Boolean Algebra

- Boolean algebra (named after G. Boole for his work in 1854) is a mathematical system for specifying and transforming logic functions.
- **Boolean (switching) algebra:** An algebra structure defined on a set of elements, *B*, together with two binary operators (denoted + and ·) provided the following **axioms** are satisfied:
 - 1. Closure with respect to (wrt) + and \cdot
 - 2. Identity elements exist for + and \cdot
 - 3. Commutative wrt + and \cdot
 - 4. Operator + distributes over \cdot , and \cdot distributes over +.
 - 5. Every element of B has a complement.
 - 6. B has at least two distinct elements.
- Purpose: Studying Boolean algebra to specify the design of digital systems!

Algebric Properties: Axioms 1–3 (by Huntington, 1904)

- 1. Closure Property: A set S is closed wrt to a binary operator if and only if (iff) for every $x, y \in S, x \bullet y \in S$.
 - Axiom 1(a): B is closed wrt the operator +
 - Axiom 1(b): B is closed wrt the operator ·
- 2. **Identity Element**: A set *S* is said to have an **identity element** wrt to a particular binary operator \bullet whenever there exists an element $e \in S$ such that for every $x \in S$, $e \bullet x = x \bullet e = x$.
 - Axiom 2(a): B has an identity element wrt +, denoted by 0
 - Axiom 2(b): B has an identity element wrt ., denoted by 1
- 3. Commutativity Property: A binary operator \bullet defined on a set S is said to be commutative iff for every $x, y \in S, x \bullet y = y \bullet x$.
 - Axiom 3(a): B is commutative wrt the operator +
 - Axiom 3(b): B is commutative wrt the operator ·

Algebric Properties: Axioms 4–6

- 4. **Distributivity Property**: If and \diamond are two binary operators on a set S, is said to be **distributive** over \diamond if for all $x, y, z \in S, x \bullet (y \diamond z) = (x \bullet y) \diamond (x \bullet z)$.
 - Axiom 4(a): The operator · is distributive over +; Axiom 4(b): The operator + is distributive over ·.
- 5. Complement Element: For every $x \in B$, there exists an element $x' \in B$ such that x + x' = 1 and $x \cdot x' = 0$. x' is called the complement of x.
- 6. Cardinality Bound: There are at least two elements $x, y \in B$ such that $x \neq y$.
- Other notes:
 - The Associative Law x + (y + z) = (x + y) + z and $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ hold and can be derived from the above axioms.
 - Axioms 4(b) and 5 are not available in ordinary algebra.
 - Boolean algebra applies to a finite set of elements; ordinary algebra applies to the infinite set of real numbers.

Duality and Basic Identities

- **Duality Property:** Every algebraic identity deducible from the previous axioms remains valid after **dual** operations.
 - The **DUAL** of an algebraic expression is formed by interchanging AND (·) \leftrightarrow OR (+) and 0 \leftrightarrow 1, with all previous operation orderings maintained.

- Exp:
$$x + y = y + x \leftrightarrow x \cdot y = y \cdot x$$
; $x + x' = 1 \leftrightarrow x \cdot x' = 0$.

$$[f(x_1, x_2, \cdots, x_n, 0, 1, +, \cdot)]^D = f(x_1, x_2, \cdots, x_n, 1, 0, \cdot, +)$$

- $\alpha = \beta$ iff $\alpha^D = \beta^D$
- Identities of Boolean algebra:
 - 1. x + 0 = x 2. $x \cdot 1 = x$

 3. x + 1 = 1 4. $x \cdot 0 = 0$

 5. x + x = x 6. $x \cdot x = x$

 7. $x + \overline{x} = 1$ 8. $x \cdot \overline{x} = 0$

 9. $\overline{\overline{x}} = x$
 - 10.x + y = y + x11.xy = yxCommutative12.x + (y + z) = (x + y) + z13x(yz) = (xy)zAssociative14.x(y + z) = xy + xz15.x + yz = (x + y)(x + z)Distributive16. $x + y = \overline{x} \cdot \overline{y}$ 17. $\overline{x \cdot y} = \overline{x} + \overline{y}$ DeMorgan's18.x + xy = x19.x(x + y) = xAbsorption20. $xy + x\overline{y} = x$ 21. $(x + y)(x + \overline{y}) = x$ Absorption22. $x + \overline{x}y = x + y$ 23. $x(\overline{x} + y) = xy$ Absorption
- Operator precedence: parenthese () → NOT → AND → OR.

