
Towards a Novel Model for Availability as a Service
José Flauzino

Elias P. Duarte Jr.
{jwvflauzino,elias}@inf.ufpr.br

Dept. Informatics, Federal University of Paraná
Curitiba, Brazil

ABSTRACT
Highly Available systems often require sophisticated, expensive
techniques. However, end-users may not have enough resources
on their premises, or the knowledge to make their systems reach
that goal. It may be fully impractical to expect an end-user to easily
transform a regular application into a highly available one. In this
work, we propose a novel perspective on Availability as a Service
(AaaS). The proposedmodel has the potential to offer different levels
of availability in a simplified fashion. AaaS has been often used to
describe clouds that offer highly available services. Our proposal, on
the other hand, is for the environment itself to provide, on demand,
the functionality required for end-user systems to achieve specific
levels of availability. We also envision that AaaS can go beyond
the cloud. This includes the case in which AaaS is provided in a
scenario we call Edge-Core-Cloud Continuum, where the network
core plays a prominent role throughNFV-COIN (Network Functions
Virtualization - COmputing In the Network).

CCS CONCEPTS
•Computer systems organization→Availability; •Networks
→ Cloud Computing; In-network processing.

KEYWORDS
Availability as a Service, AaaS, Cloud Computing, NFV-COIN

ACM Reference Format:
José Flauzino and Elias P. Duarte Jr.. 2023. Towards a Novel Model for
Availability as a Service. In 12th Latin-American Symposium on Dependable
and Secure Computing (LADC 2023), October 16–18, 2023, La Paz, Bolivia.
ACM, La Paz, Bolivia, 6 pages. https://doi.org/10.1145/3615366.3622795

1 INTRODUCTION
Computer systems are subject to failure. Availability refers to the
readiness for the correct operation of a system, which reflects the
probability that the system is ready to provide the service correctly
when its users need it [2]. As computing systems have come to
play critical roles for organizations and individuals, availability has
become a crucial attribute. There is a pressing demand for highly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LADC ’23, October 16–18, 2023, La Paz, Bolivia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0844-2/23/10. . . $15.00
https://doi.org/10.1145/3615366.3622795

available systems that are able to continue operating properly de-
spite the failure of some of their components [19]. The demand may
be very high, for example, in the context of telecommunications,
the availability requirements are on the order of 99.999% - at most
just over 5 minutes of service interruption per year.

Designing, implementing, and maintaining highly available sys-
tems are not trivial tasks. Those systems often require sophisticated
and computationally expensive techniques to ensure the required
availability levels. In particular, a highly available system typically
has several mechanisms related to fault tolerance, including failure
detection and recovery. Thus, from the perspective of developers
and operators, building, deploying, and operating those systems
requires deep knowledge of fault tolerance, which is not common-
place, even among IT professionals.

The last decades have been marked by the emergence of several
"as a Service" (aaS) business models - and their respective tech-
nologies [12]. One of the main characteristics of these models is to
provide some product (or functionality) to customers by abstract-
ing various complexities and eliminating the need for customers
to own the resources (hardware and/or software). Based on these
models we have Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), Software as a Service (SaaS), and Database as a Ser-
vice (DaaS), to name a few. In a slightly redundant way, the term
Availability as a Service (AaaS) has been mainly employed by cloud
computing platforms that offer infrastructure, software, storage,
and other services on demand in a highly available fashion.

In this work, we propose a novel perspective for the AaaS model,
which aims to transform the way end-user systems achieve different
levels of availability. The key idea is that mechanisms related to
system availability are provided as services for end-user systems
to consume on demand and achieve a certain level of availability.
Thus, instead of these systems needing to incorporate mechanisms
that deal with ensuring their own availability, they can benefit from
services offered by the environment itself. That is, in this AaaS
perspective, end-user systems do not need to be concerned with
issues such as failure detection, replica management, state recovery,
and others, to ensure their own availability.

