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UFPR-Periocular: A Periocular Dataset Collected
by Mobile Devices in Unconstrained Scenarios

Luiz A. Zanlorensi, Rayson Laroca, Diego R. Lucio, Lucas R. Santos, Alceu S. Britto Jr., and David Menotti

Abstract—Recently, ocular biometrics in unconstrained envi-
ronments using images obtained at visible wavelength have gained
the researchers’ attention, especially with images captured by
mobile devices. Periocular recognition has been demonstrated
to be an alternative when the iris trait is not available due to
occlusions or low image resolution. However, the periocular trait
does not have the high uniqueness presented in the iris trait. Thus,
the use of datasets containing many subjects is essential to assess
biometric systems’ capacity to extract discriminating information
from the periocular region. Also, to address the within-class
variability caused by lighting and attributes in the periocular
region, it is of paramount importance to use datasets with images
of the same subject captured in distinct sessions. As the datasets
available in the literature do not present all these factors, in this
work, we present a new periocular dataset containing samples
from 1,122 subjects, acquired in 3 sessions by 196 different mobile
devices. The images were captured under unconstrained environ-
ments with just a single instruction to the participants: to place
their eyes on a region of interest. We also performed an extensive
benchmark with several Convolutional Neural Network (CNN)
architectures and models that have been employed in state-of-
the-art approaches based on Multi-class Classification, Multi-
task Learning, Pairwise Filters Network, and Siamese Network.
The results achieved in the closed- and open-world protocol,
considering the identification and verification tasks, show that
this area still needs research and development.

Index Terms—Mobile ocular biometric, Periocular dataset,
Periocular recognition, Deep representations.

I. INTRODUCTION

B IOMETRIC systems that use ocular images have been
extensively investigated due to the high level of singu-

larity in the iris and because the periocular region can provide
discriminative patterns even in noisy images [1]–[5]. There are
two main modes that an ocular biometric system can operate:
identification (1:N comparison) and verification (1:1 com-
parison). The identification task consists of determining a
subject’s identity, whereas the verification one verifies whether
a subject is who she/he claims to be. There are also two
main protocols to evaluate biometric systems: closed-world
and open-world. In the former, the training and test sets have
different samples from exactly the same subjects. On the other
hand, in the open-world protocol, the training and test sets
must have samples from different subjects. With these modes
and protocols, it is possible to evaluate some characteristic of
biometric approaches to produce discriminative features and
generalization capability.
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TABLE I
COMPARISON OF THE AVAILABLE OCULAR DATASETS CONTAINING
VISIBLE (VIS) IMAGES WITH OUR DATASET (UFPR-PERIOCULAR).

Dataset Subjects Images Sessions Sensors

VSSIRIS [6] 28 560 1 2
CSIP [7] 50 2,004 N/A 7
QUT [8] 53 212 N/A 2
IIITD [9] 62 1,240 N/A 3
UPOL [10] 64 384 N/A 1
UTIRIS [11] 79 1,540 2 2
MICHE-I [12] 92 3,732 2 3
CROSS-EYED [13], [14] 120 3,840 N/A 2
PolyU Cross-Spectral [15] 209 12,540 2 2
UBIRIS.v1 [16] 241 1,877 2 1
UBIRIS.v2 [17] 261 11,102 2 1
UBIPr [18] 261 10,950 2 1
VISOB [19] 550 158,136 2 3

UFPR-Periocular 1,122 33,660 3 196

Nowadays, with the advancement of deep learning-based
techniques, several methodologies applying them to ocular
images have been proposed for several tasks, for example,
spoofing detection [20], [21], iris and periocular region de-
tection [22]–[24], iris and sclera segmentation [25], [26], and
iris and periocular recognition [27]–[33]. The advancement
of these technologies can be observed by the recent contests
that have been conducted to evaluate the evolution of the
state-of-the-art methods for different applications, such as
iris recognition in heterogeneous lighting conditions (NICE.I
and NICE.II) [17], [34], iris recognition using mobile images
(MICHE.I and MICHE.II) [1], [12], iris and periocular recog-
nition in cross-spectral scenarios (Cross-Eyed 1 and 2) [13],
[14], and periocular recognition using mobile images captured
in different lighting conditions (VISOB 1 and 2) [19]. Note
that all these contests used datasets containing images obtained
in the visible wavelength. The most recent contests also used
images captured by mobile devices [1], [19]. The results
achieved by the proposed methods have shown that it is
challenging to develop a robust biometric system in such
conditions, mainly due to the high intra-class variability. Based
on recent works [1], [4], [35], we can state that developing
an ocular biometric system that operates in unconstrained
environments is still a challenging task, especially with images
obtained by mobile devices. In this condition, the images cap-
tured by the volunteer may present several variations caused
by occlusion, pose, eye gaze, off-angle, distance, resolution,
and image quality (affected by the mobile device).