DeMorgan's Law

•	Truth tables	s to	veri	fy l	DeMor	gan's L	aw: \overline{X}	+ Y	7 =	\bar{X}	$\cdot \bar{Y}$	
		A)	X	Y	X+Y	$\overline{X+Y}$	B)	X	Y	X	Y	$\overline{X} \bullet \overline{Y}$
			0	0	0	1		0	0	1	1	1
			0	1 0	1	0		01	1 0	$\frac{1}{0}$	0	0
			1	1	1	0		1	1	0	0	0

• DeMorgan's Law can be extended to multiple variables.

$$-\overline{X_1 + X_2 + \ldots + X_n} = \overline{X_1}\overline{X_2}\ldots\overline{X_n}.$$

$$- \overline{X_1 X_2 \dots X_n} = \overline{X_1} + \overline{X_2} + \dots + \overline{X_n}.$$

Algebraic Manipulation to Minimize Literals

- Literal: A single variable within a term that may or may not be complemented.
- Minimize # of terms and literals: $\bar{x}yz + \bar{x}y\bar{z} + xz$

F	$= \bar{x}yz + \bar{x}y\bar{z} + xz$	
	$= \bar{x}y(z+\bar{z}) + xz$	Identity 14
	$= \bar{x}y \cdot 1 + xz$	Identity 7
	$= \bar{x}y + xz$	Identity 2

- # of terms reduced from 3 $(\bar{x}yz, \bar{x}y\bar{z}, xz)$ to 2 $(\bar{x}y, xz)$.
- # of literals reduced from 8 $(\bar{x}, y, z, \bar{x}, y, \bar{z}, x, z)$ to 4 (\bar{x}, y, x, z) .

Consensus Theorem

(notion: A consensus term is a "redundant" term that can be added or removed without changing functionality.)

•
$$xy + \bar{x}z + yz = xy + \bar{x}z$$

$$\begin{aligned} xy + \bar{x}z + yz &= xy + \bar{x}z + yz(x + \bar{x}) \\ &= xy + \bar{x}z + xyz + \bar{x}yz \\ &= xy + xyz + \bar{x}z + \bar{x}yz \\ &= xy(1 + z) + \bar{x}z(1 + y) \\ &= xy + \bar{x}z \end{aligned}$$

- Dual: $(x+y)(\bar{x}+z)(y+z) = (x+y)(\bar{x}+z)$
- Exp: $(A + B)(\overline{A} + C) = AC + \overline{A}B$

$$(A+B)(\bar{A}+C) = A\bar{A} + AC + \bar{A}B + BC$$
$$= AC + \bar{A}B + BC$$
$$= AC + \bar{A}B$$

Function Complement

- Use DeMorgan's Law to complement a function
 - 1. Interchange AND and OR operators (duality operation).
 - 2. Complement each literal.
- Applying DeMorgan's Law: $F = \bar{X}Y\bar{Z} + \bar{X}\bar{Y}Z$

$$\bar{F} = \overline{\bar{X}Y\bar{Z} + \bar{X}\bar{Y}Z} = \overline{\bar{X}Y\bar{Z}} \cdot \overline{\bar{X}\bar{Y}Z}$$
$$= (X + \bar{Y} + Z)(X + Y + \bar{Z})$$

• Taking duals and complementing literals: $F = \bar{X}Y\bar{Z} + \bar{X}\bar{Y}Z$

$$F = \bar{X}Y\bar{Z} + \bar{X}\bar{Y}Z$$

Taking dual: $(\bar{X} + Y + \bar{Z})(\bar{X} + \bar{Y} + Z)$
Complementing literals: $(X + \bar{Y} + Z)(X + Y + \bar{Z}) = \bar{F}$

Function Complement

Example:

$$F = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}BD + \overline{A}B\overline{C}D + ABCD + AC\overline{D} + \overline{B}C\overline{D}$$

(Let $x = \overline{A}\overline{C}\overline{D}$, $y = \overline{A}BD$)
 $= x\overline{B} + xB + y + y\overline{C} + ABCD + AC\overline{D} + \overline{B}C\overline{D}$
 $=$

What is a Boolean function?

 $B^n \xrightarrow{f} B, B = 1, 0, n : \# \text{ of vars}$

e.g. в² n = 2 х у 0 0 1 -0 0

•
$$f(0,0) = f(1,0) =$$

- f(0,0) = f(1,0) = 1• $f = \bar{x}\bar{y} + x\bar{y} = m_0 + m_2$ or $f = (x + \overline{y})(\overline{x} + \overline{y}) =$ $M_1 \cdot M_3$
- e.g. If g(x, y, z) = $m_0 + m_1 + m_2 + m_5 +$ $m_7 \Rightarrow q = M_3 \cdot M_4 \cdot M_6$