More specifically, we propose to offer resilience services that can
be consumed on demand by end-user systems. As an example, we
can consider a comparison with the IaaS model. In an IaaS platform,
an end-user can choose the best computing service offering (such
as flavors that have different capabilities of processing, storage,
etc.) to meet their needs. Similarly, in the proposed AaaS model the
end-user can choose from a set of resilience services that will offer
different levels of availability for the user system to be deployed. It
is also possible to provide services that are dynamically increased
or decreased with resilience mechanisms to provide availability
guarantees that meet SLAs (Service Level Agreements). In this line,

https://orcid.org/0000-0001-8235-4897
https://orcid.org/0000-0002-8916-3302
https://doi.org/10.1145/3615366.3622795
https://doi.org/10.1145/3615366.3622795

LADC ’23, October 16–18, 2023, La Paz, Bolivia Flauzino and Duarte Jr.

we propose an initial set of categories of resilience services that are
composed by combining different mechanisms. Each category aims
to provide distinct levels of availability for systems, with varying
computational costs.

In addition, we envision that AaaS can even go beyond the cloud.
First, to achieve the desired levels of availability, both user system
components and resilience service mechanisms can be allocated
at points other than the cloud, such as at the edge. However, we
can also extend some responsibility for the availability of the end-
user systems to the network by applying the concept of NFV-COIN
(Network Functions Virtualization - COmputing in the Network)
[44]. Hence, this converges into a scenario we call Edge-Core-Cloud
Continuum, where the network core plays a prominent role.

The rest of the paper is organized as follows. In Section 2 we
present the background, including an overview of themain involved
concepts. Related work is discussed in Section 3. In Section 4 we
propose the novel perspective for AaaS and introduce the key ideas
for its provision at the Edge-Core-Cloud Continuum based on NFV-
COIN. Finally, Section 5 concludes the paper and describes future
works.

2 BACKGROUND
This section provides a brief introduction to the main concepts
behind our proposal. First, we describe the central aspects of “aaS”
business models. Next, we present the NFV paradigm and then
an overview of the integration of paradigms that have come to
converge in the NFV-COIN concept.

2.1 “aaS” Provision Models
“As a Service” (aaS) are business models in which some kind of
functionality or resource is offered to the customer in a service form.
In these models, instead of the customers needing to purchase and
maintain specific hardware or software, they just consume (use) on
demand the functionality/resource that is offered as a service by a
third party. This has been widely and successfully applied in the
context of cloud computing. Currently, several models are based on
these principles, ranging from broader models such as IaaS, PaaS,
and SaaS, to more specific ones such as STaaS (STorage as a Service),
DaaS (Database as a Service), and others [12, 27].

Beyond the business model itself, the abstraction provided by
offering resources and functionality as a service makes building sys-
tems at higher layers easier. Achieving feasible solutions requires
defining architectures, technical strategies, and implementing sys-
tems (or platforms) to deliver the services properly.

2.2 Network Functions Virtualization
The NFV paradigm emerged as an alternative to hardware-based
network middleboxes. NFV technology allows the implementation
of network functions in software. The so-called Virtualized Net-
work Functions (VNFs) can be executed on off-the-shelf hardware.
Moreover, multiple VNFs can be chained together in predefined
orders to compose complex network services called Service Function
Chains (SFC) [7]. Multiple services can be further combined into
complex service topologies [17, 37].

NFV represents a huge leap in terms of flexibility, being based
on software decoupled from hardware. The main advantages are in

terms of the reduction of the cost to build and operate the network.
Compare the acquisition of a dedicated hardware solution with
downloading the function from an NFV marketplace [4]. The list
of advantages also includes scalability, ease of migration, reduced
time for deployment, reduced need for physical space and energy,
ease to upgrade and remove network functions, and more flexibility
in composing network services [20, 30].

The European Telecommunications Standards Institute (ETSI)
has coordinated standardization efforts to define and allow the
interoperability of NFV solutions. The NFV-MANO (NFV Manage-
ment and Orchestration) reference architecture [32] defines a set of
specifications related to the management and orchestration of vir-
tualized network services, providing standardized communication
interfaces and resource abstractions to support the execution of
heterogeneous services [15]. Three particularly important blocks
are i) the VNF Manager (VNFM), responsible for managing the
lifecycle of VNFs; ii) the Virtualized Infrastructure Manager (VIM),
charged with the management and orchestration of computing re-
sources in the infrastructure; and iii) the NFV Orchestrator (NFVO),
responsible for network service lifecycle management and resource
orchestration (supported by the VIM).

2.3 Computing in the Network & NFV-COIN
In-network computing allows part of the computing traditionally
executed as end-user applications on end-user devices and/or the
cloud to be performed on network devices. Most of the current work
on in-network computing is based on programmable hardware,
such as ASICs (Application Specific Integrated Circuits) and FPGA
(Field Programmable Gate Array). An increasingly large number of
applications has been reported [24, 38]. Next, we give an overview
of a few significant landmarks.