With the existing ocular datasets, it is difficult to assess
the scalability performance of biometric applications, i.e., if
an approach can produce discriminative features even in a
large dataset in terms of the number of subjects. As we can
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see in Table I, the datasets in the literature do not present a
large number of subjects and have few sensors and session
captures. As described in some previous works [4], [5], one
common problem in ocular biometric systems is the within-
class variability, which is generally affected by noises and
attributes present in the same individual images. A robust
biometric system must handle images obtained from different
sensors, extracting distinctive representations regardless of the
source and environments. In this sense, samples from the
same subject obtained in different sessions are of paramount
importance to capture the intra-class variation caused by
various noise factors.

Considering the above discussion, in this work, we introduce
a new periocular dataset, called UFPR-Periocular. The sub-
jects themselves collected the images that compose our dataset
through a mobile application (app). In this way, the images
were captured in unconstrained environments, with a minimum
of cooperation from the participant, and have real noises
caused by poor lighting, occlusion, specular reflection, blur,
and motion blur. Fig. 1 shows some samples from the UFPR-
Periocular. As part of this work, we also present an extensive
benchmark, employing several state-of-the-art architectures
of CNN models that have been explored to develop ocular
biometric systems.

Fig. 1. Sample images from the UFPR-Periocular dataset. Observe that there
is great diversity in terms of lighting conditions, age, gender, eyeglasses,
specular reflection, occlusion, resolution, eye gaze, and ethnic diversity.

Note that our dataset is the largest one in terms of the
number of subjects, sessions, and sensors, as shown in Table I.
It also has more images than all datasets except VISOB.
Another key feature is that the proposed dataset has images
captured by 196 different mobile devices. The samples cap-
tured with less cooperation of the participant in unconstrained
environments have several variations on the ocular images
since they are obtained during three different sessions. To the
best of our knowledge, this is the first ocular dataset with more
than 1,000 subject samples and the largest one in different
sensors in the literature. Thus, we believe that it can provide
a new benchmark to evaluate and develop new robust ocular
biometric approaches.

The remainder of this work is organized as follows. In Sec-
tion II, we describe the ocular datasets containing VIS images
for ocular biometrics. In Section III, we present information

about the UFPR-Periocular dataset and the proposed protocol
to evaluate biometric systems. Section IV presents the CNN
architectures used to perform the benchmark. In Section V,
we present and discuss the benchmark results. Finally, the
conclusions are given in Section VI.

II. RELATED WORK

In recent years, several ocular contests and datasets have
been released to evaluate state-of-the-art methods for many ap-
plications. Zanlorensi et al. [35] detailed and described several
datasets and contests for iris and periocular recognition. Dif-
ferent problems have been addressed by the researchers, such
as ocular recognition in unconstrained environments, ocular
recognition on cross-spectral scenarios, iris/periocular region
detection, iris/periocular region segmentation, and sclera seg-
mentation.

Existing ocular datasets can be organized into constrained
(or controlled) or unconstrained (or non-controlled) environ-
ments. The quality of the images is different in constrained
and unconstrained environments, as some noise can occur
in the images captured in unconstrained environments such
as lighting variation, occlusion, blur, specular reflection, and
distance. Images can also be acquired cooperatively and non-
cooperatively in relation to some image capture restrictions
imposed on the subject. Ocular non-cooperative images can
have some problems caused by off-angle, focus, distance,
motion blur, and occlusions by some attributes such as eye-
glasses, contact lenses, and makeup.

As described in [35], datasets containing images obtained
at the near-infrared (NIR) wavelength were created mainly to
investigate the intricate patterns present in the iris region [36],
[37]. There are also other studies on NIR ocular images, such
as generating synthetic iris images [38], [39], spoofing and
liveness detection [40]–[43], contact lens detection [44]–[47],
and template aging [48], [49]. The use of NIR ocular images
captured in controlled environments by biometric systems has
been studied for several years. Thus, it can be considered
a mature technology that has been successfully employed in
several applications [2], [36], [37], [50], [51].

In general, better results can be achieved on biometric
methods using VIS images by exploring the periocular region
instead of the iris trait, as the iris is rich in melanin pigment
that absorbs the most visible lights – not reflecting the iris
features as occur with NIR lights [50]. Also, the small reso-
lution of ocular images is a common problem that makes it
almost impracticable to use the iris trait alone. Regarding these
problems, the use of VIS ocular images captured in a non-
cooperative way under unconstrained environments became
a recent challenge. In this sense, several studies have been
carried out on ocular biometric recognition using images ob-
tained by mobile devices in uncontrolled environments using
different sensors [6], [12], [19]. The following datasets were
developed to investigate the use of iris and periocular traits
in VIS images: UPOL [10], UBIRIS.v1 [16], UBIRIS.v2 [17]
and UBIPr [18]. There are also datasets of iris and periocular
region images for cross-spectral recognition, i.e., match ocular
images obtained at different wavelengths (NIR against VIS and
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vice-versa): UTIRIS [11], IIITD Multi-spectral Periocular [9],
PolyU Cross-Spectral [15], CROSS-EYED [13], [14], and
QUT Multispectral Periocular [8]. Focusing specifically on
ocular recognition using non-cooperative images obtained in
uncontrolled environments by mobile devices, we highlight
the following datasets: MICHE-I [12], VSSIRIS [6], CSIP [7]
and VISOB [19].