(maxterm)	(minterm)			
M_i	m_i	x	y	f
$x + y(M_0)$	$\bar{x}\bar{y}(m_0)$	0	0	1
$x + \bar{y}(M_1)$	$\bar{x}y(m_1)$	0	1	0
$\bar{x} + y(M_2)$	$x\bar{y}(m_2)$	1	0	1
$x + y(M_3)$	$xy(m_3)$	1	1	0

What is a Boolean function?

e.g. n = 3, 2^3 truth table entries, 2^3 mts, 2^3 Mts.

id	x	y	z	F	\bar{F}
0	0	0	0	0	1
1	0	0	1	1	0
2	0	1	0	0	1
3	0	1	1	0	1
4	1	0	0	1	0
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	0

- $F = m_1 + m_4 + m_5 + m_6 + m_7 = M_0 \cdot M_2 \cdot M_3$
- $F = \sum_{m} (1, 4, 5, 6, 7) = \prod_{M} (0, 2, 3)$
- $\bar{F} = m_0 + m_2 + m_3 = M_1 \cdot M_4 \cdot M_5 \cdot M_6 \cdot M_7$

Minterm and Maxterm

- **Minterms:** Terms with all variables present, combined with <u>AND</u>.
 - 1. For n variables combined with AND, there are 2^n combinations. Each unique combination is called a **minterm**.
 - 2. Exp: $X \cdot Y \cdot Z$, $\overline{a}bc\overline{d}$.
- Maxterms: Terms with all variables present, combined with <u>OR</u>.
 - 1. For n variables combined with OR, there are 2^n combinations. Each unique combination is called a **maxterm**.
 - 2. Exp: X + Y + Z, $\bar{a} + b + c + \bar{d}$.
- Exp: Two-variable terms

Index	Minterm	Maxterm
0	$ar{x}ar{y}$	x + y
1	$ar{x}y$	$x + \overline{y}$
2	$x \overline{y}$	$\overline{x} + y$
3	xy	$\bar{x} + \bar{y}$

Standard Order

- Given *n* variables, we use an *n*-bit expansion of the index, *i*, to indicate normal (true) or complement states for the variables.
- Minterms: "1" \Rightarrow true; "0" \Rightarrow complemented.

- m_0 (minterm 0): $\bar{x} \cdot \bar{y} \cdot \bar{z}$; m_3 (minterm 3): $\bar{x} \cdot y \cdot z$.

• Maxterms: "0" \Rightarrow true; "1" \Rightarrow complemented.

- M_0 (maxterm 0): x + y + z; M_3 (maxterm 3): $x + \overline{y} + \overline{z}$.

• m_i is the **complement** of M_i $(m_i = \overline{M}_i)$.

Minterms and Maxterms

• Minterms for three variables.

Produc X Y Z Term	t Symbol	m0	m1	m2	m3	m4	m5	m6	m7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m0 m1 m2 m3 m4 m5 m6 m7	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{array} $

• Maxterms for three variables.

X	Y	Ζ	Sum Term	Symbol	M0	M1	M2	M3	M4	M5	M6	M7
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ $	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} X+Y+Z\\ X+Y+Z\\ X+\overline{Y}+Z\\ \overline{X}+\overline{Y}+Z\\ \overline{X}+Y+Z\\ \overline{X}+Y+Z\\ \overline{X}+Y+Z\\ \overline{X}+\overline{Y}+Z\\ \overline{X}+\overline{Y}+\overline{Y}+Z\\ \overline{X}+\overline{Y}+\overline{Y}+Z\\ \overline{X}+\overline{Y}+\overline{Y}+Z\\ \overline{X}+\overline{Y}+\overline{Y}+Z\\ \overline{X}+\overline{Y}+\overline{Y}+\overline{Y}+\overline{Y}+\overline{Y}+\overline{Y}+\overline{Y}+Y$	M0 M1 M2 M3 M4 M5 M6 M7	0 1 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1 1	1 1 0 1 1 1 1 1	1 1 0 1 1 1 1	1 1 1 1 0 1 1 1	1 1 1 1 1 0 1	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ \end{array} $

Sum of Minterms

- Any Boolean function can be expressed as a sum of minterms.
- Exp: $F = A + \overline{B}C$.
 - Expand the terms with missing variables and collect terms:

$$F = A + \overline{B}C$$

= $A(B + \overline{B})(C + \overline{C}) + (A + \overline{A})\overline{B}C$
= $ABC + AB\overline{C} + A\overline{B}C + A\overline{B}\overline{C} + \overline{A}\overline{B}C$

- Sum of minterms: $F = m_7 + m_6 + m_5 + m_4 + m_1 \Longrightarrow F(A, B, C) = \sum_m (1, 4, 5, 6, 7).$
- The complement of a function contains those minterms not included in the original function.