In [9, 10] the Paxos consensus algorithm was implemented on
a switch using P4. Other in-network computing services imple-
mented with programmable hardware include data storage sys-
tems [5] and a distributed data partition/aggregation application
[33]. Caching is perhaps one of the most intuitive applications of
in-network computing. Several works have described caching so-
lutions in the context of key-value stores [23, 28, 38, 45]. Among
those, [23] stands out in terms of performance, reducing the latency
up to 40% and increasing the throughput 10x in comparison with a
traditional alternative. Network security has also been addressed
with in-network computing. For example, [16, 25, 29, 48] propose
in-network computing approaches to mitigate DDoS attacks. In
[31] network telemetry operations are scheduled on programmable
switches to improve the scalability of network-wide telemetry with
respect to dynamic traffic and query loads.

In the context of the edge-cloud continuum, the integration of
network computing and network processing in a common frame-
work has been called Computing in the Network (COIN) [47]. Re-
cently, the concept of NFV-COIN was introduced in [44]. That work
can be seen as the starting point for the integration of those two
paradigms. Besides discussing the requirements for deploying NFV-
based COIN services, a draft NFV-COIN architecture compliant
with the NFV-MANO reference model is presented. The authors
also present successful NFV-COIN use cases [40, 42, 43].

Towards a Novel Model for Availability as a Service LADC ’23, October 16–18, 2023, La Paz, Bolivia

Table 1: Categories of resilience services and their mechanisms.

Category Failure
Detector

Failure
Recovery

Replica
Manager Checkpointer State

Base

Replica State
Synchronizer

Passive Active Reactive Active

St
at
el
es
s SL-1 ✓ ✓ - - - - - -

SL-2 ✓ ✓ ✓ - - - - -
SL-3 ✓ ✓ - ✓ - - - -

St
at
ef
ul SF-1 ✓ ✓ - - ✓ ✓ ✓ -

SF-2 ✓ ✓ ✓ - ✓ ✓ ✓ -
SF-3 ✓ ✓ - ✓ ✓ ✓ - ✓

3 RELATEDWORK
The acronyms AaaS or even HAaaS (High Availability as a Service)
have been used with different meanings. For example, certain ven-
dors employ these terms when offering software and/or hardware
solutions in a service format that presents high availability prop-
erties [35, 36]. Such terms have also been used in the context of
database and storage systems that apply sophisticated strategies to
achieve a certain level of availability [22, 46].

In a slightly redundant way, AaaS has been also employed when
referring to cloud computing platforms that offer infrastructure,
software, storage, and other services on demand in a highly avail-
able fashion [6, 8]. However, actually, cloud computing platforms
employ high availability functionalities to provide their services in
a highly available manner [21]. In this work, on the other hand, we
propose to define an approach to enable the provision of services
that can be consumed on demand by systems aiming to achieve
some desired level of availability.

As mentioned earlier, we envision that NFV-COIN has the poten-
tial to enable our view of AaaS on the Edge-Core-Cloud Continuum.
This idea is also encouraged by recent works demonstrating promis-
ing results when applying NFV-COIN [40, 42, 43]. In particular, in
[40] a failure detector based on NFV-COIN was proposed. The so-
lution, called NFV-FD (NFV - Failure Detector) uses information
obtained from SDN (Software-Defined Network) controllers to mon-
itor processes and determine their states (i.e., correct or suspected
to have crashed). In [43] the network itself offers reliable and or-
dered broadcast services to end-user applications, which can be
extended to provide a publish-subscribe in-network service [11].

4 A NOVEL PERSPECTIVE ON AAAS
In this section, we discuss a new perspective for AaaS, in which
instead of end-user systems being responsible to guarantee the
availability of their own systems and applications, they can benefit
from the services offered by the environment itself. We employ
the term environment to denote in a generic way the universe set
𝑈 of which all systems and services are part. In practice, 𝑈 has a
boundary and can represent a domain, a federation of domains, or
even a more specific system, such as a private cloud.

Consider an end-user system, or just system, that is managed
by the end-user, and can be deployed on the user’s premises or on
another location, such as the cloud. A system consists of a set of
components 𝐶 , such that 𝐶 ≠ ∅. Thus, a system can be monolithic
(|𝐶 | = 1), centralized, decentralized, or distributed. Each component
can play different roles in the system. We also assume that a system

can be composed of components that are stateless, stateful, or both
(i.e., part of the components are stateless, part are stateful).