Nowadays, it is difficult to evaluate the scalability factor
of the state-of-the-art biometric approaches due to the size
in terms of subjects and images on the available datasets.
As shown in Table I, the most extensive dataset regarding
subjects and images is VISOB [19], which has 158,136 images
from 550 subjects. The ICIP 2016 Competition on mobile
ocular biometric recognition [19] employed this dataset, and
in the WCCI/IJCNN2020 challenge1, a second version of the
dataset was launched. Both contests evaluated the periocular
recognition using VIS images obtained by mobile devices. The
second contest’s main difference is that the input images were
a stack with 5 ocular images belonging to the same subject.
The best methods achieved an EER of 0.06% and 5.26% on
the first and second contests, respectively.

Also using VIS ocular images, other contests were carried
out to evaluate iris and periocular recognition: NICE.II [34],
MICHE.II [1], and CROSS-EYED I [13] and II [14]. The
NICE.II contest evaluated iris recognition using images con-
taining noise within the iris region. The winner method fused
features extracted from the iris and the periocular region using
ordinal measures, color histograms, texton histograms, and
semantic information. The MICHE.II contest also evaluated
iris and periocular recognition, but using images captured
by mobile devices. The winner approach extracted features
from the iris and the periocular region, using the rubber
sheet model normalization [52] and 1-D Log-Gabor filter and
Multi-Block Transitional Local Binary Patterns, respectively.
Lastly, the CROSS-EYED I and II contests evaluated iris
and periocular recognition on the cross-spectral scenario. In
both contests, the winner approach employed handcrafted
features based on Symmetry Patterns (SAFE), Gabor Spec-
tral Decomposition (GABOR), Scale-Invariant Feature Trans-
form (SIFT), Local Binary Patterns (LBP), and Histogram of
Oriented Gradients (HOG).

Inspired by impressive results achieved by deep learning-
based techniques in multiple domains [53], several methods
proposing and applying such techniques have been developed
to address different tasks using ocular images [3]–[5], [20]–
[33]. Also, as found in the literature, deep learning frameworks
for ocular biometric systems are a recent technology that still
needs improvement [35]. The use of ocular datasets containing
images captured by mobile devices in unconstrained environ-
ments is a challenging task that has gained attention in recent
years [1], [4], [19], [35], [54].

III. DATASET

The UFPR-Periocular dataset was created to obtain images
in unconstrained scenarios that contain realistic noises caused

1VISOB 2.0 Dataset and Competition results available at: https://sce.umkc.
edu/research-sites/cibit/dataset.html.

by occlusion, blur, and variations in lighting, distance, and
angles. To this end, we developed a mobile application (app)
enabling the participants to collect their pictures using their
smartphones2. The single instructions to the participants is to
place their eyes on a region of interest marked by a rectangle
drawn in the app, as illustrated in “Picture” in Fig. 3. We
also restricted the images to be captured in 3 sessions, with
5 images per session and a minimum interval of 8 hours
between sessions. In this way, we guarantee that the dataset has
samples of the same subject with different noises, mainly due
to different lighting and environments. Furthermore, imposing
this minimum time interval between sessions, it is possible to
collect different attributes in the periocular region of the same
subject, as the images are captured at different times of the day,
e.g., subjects wearing and not wearing glasses and makeup.
Another attractive feature of this dataset is that all participants
are Brazilian, and as Brazil has great ethnic diversity, there are
images of subjects from different races, making this one of the
first periocular datasets with such cultural diversity.

The images were collected from June 2019 to January 2020.
The gender distribution of the subjects is (53,65%) male and
(46,35%) female, and approximately 66% of the subjects are
under 31 years old. In total, the dataset has images captured
from 196 different mobile devices – the five most used device
models were: Apple iPhone 8 (4.1%), Apple iPhone 9 (3.1%),
Xiaomi Mi 8 Lite (3.0%), Apple iPhone 7 (3.0%), and Samsung
Galaxy J7 Prime (2.7%).

We remark that each subject captured all of their images
using the same device model. The distribution of age, gender,
and image resolutions present in our dataset is shown in Fig. 2.

