Boolean Algebra

- Boolean algebra (named after G. Boole for his work in 1854) is a mathematical system for specifying and transforming logic functions.
- Boolean (switching) algebra: An algebra structure defined on a set of elements, B, together with two binary operators (denoted + and .) provided the following axioms are satisfied:

1. Closure with respect to (wrt) + and .
2. Identity elements exist for + and .
3. Commutative wrt + and .
4. Operator + distributes over •, and \cdot distributes over + .
5. Every element of B has a complement.
6. B has at least two distinct elements.

- Purpose: Studying Boolean algebra to specify the design of digital systems!

Algebric Properties: Axioms 1-3 (by Huntington, 1904)

1. Closure Property: A set S is closed wrt to a binary operator • if and only if (iff) for every $x, y \in S, x \bullet y \in S$.

- Axiom 1(a): B is closed wrt the operator +
- Axiom 1(b): B is closed wrt the operator .

2. Identity Element: A set S is said to have an identity element wrt to a particular binary operator - whenever there exists an element $e \in S$ such that for every $x \in S, e \bullet x=x \bullet e=x$.

- Axiom 2(a): B has an identity element wrt + , denoted by 0
- Axiom 2(b): B has an identity element wrt \cdot, denoted by 1

3. Commutativity Property: A binary operator • defined on a set S is said to be commutative iff for every $x, y \in S, x \bullet y=y \bullet x$.

- Axiom 3(a): B is commutative wrt the operator +
- Axiom 3(b): B is commutative wrt the operator .

Algebric Properties: Axioms 4-6

4. Distributivity Property: If • and \diamond are two binary operators on a set S, • is said to be distributive over \diamond if for all $x, y, z \in S, x \bullet(y \diamond z)=$ $(x \bullet y) \diamond(x \bullet z)$.

- Axiom 4(a): The operator \cdot is distributive over +; Axiom 4(b): The operator + is distributive over •.

5. Complement Element: For every $x \in B$, there exists an element $x^{\prime} \in B$ such that $x+x^{\prime}=1$ and $x \cdot x^{\prime}=0 . x^{\prime}$ is called the complement of x.
6. Cardinality Bound: There are at least two elements $x, y \in B$ such that $x \neq y$.

- Other notes:
- The Associative Law $x+(y+z)=(x+y)+z$ and $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ hold and can be derived from the above axioms.
- Axioms 4(b) and 5 are not available in ordinary algebra.
- Boolean algebra applies to a finite set of elements; ordinary algebra applies to the infinite set of real numbers.

Duality and Basic Identities

- Duality Property: Every algebraic identity deducible from the previous axioms remains valid after dual operations.
- The DUAL of an algebraic expression is formed by interchanging AND ($\cdot) \longleftrightarrow$ OR (+) and $0 \longleftrightarrow 1$, with all previous operation orderings maintained.
$-\operatorname{Exp}: x+y=y+x \longleftrightarrow x \cdot y=y \cdot x ; x+x^{\prime}=1 \longleftrightarrow x \cdot x^{\prime}=0$.
$\left[f\left(x_{1}, x_{2}, \cdots, x_{n}, 0,1,+, \cdot\right)\right]^{D}=f\left(x_{1}, x_{2}, \cdots, x_{n}, 1,0, \cdot,+\right)$
- $\alpha=\beta$ iff $\alpha^{D}=\beta^{D}$
- Identities of Boolean algebra:

1.	$x+0=x$	2.	$x \cdot 1=x$
3.	$x+1=1$	4.	$x \cdot 0=0$
5.	$x+x=x$	6.	$x \cdot x=x$
7.	$x+\bar{x}=1$	8.	$x \cdot \bar{x}=0$
9.	$\bar{x}=x$		

- Operator precedence: parenthese ()\rightarrow NOT \rightarrow AND \rightarrow OR.

DeMorgan's Law

- Truth tables to verify DeMorgan's Law: $\overline{X+Y}=\bar{X} \cdot \bar{Y}$

A)	X	Y	$\mathrm{X}+\mathrm{Y}$	$\overline{\mathrm{X}+\mathrm{Y}}$	B)	X	Y	$\overline{\mathrm{X}}$	$\overline{\mathrm{Y}}$
X	$\overline{\mathrm{Y}}$								
0	0	0	1		0	0	1	1	1
0	1	1	0		0	1	1	0	0
1	0	1	0		1	0	0	1	0
	1	1	1	0		1	1	0	0

- DeMorgan's Law can be extended to multiple variables.
$-\overline{X_{1}+X_{2}+\ldots+X_{n}}=\bar{X}_{1} \bar{X}_{2} \ldots \bar{X}_{n}$.
$-\overline{X_{1} X_{2} \ldots X_{n}}=\bar{X}_{1}+\bar{X}_{2}+\ldots+\bar{X}_{n}$.