Ensuring the fault tolerance of a “generic” system is a non-trivial
task. Traditionally, dependable systems involve the integration of
resilience mechanisms into the system so that it is able to (trans-
parently) recover on its own from eventual failures. In this sense,
the proposed alternative is that these mechanisms are provided in
the form of services by the environment in which the system is
running. Thus, consider 𝑀 to be the set of all existing resilience
mechanisms in an environment 𝑈 . A service 𝑆 is composed of a
specific selection of mechanisms in𝑀 , i.e., 𝑆 ⊆ 𝑀 ⊂ 𝑈 .

For example, assume that 𝑀 is composed of the following re-
silience mechanisms: failure detector; failure recovery, passive and
active replica manager; checkpointer; state base; and a replica syn-
chronizer for active and reactive mode (i.e., synchronizes state
between replicas periodically or only when it is necessary to react
to a failure). From these, various combinations can be made to com-
pose services that offer different levels of availability, with different
computational costs. Considering each unique valid combination
as a category, Table 1 presents possible categories of services to be
composed from the set of mechanisms mentioned. Table 2 briefly
describes each category.

An advantage of this approach is that, as long as the implementa-
tions of eachmechanism are compatible with each other, a resilience
service can be transformed from one category to another one just by
adding or removing mechanisms. This offers greater flexibility for
the provider. For example, since the mechanisms (columns) of Table
1 are indexed from 1 to 6, an SF-1 service would be composed of
𝑆 = {𝑀1, 𝑀2, 𝑀4, 𝑀5, 𝑀6}, with𝑀6 set to be reactive. Thus, the ser-
vice SF-1 could be transformed into SF-3 from an operation 𝑆∪{𝑀3}
(with𝑀3 set as active), and the shifting of𝑀6 from reactive to the
active mode.

Another benefit is that subsets of the components of the same
system can take advantage of different services. This allows, for
example, critical components of a system to adopt a more robust
resilience service (such as SL-3 for stateless components, or SF-3
for stateful ones), while the remaining components are served by
less financially and computationally costly services (like SL-1 and
SF-1).

The proposed approach also enables the inclusion of optimization
strategies in the composition of resilience services. For illustration,
consider that eachmechanism𝑀𝑖 supportsmanaging up to 𝜆 system
components. Even if there is a single instance of each mechanism
of Table 1 in an environment 𝑈 , it is possible to compose different

LADC ’23, October 16–18, 2023, La Paz, Bolivia Flauzino and Duarte Jr.

Table 2: Description of the resilience services categories.

Cat. Description

SL-1
There is no replication. In case the system com-
ponent crashes, another instance of the compo-
nent is created from scratch.

SL-2
There are one or more replicas in standby mode.
In case the primary one crashes, another replica
is activated to take over.

St
at
el
es
s

SL-3
There are one or more active replicas, one of
which is the primary. In case the primary replica
crashes, another replica takes over immediately.

SF-1

There is no replication. The system component
state is persisted periodically. In case the compo-
nent crashes, another instance is created and the
most recent persisted state is applied to it.

SF-2

There are one or more replicas in standby mode.
The state of the primary is persisted periodically.
In case the primary one crashes, another replica is
activated with the latest persisted state (becoming
the primary one).St

at
ef
ul

SF-3

There are one or more active replicas, one of
which is the primary. The state of the primary is
periodically persisted and synchronized to the oth-
er replicas. In case the primary one crashes, anoth-
er one takes over already having the most recent
persisted/synchronized state.

services through logical assignments - respecting the 𝜆 limitation
of each mechanism. For example, the transformation of an SF-1
service to SF-3 exemplified above can be done just by assigning
a set of components 𝐶 to be managed by mechanisms𝑀1, 𝑀2, 𝑀4,
𝑀5, and 𝑀6, then also assigning them to 𝑀3, provided that |𝐶 | ≤
𝜆, ∀𝑀𝑖 ∈ {𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝑀5, 𝑀6}.