The dataset has 16,830 images of both eyes from 1,122
subjects. Image resolutions vary from 360×160 to 1862×1008
pixels – depending on the mobile device that was used to
capture the image. We crop/separate the periocular regions of
the right and left eyes to perform the benchmark, assigning a
unique class to each side. Note that, once the image is cropped,
the remainder image region is discarded as claimed in our
project request to the Ethics Committee Board to preserve
at maximum the identity of the participants. We manually
annotated the eye corners with 4 points per image (inside and
outside eye corners), and used these points to normalize the
periocular region regarding scale and rotation. This process is
detailed in Fig. 3.

All the original and cropped periocular images along with
the eye corner annotations are publicly available for the
research community (upon request) at https://web.inf.ufpr.br/
vri/databases/ufpr-periocular/ .

Using the center point of each eye (average corners point),
the images were rotated and scaled to normalize the eye
positions in a size of 512 × 512 pixels. Then, the images
were split into 2 patches to create the left and right eye sides,
generating 33,660 periocular images from 2,244 classes. The
intra- and inter-class variability in this dataset is mainly caused

2Project approved by the Ethics Committee Board from the Health Sci-
ence Sector of the Federal University of Paraná, Brazil – Process CAAE
02166918.2.0000.0102, registered in the Plataforma Brazil system – https:
//plataformabrasil.saude.gov.br/

https://sce.umkc.edu/research-sites/cibit/dataset.html
https://sce.umkc.edu/research-sites/cibit/dataset.html
https://web.inf.ufpr.br/vri/databases/ufpr-periocular/
https://web.inf.ufpr.br/vri/databases/ufpr-periocular/
https://plataformabrasil.saude.gov.br/
https://plataformabrasil.saude.gov.br/
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(a) gender distribution among the age ranges (b) image resolutions grouped into 10 intervals

Fig. 2. Age, gender and image resolution distributions in the UFPR-Periocular dataset. (a) note that gender has a balanced distribution, but the age range is
concentrated under 30 years old (64% of the subjects). (b) more than 45% of the images have a resolution between 1034× 480 and 1736× 772 pixels, and
more than 65% of the images have resolution higher than 740× 400 pixels.

Picture

Cropped Annotated

NormalizedLeft Right

Fig. 3. Image acquisition and normalization process. First, after the subject
takes the shot, the rectangular region (outlined in blue) is cropped and stored.
Then, the images are normalized in terms of rotation and scale using the
manual annotations of the corners of the eyes. Finally, the normalized images
are cropped, generating the periocular regions of the left and right eyes.

by lighting, occlusion, specular reflection, blur, motion blur,
eyeglasses, off-angle, eye-gaze, makeup, and facial expression.

A. Experimental Protocols

We propose protocols for the two most common tasks in
biometric systems: identification (1:N ) and verification (1:1).
The identification task consists of determining a subject
sample identity (probe) within a known dataset or a clus-
ter (gallery). The probe is compared against all the gallery
samples, considering the closest match as the subject’s identity.
Furthermore, probabilistic models can be employed/trained
using the gallery data to determine the probe subject’s identity
based on the highest confidence output. The verification task
refers to the problem of verifying whether a subject is who
she/he claims to be. If two samples match sufficiently, the
identity is verified; otherwise, it is rejected [50]. Verification
is usually used for positive recognition, where the goal is to
prevent multiple people from using the same identity. The
identification is a critical component in negative recognition,
where the goal is to prevent a single person from using
multiple identities [55]. Furthermore, the proposed protocol
also encompasses two different scenarios: closed-world and
open-world. In the closed-world protocol, the dataset is split
through different samples from the same subject, i.e., training

and test sets have samples of the same subjects. In the
open-world protocol, there are different subjects both in the
training and test sets. The identification task is performed
in the closed-world protocol, while the verification task can
be performed in both closed and open-world protocols. In
the open-world protocol, we also propose two different splits
regarding the training and validation sets. Note that we do
not change the test set, keeping it in the open-world protocol,
and only vary the training protocols. The first split uses the
closed-world protocol, in which the training and validation
sets have samples from the same subjects. The second split,
on the other hand, has different subjects in the training and
validation sets, i.e., in an open-world protocol. With these
two training/validation splits, it is possible to use multi-
class networks (classification/identification) and also models
based on the similarity of two distinct inputs (verification
task): Siamese networks, triplet networks, and pairwise filters.
Although models built for the verification task can be trained
through the closed-world protocol, the design can be better
improved using the open-world protocol to split the training
and validation sets, as it is a more realistic scenario regarding
the test set. Table II summarizes the proposed protocols.