Algebraic Manipulation to Minimize Literals

- Literal: A single variable within a term that may or may not be complemented.
- Minimize $\#$ of terms and literals: $\bar{x} y z+\bar{x} y \bar{z}+x z$

$$
\begin{aligned}
F & =\bar{x} y z+\bar{x} y \bar{z}+x z & & \\
& =\bar{x} y(z+\bar{z})+x z & & \text { Identity } 14 \\
& =\bar{x} y \cdot 1+x z & & \text { Identity } 7 \\
& =\bar{x} y+x z & & \text { Identity } 2
\end{aligned}
$$

- \# of terms reduced from $3(\bar{x} y z, \bar{x} y \bar{z}, x z)$ to $2(\bar{x} y, x z)$.
- \# of literals reduced from $8(\bar{x}, y, z, \bar{x}, y, \bar{z}, x, z)$ to $4(\bar{x}, y, x, z)$.

(b) $F=\bar{X} Y+X Z$
(a) $\mathrm{F}=\overline{\mathrm{X}} Y \mathrm{Z}+\bar{X} Y \bar{Z}+X Z$

Consensus Theorem

(notion: A consensus term is a "redundant" term that can be added or removed without changing functionality.)

- $x y+\bar{x} z+y z=x y+\bar{x} z$

$$
\begin{aligned}
x y+\bar{x} z+y z & =x y+\bar{x} z+y z(x+\bar{x}) \\
& =x y+\bar{x} z+x y z+\bar{x} y z \\
& =x y+x y z+\bar{x} z+\bar{x} y z \\
& =x y(1+z)+\bar{x} z(1+y) \\
& =x y+\bar{x} z
\end{aligned}
$$

- Dual: $(x+y)(\bar{x}+z)(y+z)=(x+y)(\bar{x}+z)$
- Exp: $(A+B)(\bar{A}+C)=A C+\bar{A} B$

$$
\begin{aligned}
(A+B)(\bar{A}+C) & =A \bar{A}+A C+\bar{A} B+B C \\
& =A C+\bar{A} B+B C \\
& =A C+\bar{A} B
\end{aligned}
$$

Function Complement

- Use DeMorgan's Law to complement a function

1. Interchange AND and OR operators (duality operation).
2. Complement each literal.

- Applying DeMorgan's Law: $F=\bar{X} Y \bar{Z}+\bar{X} \bar{Y} Z$

$$
\begin{aligned}
\bar{F} & =\overline{\bar{X} Y \bar{Z}+\bar{X} \bar{Y} Z}=\overline{\bar{X} Y \bar{Z}} \cdot \overline{\bar{X} \bar{Y} Z} \\
& =(X+\bar{Y}+Z)(X+Y+\bar{Z})
\end{aligned}
$$

- Taking duals and complementing literals: $F=\bar{X} Y \bar{Z}+\bar{X} \bar{Y} Z$

$$
\begin{aligned}
F & =\bar{X} Y \bar{Z}+\bar{X} \bar{Y} Z \\
\text { Taking dual: } & (\bar{X}+Y+\bar{Z})(\bar{X}+\bar{Y}+Z) \\
\text { Complementing literals: } & (X+\bar{Y}+Z)(X+Y+\bar{Z})=\bar{F}
\end{aligned}
$$

Function Complement

Example:

$$
\begin{aligned}
F & =\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} B D+\bar{A} B \bar{C} D+A B C D+A C \bar{D}+\bar{B} C \bar{D} \\
& (\text { Let } x=\bar{A} \bar{C} \bar{D}, y=\bar{A} B D) \\
& =x \bar{B}+x B+y+y \bar{C}+A B C D+A C \bar{D}+\bar{B} C \bar{D}
\end{aligned}
$$

What is a Boolean function?

$$
B^{n} \xrightarrow{f} B, B=1,0, n: \# \text { of vars }
$$

e.g.
B^{2}
$\mathrm{n}=2$

- $f(0,0)=f(1,0)=1$
- $f=\bar{x} \bar{y}+x \bar{y}=m_{0}+m_{2}$ or $f=(x+\bar{y})(\bar{x}+\bar{y})=$ $M_{1} \cdot M_{3}$
- e.g. If $g(x, y, z)=$ $m_{0}+m_{1}+m_{2}+m_{5}+$ $m_{7} \Rightarrow g=M_{3} \cdot M_{4} \cdot M_{6}$

| (maxterm) | minterm $)$
 M_{i} | m_{i} | x | y |
| :---: | :---: | :---: | :---: | :---: |f

What is a Boolean function?

e.g. $n=3,2^{3}$ truth table entries, $2^{3} \mathrm{mts}, 2^{3} \mathrm{Mts}$.

id	x	y	z	F	\bar{F}
0	0	0	0	0	1
1	0	0	1	1	0
2	0	1	0	0	1
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	0

- $F=m_{1}+m_{4}+m_{5}+m_{6}+m_{7}=M_{0} \cdot M_{2} \cdot M_{3}$
- $F=\sum_{m}(1,4,5,6,7)=\prod_{M}(0,2,3)$
- $\bar{F}=m_{0}+m_{2}+m_{3}=M_{1} \cdot M_{4} \cdot M_{5} \cdot M_{6} \cdot M_{7}$

Minterm and Maxterm

- Minterms: Terms with all variables present, combined with AND.