4.1 AaaS vs. IaaS: Differences and Similarities
Although the AaaS model that we propose is clearly different from
the other related models mentioned earlier, the AaaS services de-
scribed above does have some similarities the IaaS model, in partic-
ular in terms of functionalities. For example, in some of today’s IaaS
cloud platforms, it is common to have features such as self-healing
and replication of virtual machines (VMs) or containers (with load
balancing between replicas). However, typically the services pro-
vided by the IaaS model do not extend beyond that.

Thus, in general, IaaS platforms do not cover, for instance, cases
where the process of the end-user system component has died
(even with the VM running), the automatic saving and restoring of
stateful components, among other relevant issues. This is entirely
reasonable, as it is outside the scope of IaaS to address these issues.
In this context, our AaaS proposal emerges as a complementary
model to IaaS, bringing a vision focused on end-user systems. On

the other hand, AaaS can also leverage IaaS just as models like PaaS
and SaaS do.

4.2 On the Availability of Resilience Services
A central benefit of the proposed AaaS model is that much of the
responsibility for the availability of the end-user systems is of-
floaded to the resilience services provided by the environment. We
argue that it would allow end-user systems to be simpler and leaner,
while still being highly available. However, an extra issue is that
the resilience services themselves need to be highly available, as
the outage of these services can directly affect the availability of
end-user systems. Actually, the environment itself should be highly
available, by including mechanisms such as fault-tolerant routing
[14] or even the ability to select stable resources to run the resilience
services [13].

Therefore, offering AaaS requires that the resilience mechanisms
(such as those presented in Table 1) are designed and implemented
to be highly available and self-reliant. In practice, each resilience
mechanism can be a distributed fault-tolerant system embedded
in the service provider’s ecosystem (e.g., a cloud platform) or even
deployed on top of it. The maturity of today’s service providers
makes this a reasonable assumption.

OSS/BSS

End-User
Systems

Infrastructure

Manage

Virtualization Layer

Request

MechanismsMonitors

End-Users
Own Request

Service Providers
Operate

Resilience Services

IaaS

Request

Figure 1: AaaS architecture.

4.3 Towards an AaaS Architecture
As a work in progress, we are designing an architecture for AaaS.
Figure 1 illustrates the conceptual architecture that will serve as
a starting point for defining a future comprehensive architecture
for AaaS. In the architecture, AaaS providers can manage the re-
silience services catalog by operating the OSS/BSS (Operations
Support System / Business Support System) - i.e., the AaaS platform.
Through OSS/BSS, end-users can also request on-demand resilience
services for their systems. Both end-user systems and resilience ser-
vices are deployed over a virtualization layer. Proper management

Towards a Novel Model for Availability as a Service LADC ’23, October 16–18, 2023, La Paz, Bolivia

Cloud

Core

Network
Devices

Generic
Hardware

Middleboxes

Edge Servers/Gateways

Edge Devices

NFV-COIN enabled Edge

M
o

re
 C

o
m

p
. &

 S
to

ra
g

e

H
ig

h
la

te
nc

y

Le
ss

 C
o

m
p

. &
 S

to
ra

g
e

Lo
w

 la
te

nc
y

Legend:

Figure 2: NFV-COIN in the Edge-Core-Cloud Continuum.

of services and systems can be achieved through pre-established
communication between OSS/BSS and an underlying IaaS platform.

4.4 Expanding AaaS to the Edge-Core-Cloud
Continuum

Cloud computing has been widely adopted around the globe to
offer a wide range of on-demand services over the Internet. The
multiple advantages of system outsourcing have led to a world-
wide trend of organizations moving their data and applications to
the cloud. However, requirements such as very low latency and
high throughput; the need for location awareness; mobility sup-
port; privacy issues; among others, have fostered the search for
new complementary alternatives to the cloud. In this context, Edge
Computing has emerged [34] with the primary purpose to employ
resources closer to end-users, reducing the negative effects of using
resources over long distances without a sense of locality [1].

In recent years, the blending of the cloud and edge paradigms
plus other key technologies has converged into the so-called Edge-
Cloud Continuum [47]. In this scenario, systems can be deployed
either on the cloud, the edge, or even distributed along the way,
according to performance requirements and other issues [3].