We defined 3 folds with a stratified split into training,
validation, and test sets for both biometric tasks (identification
and verification) for all protocols. The test set comprises
all against all comparisons for genuine pairs and aiming to
reduce the pairwise comparisons only impostor pairs using
the images of all subjects with the same sequence index,
i.e., the i-th images of each subject are combined two at-a-
time to generate all impostor pairs, for 1 ≤ i ≤ n, where
n = 3 sessions × 5 images. As the UFPR-Periocular dataset
has images captured under 3 sessions, we designated one
session as a test set for each fold in the closed-world protocol.
Thus, we have images from sessions 1 and 2, 2 and 3, 3
and 1 for training/validation, and sessions 3, 1, and 2 for
testing, respectively for each of the three folds. To evaluate
the ability of the models to recognize subjects samples at
different environments, for all folds, we employed samples
of both sessions in the training and validation sets to fed
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TABLE II
IMAGES, CLASSES, AND PAIRWISE COMPARISON DISTRIBUTIONS FOR THE CLOSED-WORLD (CW) AND OPEN-WORLD (OW) PROTOCOLS. VALUES FOR

EACH FOLD (3 FOLDS).

Protocol Train/Val
Images / Classes Genuine pairs / Impostor pairs

Train Validation Test Train Validation Test

CW CW/CW 13,464/2,244 8,976/2,244 11,220/2,244 33,660/ 90,599,256 13,464/40,266,336 22,440/12,583,230
OW OW/CW 13,464/1,496 8,976/1,496 11,220/ 748 53,856/ 90,579,060 22,440/40,257,360 78,540/ 4,190,670
OW OW/OW 15,000/1,000 7,440/ 496 11,220/ 748 105,000/112,387,500 52,080/27,621,000 78,540/ 4,190,670

the models with images from the same subject varying the
capture conditions. For each subject, we employed the first
3 images of each session for training and the remaining 2
for validation (60%/40% for training/validation splits). The
test set contains new images from the subjects present in the
training/validations sets with different noises caused by the
environment, lighting, occlusion, and facial attributes.

For the open-world protocol we generate the training, vali-
dation, and test sets by splitting the dataset through different
subjects. Thus, for each fold, the test set has samples of
subjects not present in the training/validation set. Splitting
sequentially by the subject index for each fold, we have sam-
ples of 748 subjects for training/validation and 374 subjects
for testing. Moreover, we propose two different splits for the
training/validation splits, the first one containing images of the
same subject in the training and validation sets (closed-world
validation). The second one contains samples from different
subjects in the training and validation sets (open-world vali-
dation). Both training/validation protocols have pros and cons.
The advantage of using the closed-world validation is that the
training has samples of more subjects than the open-world
validation protocol. However, in this scenario, the models can
only learn distinctive features for the gallery samples and may
not extract distinctive features for subjects not present in the
training process. On the other hand, the open-world validation
has samples of fewer subjects than the closed-world validation
protocol, presenting a more realistic scenario since samples
of subjects not known in the training stage are present in the
validation set. In the closed-world validation protocol, for each
one of the 748 subjects in the training set, we used the first
3 images of each session for training, and the remaining 2
for validation (60%/40% for training/validation splits). In the
open-world validation protocol, we employed samples of the
first 700 subjects for training and samples of the remaining 48
subjects to validate each fold. The number of the generated
pairwise comparison for all protocols are detailed in Table II.
The files determining all splits and setups detailed in this
section are available along with the UFPR-Periocular dataset.

IV. BENCHMARK

To carry out an extensive benchmark, we employ different
models and strategies based on deep learning that achieved
promising results in the ImageNet dataset/contest [56] and
were applied in recent works of ocular recognition [5], [28],
[31], [32], [57]. These methods differ from each other in
network architecture, loss function, and training strategies.
We employed the following CNN models: Multi-class classi-
fication, Multi-task learning, Siamese networks, and Pairwise

filters networks. In the following subsections, we describe and
detail each one of them.

A. Multi-class Classification
Multi-class classification is the task of classifying instances

into three or more classes, where each sample must have a sin-
gle unique class/label. Several techniques [58]–[60] have been
proposed combining multiple binary classifiers to solve multi-
class classification problems. Deep learning-based approaches
usually address this problem through CNN models with soft-
max cross-entropy loss. Therefore, we start by evaluating sev-
eral CNN architectures that achieved expressive results in the
ImageNet dataset/contest [56]. In summary, the architecture
of these models has several convolutional, pooling, activation,
and fully-connected layers, as shown in Fig. 4.

Input Images Convolutional model
F.C.

Features
F.C.

Softmax

Fig. 4. Multi-class classification CNN architecture.

In the training stage, a batch of images and their labels feed
these models. The model extracts the image features through
convolutional, pooling, and fully connected (dense) layers. The
last layer is composed of a fully connected layer using the
softmax cross-entropy as a loss function. Below we describe
the main characteristics of each model.

