Lista de Exercícios 6 - Integração

- 1. Fisicamente, a integração $\int_a^b f(x)dx$ significa
 - (a) \Rightarrow a área sob a curva de a a b
 - (b) a área à esquerda de a
 - (c) a área à direita de b
 - (d) a área acima da curva de a a b
- 2. O valor médio de uma função f(x) no intervalo de a a b é dado por

(a)
$$\frac{f(a) + f(b)}{2}$$

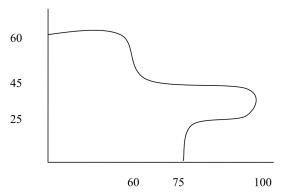
(b)
$$\frac{f(a) + 2f(\frac{a+b}{2}) + f(b)}{4}$$

(c)
$$\int_a^b f(x)dx$$

(d)
$$\Rightarrow \frac{\int_{a}^{b} f(x)dx}{b-a}$$

- 3. O valor de $\int_{0.2}^{2.2} x e^x dx$ é aproximadamente
 - (a) 7.8036
 - (b) $\Rightarrow 11.807$
 - (c) 14.034
 - (d) 19.611

4.
$$\int_{0.2}^{2.2} f(x) dx$$
 para $f(x) = x$, $0 \le x \le 1.2$
= x^2 , $1.2 < x \le 2.4$


é aproximadamente

- (a) 1.9800
- (b) 2.6640
- (c) $\Rightarrow 3.6733$
- (d) 4.7520
- 5. A integração trapezoidal apresenta resultado exato em polinômios de que grau?
 - (a) ⇒ primeiro
 - (b) segundo
 - (c) terceiro
 - (d) quarto

- 6. O valor de $\int_{0.2}^{2.2} x e^x dx$ usando a regra trapezoidal com três segmentos é aproximadamente
 - (a) 11.672
 - (b) 11.807
 - (c) \Rightarrow 12.811
 - (d) 14.633
- 7. A velocidade de um corpo é dada por v(t)=2t, $1 \le t \le 5$ $= 5t^2 + 3, \quad 5 < t \le 14$

onde t é dado em segundos e v é dado em m/s. Use a regra de trapézio com dois segmentos para encontrar a distância percorrida pelo corpo entre t=2 e t=9 segundos.

- (a) 935.0 m
- (b) 1039.7 m
- (c) \Rightarrow 1260.9 m
- (d) 5048.9 m
- 8. A área delineada na figura abaixo mostra um terreno disponível para venda. Sua melhor estimativa da área do terreno é aproximadamente

- (a) 2500 m^2
- (b) $\Rightarrow 4775 \text{ m}^2$
- (c) 5250 m^2
- (d) 6000 m^2
- 9. Os dados abaixo se referem à velocidade de um corpo em função do tempo.

Tempo (s)	0	15	18	22	24
Velocidade (m/s)	22	24	37	25	123

A distância, em metros, percorrida pelo corpo no intervalo entre t=12 s e t=18 s, calculada usando a regra trapezoidal com dois segmentos é

- (a) $\Rightarrow 162.90$
- (b) 166.00
- (c) 181.70
- (d) 436.50

- 10. O valor de $\int_{0.2}^{2.2} xe^x dx$ usando a regra de Simpson com dois segmentos é aproximadamente
 - (a) 7.8036
 - (b) 7.8423
 - (c) $\Rightarrow 8.4433$
 - (d) 10.246
- 11. O valor de $\int_{0.2}^{2.2} x e^x dx$ usando a regra de Simpson com quatro segmentos é aproximadamente
 - (a) 7.8036
 - (b) $\Rightarrow 7.8062$
 - (c) 7.8423
 - (d) 7.9655
- 12. A velocidade de um corpo é dada por v(t)=2t, $1 \leq t \leq 5$ $=5t^2+3, \quad 5 < t \leq 14$

onde t é dado em segundos e v é dado em m/s. Usando a regra de Simpson com dois segmentos, a distância em metros percorrida pelo corpo entre t=2 e t=9 segundos é aproximadamente

- (a) 949.33
- (b) 1039.7
- (c) $\Rightarrow 1200.5$
- (d) 1442.0
- 13. O valor de $\int_3^{19} f(x) dx$ usando a regra de Simpson com dois segmentos é aproximadamente 702.039. O valor estimado da mesma integral usando a regra de Simpson com quatro segmentos é aproximadamente
 - (a) $702.039 + \frac{8}{3}[2f(7) f(11) + 2f(15)]$
 - (b) $\Rightarrow \frac{702.039}{2} + \frac{8}{3}[2f(7) f(11) + 2f(15)]$
 - (c) $702.039 + \frac{8}{3}[2f(7) + 2f(15)]$
 - (d) $\frac{702.039}{2} + \frac{8}{3}[2f(7)2f(15)]$