1. For n variables combined with AND, there are 2^{n} combinations. Each unique combination is called a minterm.
2. Exp: $X \cdot Y \cdot Z, \bar{a} b c \bar{d}$.

- Maxterms: Terms with all variables present, combined with OR.

1. For n variables combined with $O R$, there are 2^{n} combinations. Each unique combination is called a maxterm.
2. Exp: $X+Y+Z, \bar{a}+b+c+\bar{d}$.

- Exp: Two-variable terms

Index	Minterm	Maxterm
0	$\bar{x} \bar{y}$	$x+y$
1	$\bar{x} y$	$x+\bar{y}$
2	$x \bar{y}$	$\bar{x}+y$
3	$x y$	$\bar{x}+\bar{y}$

Standard Order

- Given n variables, we use an n-bit expansion of the index, i, to indicate normal (true) or complement states for the variables.
- Minterms: " 1 " \Rightarrow true; " 0 " \Rightarrow complemented.
- $m_{0}($ minterm 0$): \bar{x} \cdot \bar{y} \cdot \bar{z} ; m_{3}($ minterm 3): $\bar{x} \cdot y \cdot z$.
- Maxterms: " 0 " \Rightarrow true; " 1 " \Rightarrow complemented.
- $M_{0}($ maxterm 0$): x+y+z ; M_{3}$ (maxterm 3): $x+\bar{y}+\bar{z}$.
- m_{i} is the complement of $M_{i}\left(m_{i}=\bar{M}_{i}\right)$.

Minterms and Maxterms

- Minterms for three variables.

Product												
X	Y	Z	Term	Symbol	m0	m1	m2	m3	m4	m5	m6	m7
0	0	0	$\overline{\mathrm{X}} \overline{\mathrm{Y}} \overline{\mathrm{Z}}$	m0	1	0	0	0	0	0	0	0
0	0	1	X $\bar{Y} \mathrm{Z}$	m1	0	1	0	0	0	0	0	0
0	1	0	X $\mathrm{X} \overline{\mathrm{Z}}$	m2	0	0	1	0	0	0	0	0
0	1	1	XYZ	m3	0	0	0	1	0	0	0	0
1	0	0	X $\bar{Y} \bar{Z}$	m4	0	0	0	0	1	0	0	0
1	0	1	XYZZ	m5	0	0	0	0	0	1	0	0
1	1	0	XYZ	m6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m7	0	0	0	0	0	0	0	1

- Maxterms for three variables.

X	Y	Z	Sum Term	Symbol	M0	M1	M2	M3	M4	M5	M6	M7
0	0	0	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M 0	0	1	1	1	1	1	1	1
0	0	1	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M 1	1	0	1	1	1	1	1	1
0	1	0	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M 2	1	1	0	1	1	1	1	1
0	1	1	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M 3	1	1	1	0	1	1	1	1
1	0	0	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M	1	1	1	1	0	1	1	1
1	0	1	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M	1	1	1	1	1	0	1	1
1	1	0	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M	1	1	1	1	1	1	0	1
1	1	1	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$	M 7	1	1	1	1	1	1	1	0

Sum of Minterms

- Any Boolean function can be expressed as a sum of minterms.
- Exp: $F=A+\bar{B} C$.
- Expand the terms with missing variables and collect terms:

$$
\begin{aligned}
F & =A+\bar{B} C \\
& =A(B+\bar{B})(C+\bar{C})+(A+\bar{A}) \bar{B} C \\
& =A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} \bar{B} C
\end{aligned}
$$

- Sum of minterms: $F=m_{7}+m_{6}+m_{5}+m_{4}+m_{1} \Longrightarrow F(A, B, C)=$ $\sum_{m}(1,4,5,6,7)$.
- The complement of a function contains those minterms not included in the original function.
$-F(A, B, C)=\sum_{m}(1,4,5,6,7) \Longrightarrow \bar{F}(A, B, C)=\sum_{m}(0,2,3)$.