1) VGG: The VGG model, proposed by Simonyan and
Zisserman [61], consists of a CNN using small convolution
filters (3 × 3) with a fixed stride of 1 pixel. The spatial
polling is computed by 5 max-pooling layers over a 2 × 2
pixel window. Two models were proposed varying the number
of convolutional layers: VGG16 and VGG19. Both models
have two fully connected layers at the top with 4096 channels
each – these architectures achieved the first and second places
in the localization and classification tracks on the ImageNet
Challenge 2014. The authors also stated that it is possible
to improve prior-art configurations by increasing the depth of
the models. Parkhi et al. [62] applied these models (called
VGG16-Face) on the face recognition problem, showing that
a deep CNN with a simpler network architecture can achieve
results comparable to the state of the art. Furthermore, recent
approaches for ocular (iris/periocular) biometrics employing
VGG models have demonstrated the ability to produce dis-
criminant features [5], [28], [31], [32], [57], [63], [64]. In this
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work, we employed the VGG16 and VGG16-Face to perform
the benchmark.

2) ResNet: The Residual Network (ResNet) was intro-
duced by He et al. [65] and applied to biometrics for face
recognition [66], iris recognition [5], [31], [57], [63], [67]
and periocular recognition [5], [33], [64], [68]. The authors
addressed the degradation (vanishing gradient) problem caused
by deeper network architectures proposing a deep residual
learning framework. They added shortcut connections between
residual blocks to insert residual information. These residual
blocks are composed of a weighted layer followed by batch
normalization, an activation function, another weighted layer,
and batch normalization. Let F (x) be a residual block, and x
the input of this block (identity map), the residual information
consists of adding x to F (x), i.e., F (x) + x, and using it
as input to the next residual block. Different architectures
were proposed and evaluated, varying the depth of the models:
ResNet50, ResNet101, and ResNet152. These models achieved
promising results on the ImageNet dataset [56]. In [69], He et
al. proposed the ResNetV2 by changing the residual block by
adding a pre-activation into it. Empirical experiments showed
that the proposed method improved the network generalization
ability, reporting better results than ResNetV1 on ImageNet.

3) InceptionResNet: The InceptionResNet model [70],
combines the residual connections [65] and the inception
architecture [71]. The first inception model [72], known as
GoogLeNet, introduced the Inception module aiming to in-
crease the network depth while keeping a relatively low com-
putational cost. The main idea of inception is to approximate a
sparse CNN with a normal dense construction. The inception
module consists of several convolutional layers, where their
output filter banks are concatenated and used as the input to
the next module. The model version difference is based on
the organization inside its inception module. Combining the
residual connections with the InceptionV3 and InceptionV4
models, the author developed InceptionResNetV1 and Incep-
tionResNetV2, respectively. Experiments performed on the
ImageNet dataset showed that the InceptionResNet models
trained faster and reached slightly better results than the
inception architecture [70]. In our experiments, we employed
the InceptionResNetV2 model since it achieved the best results
on ImageNet.

4) MobileNet: The first version of the MobileNet model
(MobileNetV1) [73] was developed focusing on mobile and
embedded vision applications, in which it is desirable that
the CNN model has a small size and high computational
efficiency. This model is based on depthwise separable filters,
which are composed of depthwise and pointwise convolutions.
As described in [73], depthwise convolutions apply a single
filter for each input channel, and pointwise convolutions use
a 1 × 1 convolution to compute a linear combination of the
depthwise output. Both layers use batch normalization and
ReLU activation. MobileNetV1 achieved promising results in
both terms of performance and accuracy on several tasks
such as fine-grained recognition, large scale geolocation, face
attributes classification, object detection, and face recogni-
tion [73]. MobileNetV2 [74] combines the first version ar-
chitecture with an inverted ResNet [65] structure, which has

shortcut connections between the bottleneck layers. Experi-
ments performed in different tasks such as image classification,
object detection, and image segmentation showed that the
MobileNetV2 can achieve high accuracy with low computation
costs compared to state-of-the-art methods [74].

5) DenseNet: The Dense Convolutional Net-
work (DenseNet) model [75] consists of a CNN architecture
where each layer is connected to every other layer in a
feed-forward way. Thus, let L be the number of layers from
a network, a DenseNet layer has L(L+1)

2 direct connections
with subsequent layers – instead of L as a traditional
CNN model. As in the ResNet models [65], [69], these
connections can handle the vanishing-gradient problem and
ensure maximum information flow between layers. The feed-
forward is preserved, passing the output from all layers as
an additional input to the subsequent ones in a channel-wise
concatenation. The DenseNet models achieved state-of-the-art
accuracies in image classification on the CIFAR10/100 and
ImageNet datasets [56], [75]. The authors proposed different
models varying the depth of the network. In our experiments,
we employed DenseNet121 (the shallowest one).