-
$$F(A, B, C) = \sum_{m} (1, 4, 5, 6, 7) \implies \overline{F}(A, B, C) = \sum_{m} (0, 2, 3).$$

Product of Maxterms

- Any Boolean function can be expressed as a product of maxterms.
- Exp: $G = AB + \overline{A}\overline{B}$.

$$AB + \overline{A}\overline{B} = (AB + \overline{A})(AB + \overline{B})$$

$$= (\overline{A} + AB)(\overline{B} + AB)$$

$$= (\overline{A} + A)(\overline{A} + B)(\overline{B} + A)(\overline{B} + B)$$

$$= 1 \cdot (\overline{A} + B)(\overline{B} + A) \cdot 1$$

$$= (\overline{A} + B)(\overline{B} + A)$$

$$= M_2 \cdot M_1$$

- Product of maxterms: $G = M_2 \cdot M_1 \Longrightarrow G(A, B) = \prod_M (1, 2).$
- The complement of a function contains those maxterms not included in the original function.

$$- G(A,B) = \prod_M (1,2) \Longrightarrow \overline{G}(A,B) = \prod_M (0,3).$$

• $G(A,B) = \prod_M (1,2) = \sum_m (0,3); \ \overline{G}(A,B) = \prod_M (0,3) = \sum_m (1,2).$

Standard Forms

- Canonical forms (Sum-of-Minterms or Product-of-Maxterms) have one and only one representation.
 - Sum-of-Minterms: $xyz + \bar{x}y\bar{z} + x\bar{y}z$, $A\bar{B} + \bar{A}B$.
 - Product-of-Maxterms: $(x+y+z)(\bar{x}+y+\bar{z})(x+\bar{y}+z)$, $(A+\bar{B})(\bar{A}+B)$
- Standard Sum-of-Products (SOP) form: Equations are written as AND terms summed with OR operators.

- SOPs: $xyz + \bar{x}y\bar{z} + \bar{y}$, $A\bar{B} + \bar{A}B$

• Standard Product-of-Sums (POS) form: Equations are written as OR terms, all ANDed together.

- POSs: $(x + y + z)(\bar{x} + y + \bar{z})(\bar{y}), (A + \bar{B})(\bar{A} + B)$

• Mixed forms: **not** SOP or POS

 $- (x\bar{y}+z)(\bar{x}+y), AB\bar{C}+C(\bar{A}+B)$

Canonical Sum of Minterms

- Two-level vs. three-level implementation.
 - Exp: F = AB + CD + CE (2-level); F = AB + C(D + E) (3-level)

- A canonical sum-of-minterms form implies a 2-level network of gates implementation (**1st level: AND; 2nd level: OR**).
 - Usually **not** a minimum literal Boolean expression \implies more expensive implementation.
 - Exp: $F = ABC + AB\overline{C} + A\overline{B}C + A\overline{B}\overline{C} + \overline{A}\overline{B}C = A + \overline{B}C$ (Why? Duplicate $A\overline{B}C$!)
 - The canonical sum-of-minterms form had 15 literals and 5 terms; the reduced SOP form had 3 literals and 2 terms.

Canonical Product of Maxterms

- Two-level product-of-sums implementation.
 - Exp: $F = X(\overline{Y} + Z)(X + Y + \overline{Z})$

- A canonical product-of-maxterms form implies a 2-level network of gates implementation (1st level: OR; 2nd level: AND).
 - Usually **not** a minimum literal Boolean expression \implies more expensive implementation.
 - Exp: $F = (A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C}) = (A + C)(A + \overline{B})$ (Why? Duplicate $(A + \overline{B} + C)!$)
 - The canonical product-of-maxterms form had 9 literals and 3 terms; the reduced POS form had 4 literals and 2 terms.

Equivalent Literal Cost Network

- Questions:
 - Is there only one minimum cost network?

- How can we obtain <u>a</u> or <u>the</u> minimum literal expression?

• Minimize $F(A, B, C) = \sum (0, 2, 3, 4, 5, 7)$

$$F = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + ABC + A\overline{B}\overline{C} + A\overline{B}C$$

$$= \overline{A}\overline{C}(B + \overline{B}) + BC(\overline{A} + A) + A\overline{B}(C + \overline{C})$$

$$= \overline{A}\overline{C} + BC + A\overline{B}$$

• Pairing *F*'s terms differently

$$F = \overline{A}\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC$$

$$= \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + \overline{A}BC + \overline{A}B\overline{C} + A\overline{B}C + ABC$$

$$= \overline{B}\overline{C}(\overline{A} + A) + \overline{A}B(C + \overline{C}) + AC(B + \overline{B})$$

$$= \overline{B}\overline{C} + \overline{A}B + AC$$

• Both have the same numbers of literals and terms!