Product of Maxterms

- Any Boolean function can be expressed as a product of maxterms.
- Exp: $G=A B+\bar{A} \bar{B}$.

$$
\begin{aligned}
A B+\bar{A} \bar{B} & =(A B+\bar{A})(A B+\bar{B}) \\
& =(\bar{A}+A B)(\bar{B}+A B) \\
& =(\bar{A}+A)(\bar{A}+B)(\bar{B}+A)(\bar{B}+B) \\
& =1 \cdot(\bar{A}+B)(\bar{B}+A) \cdot 1 \\
& =(\bar{A}+B)(\bar{B}+A) \\
& =M_{2} \cdot M_{1}
\end{aligned}
$$

- Product of maxterms: $G=M_{2} \cdot M_{1} \Longrightarrow G(A, B)=\Pi_{M}(1,2)$.
- The complement of a function contains those maxterms not included in the original function.
$-G(A, B)=\Pi_{M}(1,2) \Longrightarrow \bar{G}(A, B)=\Pi_{M}(0,3)$.
- $G(A, B)=\Pi_{M}(1,2)=\sum_{m}(0,3) ; \bar{G}(A, B)=\Pi_{M}(0,3)=\sum_{m}(1,2)$.

Standard Forms

- Canonical forms (Sum-of-Minterms or Product-of-Maxterms) have one and only one representation.
- Sum-of-Minterms: $x y z+\bar{x} y \bar{z}+x \bar{y} z, A \bar{B}+\bar{A} B$.
- Product-of-Maxterms: $(x+y+z)(\bar{x}+y+\bar{z})(x+\bar{y}+z),(A+\bar{B})(\bar{A}+B)$
- Standard Sum-of-Products (SOP) form: Equations are written as AND terms summed with OR operators.
$-\mathrm{SOPs}: x y z+\bar{x} y \bar{z}+\bar{y}, A \bar{B}+\bar{A} B$
- Standard Product-of-Sums (POS) form: Equations are written as OR terms, all ANDed together.
$-\mathrm{POSs}:(x+y+z)(\bar{x}+y+\bar{z})(\bar{y}),(A+\bar{B})(\bar{A}+B)$
- Mixed forms: not SOP or POS
$-(x \bar{y}+z)(\bar{x}+y), A B \bar{C}+C(\bar{A}+B)$

Canonical Sum of Minterms

- Two-level vs. three-level implementation.
- Exp: $F=A B+C D+C E(2$-level $) ; F=A B+C(D+E)$ (3-level)

(a) $\mathrm{AB}+\mathrm{CD}+\mathrm{CE}$

(b) $A B+C(D+E)$
- A canonical sum-of-minterms form implies a 2-level network of gates implementation (1st level: AND; 2nd level: OR).
- Usually not a minimum literal Boolean expression $=\Rightarrow$ more expensive implementation.
- Exp: $F=A B C+A B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+\bar{A} \bar{B} C=A+\bar{B} C$ (Why? Duplicate $A \bar{B} C$!)
- The canonical sum-of-minterms form had 15 literals and 5 terms; the reduced SOP form had 3 literals and 2 terms.

Canonical Product of Maxterms

- Two-level product-of-sums implementation.
$-\operatorname{Exp}: F=X(\bar{Y}+Z)(X+Y+\bar{Z})$

- A canonical product-of-maxterms form implies a 2-level network of gates implementation (1st level: OR; 2nd level: AND).
- Usually not a minimum literal Boolean expression \Rightarrow more expensive implementation.
$-\operatorname{Exp}: F=(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})=(A+C)(A+\bar{B})$ (Why? Duplicate $(A+\bar{B}+C)$!)
- The canonical product-of-maxterms form had 9 literals and 3 terms; the reduced POS form had 4 literals and 2 terms.

Equivalent Literal Cost Network

- Questions:
- Is there only one minimum cost network?
- How can we obtain a or the minimum literal expression?
- Minimize $F(A, B, C)=\sum(0,2,3,4,5,7)$

$$
\begin{aligned}
F & =\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+A \bar{B} C+A B C \\
& =\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} B C+A B C+A \bar{B} \bar{C}+A \bar{B} C \\
& =\bar{A} \bar{C}(B+\bar{B})+B C(\bar{A}+A)+A \bar{B}(C+\bar{C}) \\
& =\bar{A} \bar{C}+B C+A \bar{B}
\end{aligned}
$$

- Pairing F 's terms differently

$$
\begin{aligned}
F & =\bar{A} \bar{B} \bar{C}+\bar{A} B \bar{C}+\bar{A} B C+A \bar{B} \bar{C}+A \bar{B} C+A B C \\
& =\bar{A} \bar{B} \bar{C}+A \bar{B} \bar{C}+\bar{A} B C+\bar{A} B \bar{C}+A \bar{B} C+A B C \\
& =\bar{B} \bar{C}(\bar{A}+A)+\bar{A} B(C+\bar{C})+A C(B+\bar{B}) \\
& =\bar{B} \bar{C}+\bar{A} B+A C
\end{aligned}
$$

- Both have the same numbers of literals and terms!