6) Xception: Inception modules inspired the creation of
the Xception model, which can be defined as an intermediate
step between regular convolution and the depthwise separable
convolution operation [76]. The proposed architecture replaces
the standard inception modules with depthwise separable con-
volutions, and also have residual connections. The Xception
architecture has the same number of parameters as Incep-
tionV3 but outperforms it on the ImageNet dataset [56].

B. Multi-task Learning
Multi-task learning uses the domain information of related

tasks as an inductive bias to improve generalization [77]. A
Multi-task network can learn several tasks using a shared CNN
model, where each task can help the generalization for other
tasks. Caruana [77] introduced the Multi-task learning concept
and evaluated it in different domains, demonstrating that this
method can achieve better results than single-task learning
models for related tasks. In deep neural networks, multi-task
learning can be performed by using hard or soft parameter
sharing [78]. The most common one is the hard parameter
sharing, where all the hidden (convolutional) layers weights
are shared, i.e., the model learns a single representation for
all tasks. Then, different tasks use these shared features by
adding some layers for each specific task. On the other hand,
in soft parameter sharing one model is employed for each
task. Then, the parameters of these models are regularized to
encourage similarities among them.

As shown in Fig. 4, our Multi-task network shares all
convolutional layers and some dense layers. The model has
exclusive dense layers for each task, followed by the prediction
layers, using the softmax cross-entropy as function loss.

In this work, based on the results of multi-class classifi-
cation, we employ MobileNetV2 as the base model on our
multi-task approach. Furthermore, as detailed in Table III, we
build our multi-task model with hard parameter sharing for the
following 5 tasks: (i) class prediction, (ii) age rate, (iii) gender,
(iv) eye side, and (v) smartphone model.
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Input Images Convolutional model F.C.
Features

F.C.
Softmax

Fig. 5. Multi-task CNN architecture. In this model, each task has its own
output and all tasks share the convolutional layers. The loss of all tasks is
used to update the weights of the convolutional layers.

TABLE III
MULTI-TASK ARCHITECTURE IN THE CLOSED-WORLD PROTOCOL.

# Layer Connected to Input Output

0 MobileNetV2 (88 layers) – 224× 224× 3 1280
1 dense (classes) #0 1280 256
2 dense (age) #0 1280 256
3 dense (gender) #0 1280 256
4 dense (eye side) #0 1280 256
5 dense (smartphone model) #0 1280 256
6 predict (classes) #1 256 2244
7 predict (age) #2 256 10
8 predict (gender) #3 256 2
9 predict (eye side) #4 256 2
10 predict (smartphone model) #5 256 196

For the age estimation task, we generate the classes by
grouping ages into the following 10 ranges: 18-20, 21-23,
24-26, 27-29, 30-34, 35-39, 40-49, 50-59, 60-69, and 70-79.
The gender and eye side prediction tasks have only 2 classes,
while the smartphone model prediction has 196 classes. Note
that Multi-task learning networks can use weighted loss for
the tasks, penalizing the wrong classification of some tasks
more than others. For simplicity, in this work, we do not use
weighted losses in our experiments, giving equal importance
to all tasks.

C. Pairwise Filters Network

Inspired by [79], which is one of the first works applying
deep learning for iris verification, we also evaluate the per-
formance of the pairwise filters network. This kind of model
directly learns the similarity between a pair of images through
pairwise filters. The Pairwise Filters Network is a Multi-class
classification model that contains one or two outputs informing
whether the input pairs are from the same class or from
different classes. The difference is that the network input is a
pair of images instead of a single image. Thus, the network
architecture consists of convolutional, pooling, activation, and
fully connected layers, as shown in Fig. 6.

As this model requires a pair of images as input, different
concatenation strategies can be employed. Following Liu et
al. [79], in this work, we generate the input pairs by concate-
nating the images at the depth level. Let two RGB images
with shapes of 224× 224× 3, concatenating both images by
its channels; the resulting input image will have a shape of
224× 224× 6. The output of our model has two neurons and

Input
 Pair Images

F.C.
Features

F.C.
SoftmaxConvolutional model - Pairwise filters

Fig. 6. Pairwise filters CNN architecture. This model contains filters that
directly learn the similarity between a pair of images. The output informs
whether the images are of the same person or not.

uses a softmax cross-entropy loss. As the verification problem
has only two classes, this model’ output can also have only
one neuron using a binary cross-entropy loss function. As in
the Multi-task network, we employ MobileNetV2 as the base
model for our Pairwise Filters Network.

D. Siamese Network

Introduced by Bromley et al. [80] for signature verifi-
cation, Siamese networks consist of twin branches sharing
their parameters (trainable parameters). Such models learn
similarities/distances between a pair of inputs, being used
mainly for verification tasks. As illustrated in Fig. 7, each
branch of the Siamese structure is composed of a CNN model
followed by some dense layers. These models can also have
shared and non-shared dense layers at the top.

