. Furthermore, implementing both approaches requires extensive
modifications to VNFs themselves.

In Sherry et al. (2015), a rollback-recovery approach is introduced, which proposes
the fault-tolerant middlebox (FTMB) system for preserving the state of middleboxes
through ‘ordered logging’ and ‘parallel release’, described next. The ordered logging
mechanism saves the necessary data to reproduce system entries in case of a failure,
while parallel release is an algorithm that guarantees the correct reproduction of entries,
considering the dependencies between packets. Although this solution presents low
overhead when the system fails, implementing this approach requires modifications to
the VNF source code, which could be considered a drawback.

Gember-Jacobson et al. (2014) suggest a control plane architecture that reallocates
traffic flows from failed to operational VNF instances, while maintaining the
synchronisation of VNF internal states. This control plane, known as OpenNF, handles
the state and minimises data loss by transferring flows through the controller. Moreover,
OpenNF proposes a VNF state management API that is comparable to the one suggested
for NHAM. However, the OpenNF API demands adjustments to the VNF source code
and comes with performance concerns.
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Table 3 A comparison of the main solutions for NFV reliability
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In Harchol et al. (2018), the authors propose the FTvNF framework for VNF fault
tolerance. FTvNF tracks VNF states, and aims at reducing the state tracking costs.
FTvNF relies on two instances of the protected VNF, called master and slave. In case
of a failure, traffic is handled by the slave machine while the master is recovering.
Packets arriving at a service chain first go through an sequencer that generates a unique
identifier for each packet. The sequencer sends packets through the master VNFs. All
the packets are stored in a reliable centralised logger that is assumed to be fault-tolerant,
and remain there until FTvNF determines that all packets have been fully processed.
After a master fails, the packets are handled by the corresponding slave. The major
difference to NHAM is that FTvNF relies on a centralised fault-tolerant component, and
presents a single recovery strategy.

A large number of existing fault-tolerant NFV solutions have a focus on VNF/SFC
deployment. Nearly all adopt the most usual approach to enhance VNF fault tolerance:
the deployment of backup VNFs as stand-by instances (Yang et al., 2018) or even
standby SFCs (Wang et al., 2021). Basically all those works explore the problem from an
optimisation point of view. Usually the problem is formulated and shown to be NP-hard,
after that an heuristic is proposed, recent works have a focus on AI techniques (Mao
et al., 2020). Some of the solutions focus on performance besides availability, such as
Hawilo et al. (2019). Virtually all those works present an evaluation of their proposed
strategies using simulation, and treat VNFs and SFCs as abstractions with little relation
to actual reference models.

Besides the aforementioned solutions, many NFV and cloud platforms, such as
OpenStack (OpenStack, 2023) and OSM (ETSI, 2023), provide some degree of fault
tolerance. Nevertheless, these solutions are unable to ensure the uptime of stateful VNFs
because they lack mechanisms to retain the virtual devices’ internal states.

Table 3 shows a comparison of the main solutions for NFV reliability, according to
the following characteristics and properties:

1 virtualisation, which types of virtualisation techniques are supported

2 NFV, whether the solution is NFV-MANO compatible

3 SFC, whether the solution supports fault-tolerant service function chains or not

4 SFC IETF, in case the solution does support SFCs, whether it is compliant with
the IETF SFC architecture

5 whether function code modifications are required or not

6 redundancy methods supported

7 the strategy adopted.

In comparison with NHAM, other solutions only provide partial support for ensuring
high availability of stateful VNFs. In particular, three main drawbacks can be identified
in those approaches. The first is the lack of support for multiple resiliency mechanisms.
The second disadvantage is that several solutions require modifications to the VNFs’
source code, which limits both the solution and the types of VNFs that can operate
on the platform. Furthermore, having to modify code is also error-prone, which does
have an impact on the reliability of functions. Finally, none of those solutions are fully
compliant with the NFV-MANO reference architecture – i.e., they do not execute within
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an NFV-MANO system. For example, it is often necessary to manually execute VNF
lifecycle operations (e.g., create a new VNF in case of a failure). This drawback raises
interoperability concerns, making integration with other NFV systems a challenging task.

7 Conclusions

In this paper we proposed a strategy to build highly available stateful VNFs and SFCs
based on the NFV-MANO reference model. NHAM does not require modifications
to the source code of a VNF to make it fault-tolerant: NHAM is based on
checkpoint/restore and offers four resiliency mechanisms that can be chosen based on
the requirements of the different types of VNFs. Additionally, NHAM employs buffer
management to allow the recovery of stateful SFCs. Even after multiple VNFs fail
simultaneously, NHAM ensures complete and correct end-to-end service recovery. The
proposed architecture was implemented as a prototype, and experimental results were
conducted to evaluate its performance and availability. The results show that NHAM is
an effective solution to improve the robustness of virtualised services, and it can achieve
carrier-grade availability. Future work includes investigating strategies to improve fault
prevention and prediction in the context of NFV.
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