We believe AaaS can also take advantage of the Edge-Cloud
Continuum, by placing resilience services closer to the user (e.g.,
on the edge) or farther away in locations with a higher concen-
tration of computing resources, such as the cloud. We envision
that NFV-COIN enables the construction of resilience services. In
particular, NFV-COIN can allow an extension of the Edge-Cloud
Continuum to include the core of the network. NFV-COIN services
are by definition in-network services that can execute anywhere
along a Edge-Core-Cloud Continuum. Basic resiliency services have
already been implemented based on this technology. As mentioned
earlier, an NFV-COIN-based failure detector [39, 40] can analyze
network traffic to monitor processes (or system components); net-
work caching based on NFV-COIN (similar to [23]) can optimize

data transactions regarding checkpoints of system states; among
many other possibilities.

As shown in Figure 2, both end-user systems and resilience
services can be allocated along the Edge-Core-Cloud Continuum.
Since NFV is already a reality in many Internet Service Providers
(ISPs), NFV-COIN-based resilience services implemented as VNFs
can be deployed in the network core with no change to the existing
infrastructure.

5 CONCLUSION
In this Student Forum paper, we discussed a new perspective on
AaaS. In the proposed draft AaaS model, resilience services com-
posed of multiple mechanisms are provided on demand and can
be employed to make end-user systems achieve certain levels of
availability. We have defined multiple categories of services that
offer different levels of availability by consuming varied compu-
tational resources. Some of the categories represent services that
can support stateful system components and others only stateless
ones. We also propose that the draft AaaS architecture can employ
NFV-COIN technology and take advantage of the Edge-Core-Cloud
Continuum.

As future work we envision that the proposed AaaS model can be
applied to specific scenarios, such as the Internet-of-Things [18] or
vehicular and sensor networks [26]. We also believe the architecture
can be further extended to include other dependability services,
such as those related to security [41]. We are currently working on
the draft architecture. Several issues have to be clarified, including
the relationships among the involved elements and also with other
related architectures (such as the NFV-COIN architecture). Near
future work also includes the implementation of a prototype as a
Proof of Concept (PoC) that allows us to evaluate potential AaaS
use cases, which includes its expansion to the Edge-Core-Cloud
Continuum.

LADC ’23, October 16–18, 2023, La Paz, Bolivia Flauzino and Duarte Jr.

ACKNOWLEDGMENTS
This work has been partially supported by CAPES, Brazil - Finance
Code 001; and the Brazilian National Council for Scientific and
Technological Development (CNPq) - grant 308959/2020-5.

REFERENCES
[1] Ejaz Ahmed, Arif Ahmed, et al. 2017. Bringing computation closer toward the

user network: Is edge computing the solution? IEEE Communications Magazine
55, 11 (2017), 138–144.

[2] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. 2004. Basic
concepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing 1, 1 (2004), 11–33.

[3] Emmanuel Bertin, Noël Crespi, and Thomas Magedanz. 2021. Shaping Future 6G
Networks: Needs, Impacts, and Technologies. John Wiley & Sons.

[4] Lucas Bondan, Muriel F Franco, Leonardo Marcuzzo, Giovanni Venancio, et al.
2019. FENDE: marketplace-based distribution, execution, and life cycle manage-
ment of VNFs. IEEE Communications Magazine 57, 1 (2019), 13–19.

[5] Pietro Bressana, Noa Zilberman, Dejan Vucinic, and Robert Soulé. 2020. Trading
latency for compute in the network. In Proceedings of the Workshop on Network
Application Integration/CoDesign. 35–40.

[6] Frederico Manuel Duarte Cerveira. 2021. Evaluating and improving cloud com-
puting dependability. Ph. D. Dissertation. 00500:: Universidade de Coimbra.

[7] Margaret Chiosi, Don Clarke, Peter Willis, Andy Reid, James Feger, Michael
Bugenhagen, Waqar Khan, Michael Fargano, Chunfeng Cui, Hui Deng, et al. 2012.
Network functions virtualisation: An introduction, benefits, enablers, challenges
and call for action. In SDN and OpenFlow world congress, Vol. 48. sn, 1–16.

[8] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson,
and Andrew Warfield. 2008. Remus: High availability via asynchronous virtual
machine replication. In Proceedings of the 5th USENIX symposium on networked
systems design and implementation. San Francisco, 161–174.

[9] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman, Hakim
Weatherspoon, Marco Canini, Fernando Pedone, and Robert Soulé. 2020. P4xos:
Consensus as a network service. IEEE/ACM Transactions on Networking 28, 4
(2020), 1726–1738.

[10] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
made switch-y. ACM SIGCOMM Computer Communication Review 46, 2 (2016),
18–24.

[11] João Paulo de Araujo, Luciana Arantes, Elias P Duarte Jr, Luiz A Rodrigues, and
Pierre Sens. 2019. VCube-PS: A causal broadcast topic-based publish/subscribe
system. J. Parallel and Distrib. Comput. 125 (2019), 18–30.

[12] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C Narendra,
and Bo Hu. 2015. Everything as a service (XaaS) on the cloud: origins, current
and future trends. In 2015 IEEE 8th International Conference on Cloud Computing.
IEEE, 621–628.

[13] Elias P Duarte, Thiago Garrett, Luis CE Bona, Renato Carmo, and Alexandre P
Züge. 2010. Finding stable cliques of PlanetLab nodes. In 2010 IEEE/IFIP Interna-
tional Conference on Dependable Systems & Networks (DSN). IEEE, 317–322.

[14] Elias Procópio Duarte Jr, Rogério Santini, and Jaime Cohen. 2004. Delivering
packets during the routing convergence latency interval through highly con-
nected detours. In International Conference on Dependable Systems and Networks,
2004. IEEE, 495–504.

[15] ETSI. 2015. Network Functions Virtualisation (NFV); Infrastructure Overview.
Technical Report. European Telecommunications Standards Institute.

[16] Kurt Friday, Elie Kfoury, Elias Bou-Harb, and Jorge Crichigno. 2020. Towards
a unified in-network DDoS detection and mitigation strategy. In 2020 6th IEEE
Conference on Network Softwarization (NetSoft). IEEE, 218–226.

[17] Vinicius Fulber-Garcia, Elias P Duarte Jr, Alexandre Huff, and Carlos RP dos
Santos. 2020. Network service topology: Formalization, taxonomy and the custom
specification model. Computer Networks 178 (2020), 107337.

[18] Thiago Garrett, Schahram Dustdar, Luis CE Bona, and Elias P Duarte. 2018.
Traffic differentiation on internet of things. In The 12th IEEE Symposium on
Service-Oriented System Engineering (SOSE). IEEE, 142–151.

[19] Jim Gray and Daniel P. Siewiorek. 1991. High-availability computer systems.
Computer 24, 9 (1991), 39–48.

[20] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. 2015. Network
function virtualization: Challenges and opportunities for innovations. IEEE
communications magazine 53, 2 (2015), 90–97.

[21] Gustavo B Heimovski, Rogerio C Turchetti, Juliano A Wickboldt, Lisandro Z
Granville, and Elias P Duarte Jr. 2020. FT-Aurora: A highly available IaaS cloud
manager based on replication. Computer Networks 168 (2020), 107041.

[22] Chetan Jaiswal and Vijay Kumar. 2015. DBHAaaS: Database high availability as
a service. In 11th SITIS. IEEE, 725–732.

[23] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Symposium on Operating

Systems Principles. 121–136.
[24] Somayeh Kianpisheh and Tarik Taleb. 2022. A Survey on In-network Comput-

ing: Programmable Data Plane And Technology Specific Applications. IEEE
Communications Surveys & Tutorials (2022).

[25] Peng Kuang, Ying Liu, and Lin He. 2020. P4DAD: Securing duplicate address
detection using P4. In ICC 2020-2020 IEEE International Conference on Communi-
cations (ICC). IEEE, 1–7.

[26] Neeraj Kumar, Al-Sakib Khan Pathan, Elias P Duarte, and Riaz Ahmed Shaikh.
2015. Critical applications in vehicular ad hoc/sensor networks. Telecommunica-
tion Systems 58 (2015), 275–277.

[27] David S Linthicum. 2009. Cloud computing and SOA convergence in your enterprise:
a step-by-step guide. Pearson Education.

[28] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching.. In FAST, Vol. 19.
143–157.

[29] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:
A High-Performance Switch-Native Approach for Detecting and Mitigating
Volumetric DDoS Attacks with Programmable Switches.. In USENIX Security
Symposium. 3829–3846.

[30] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck,
and Raouf Boutaba. 2015. Network function virtualization: State-of-the-art and
research challenges. IEEE Communications surveys & tutorials 18, 1 (2015), 236–
262.

[31] Chris Misa, Ramakrishnan Durairajan, Reza Rejaie, and Walter Willinger. 2021.
Revisiting network telemetry in coin: A case for runtime programmability. IEEE
Network 35, 5 (2021), 14–20.

[32] Jrgen Quittek, Prashant Bauskar, Tayeb BenMeriem, Andy Bennett, Michel
Besson, et al. 2014. Network functions virtualisation (nfv)-management and
orchestration. ETSI NFV ISG, White Paper (2014), 0733–8716.

[33] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-network computation is a dumb idea whose time has come. In
Proceedings of the 16th ACM Workshop on Hot Topics in Networks. 150–156.

[34] Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer
50, 1 (2017), 30–39.

[35] Mohamed Sohail, Emanuela Caramagna, and Sameh Gad. 2016. High Availability
as a Service (HAaaS). Technical Report. Dell EMC.

[36] Abacus Solutions. [n. d.]. High Availability as a Service (HAaaS). https://www.
abacusllc.com/high-availability-as-a-service-haaas

[37] T. Tavares, L. da C. Marcuzzo, V. Fulber-Garcia, G. Venancio, M. Franco, L. Bondan,
F. De Turck, L. Granville, E. P. Duarte, C. R. P. dos Santos, et al. 2018. Niep:
Nfv infrastructure emulation platform. In IEEE 32nd International Conference on
Advanced Information Networking and Applications (AINA). IEEE, 173–180.

[38] Yuta Tokusashi, Hiroki Matsutani, and Noa Zilberman. 2018. Lake: the power
of in-network computing. In 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 1–8.

[39] Rogério C Turchetti, Elias P Duarte, Luciana Arantes, and Pierre Sens. 2016. A
QoS-configurable failure detection service for internet applications. Journal of
Internet Services and Applications 7, 1 (2016), 1–14.

[40] Rogerio C Turchetti and Elias P Duarte Jr. 2017. NFV-FD: Implementation of a
failure detector using network virtualization technology. International Journal of
Network Management 27, 6 (2017), e1988.

[41] Michele Vadursi, Andrea Ceccarelli, Elias P Duarte, Aniket Mahanti, et al. 2016.
System and network security: anomaly detection and monitoring.

[42] Giovanni Venâncio, Rogério C Turchetti, Edson T Camargo, and Elias P Duarte Jr.
2021. VNF-Consensus: A virtual network function for maintaining a consistent
distributed software-defined network control plane. International Journal of
Network Management 31, 3 (2021), e2124.

[43] Giovanni Venâncio, Rogério C Turchetti, and Elias P Duarte. 2019. Nfv-rbcast:
Enabling the network to offer reliable and ordered broadcast services. In 2019
9th Latin-American Symposium on Dependable Computing (LADC). IEEE, 1–10.

[44] Giovanni Venâncio, Rogério C Turchetti, and Elias Procópio Duarte Jr. 2022. NFV-
COIN: Unleashing The Power of In-Network Computing with Virtualization
Technologies. Journal of Internet Services and Applications 13, 1 (2022), 46–53.

[45] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin Chen, and Jiwu Shu. 2021.
Concordia: Distributed Shared Memory with In-Network Cache Coherence.. In
FAST. 277–292.

[46] Yaoguang Wang, Weiming Lu, Bin Yu, and Baogang Wei. 2012. HAaaS: Towards
Highly Available Distributed Systems. In 2012 IEEE International Conference on
Cluster Computing. IEEE, 618–621.

[47] Deze Zeng, Nirwan Ansari, Marie-José Montpetit, Eve M Schooler, and Daniele
Tarchi. 2021. Guest editorial: In-network computing: Emerging trends for the
edge-cloud continuum. IEEE Network 35, 5 (2021), 12–13.

[48] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin
Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu. 2020. Poseidon:
Mitigating volumetric ddos attacks with programmable switches. In the 27th
Network and Distributed System Security Symposium (NDSS 2020).

https://www.abacusllc.com/high-availability-as-a-service-haaas
https://www.abacusllc.com/high-availability-as-a-service-haaas

	Abstract
	1 Introduction
	2 Background
	2.1 ``aaS'' Provision Models
	2.2 Network Functions Virtualization
	2.3 Computing in the Network & NFV-COIN

	3 Related Work
	4 A Novel Perspective on AaaS
	4.1 AaaS vs. IaaS: Differences and Similarities
	4.2 On the Availability of Resilience Services
	4.3 Towards an AaaS Architecture
	4.4 Expanding AaaS to the Edge-Core-Cloud Continuum

	5 Conclusion
	Acknowledgments
	References