F.C.
FeaturesConvolutional modelInput Images

F.C.
Contrastive

Shared layers

Fig. 7. Siamese CNN architecture. This model is composed of two twin
branches of convolutional layers sharing their trainable parameters. The output
computes a distance between the input image pairs.

As detailed in Table IV, we employ MobileNetV2 as the
base model for each branch of the Siamese network. We use
the contrastive loss [81], [82] in the training stage to compute
the similarity between the input pair images.

TABLE IV
SIAMESE NETWORK ARCHITECTURE DESCRIPTION.

# Layer Connected to Input Output

0 branch a (MobileNetV2 (88 layers)) – 224× 224× 3 256
1 branch b (MobileNetV2 (88 layers)) – 224× 224× 3 256
2 dense #0 and #1 512 256
3 Euclidean dist. / Contrastive loss #2 256 1

As described in [82], let DW be the Euclidean distance
between two input vectors, the contrastive loss can be written
as follows:

C(W ) =

P∑
i=1

L(W, (Y, ~X1, ~X2)
i), (1)
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where

L(W, (Y, ~X1, ~X2)
i) = (1− Y )LS(D

i
W ) + Y LD(Di

W ) , (2)

and P is the number of training pairs, (Y, ~X1, ~X2)
i cor-

responds to the i-th label (Y ) of the sample pair ~X1, ~X2,
and LS and LD are partial losses for a pair of similar and
dissimilar points, respectively. The objective of this function
is to minimize L for LS and LD by computing low and high
values of DW for similar and dissimilar pairs, respectively.

The contrastive loss was proposed and applied to face
verification [81], [82] and has been employed for periocular
recognition [83], [84] and iris recognition [57].

V. RESULTS AND DISCUSSION

This section presents the benchmark results for the identifi-
cation and verification tasks. We first describe the experimental
setup used to perform the benchmark. Then, we report and
discuss the results achieved by each approach.

A. Experimental Setup

Inspired by several recent works [5], [28], [30], [31], [33],
[54], [57], [68], [85], we perform the benchmark employing
pre-trained models on ImageNet and also for face recogni-
tion (VGG16-Face and ResNet50-Face). Afterward, we fine-
tuned these models using the UFPR-Periocular dataset. Similar
to recent works on ocular recognition [28], [31], [32], [35], we
modify all models by adding a fully convolutional layer before
the last layer (softmax) to generate a feature vector with a size
of 256 for each image. The default input size of the models is
224× 224× 3, except for the InceptionResNet and Xception
models, which have an input size of 299× 299× 3. Note that
the input dimensions are different because we are using pre-
trained models and our fine-tuning process should respect the
input size of the original architectures.

For all methods, the training was performed during 60
epochs with a learning rate of 10−3 for the first 15 epochs
and 5 × 10−4 for the remaining epochs using the Stochastic
Gradient Descent (SGD) optimizer. Then, we used the weights
from the epoch that achieves the lower loss in the validation
set to perform the evaluation.

We employ Rank 1 and Rank 5 accuracy for the identifica-
tion task, and the Area Under the Curve (AUC), Equal Error
Rate (EER), and Decidability (DEC) metrics for verification.
Furthermore, to generate the verification scores, we compute
the cosine distance between the deep representations generated
by each CNN model. As described and applied in several
works with state-of-the-art results [4], [5], [28], [31], the
cosine distance is computed by the cosine angle between two
vectors, being invariant to scalar transformation. This measure
gives more attention to the orientation than to the coefficient of
magnitude of the representations, being an interesting metric
to compute the similarity between two vectors. The cosine
metric distance is given by:

dc(A,B) = 1−
∑N

j=1 AjBj√∑N
j=1 A

2
j

√∑N
j=1 B

2
j

, (3)

where A and B stand for the feature vectors.
Regarding the models explicitly developed for the verifica-

tion tasks, i.e., the Siamese network and the Pairwise Filters
network, as this task has unbalanced samples of genuine and
impostors pairs, selecting the best samples to perform the
training is challenging. Thus, trying to fit the models by
feeding them as diverse samples as possible, we employed all
genuine pairs and randomly selected the same number from the
impostor pairs for each epoch. Hence, each epoch may have
different impostor samples. However, for a fair comparison, we
generated the random impostor pairs only once for each epoch
and fold, and used the same samples for training both models.

The reported results are from 5 repetitions for each fold,
except for the Siamese and Pairwise filter networks, in which
we ran only 3 repetitions due to the high computational cost.
All experiments were performed on a computer with an AMD
Ryzen Threadripper 1920X 3.5GHz (4.0GHz Turbo) CPU,
64 GB of RAM and an NVIDIA Titan V GPU. All CNN
models were implemented in python using the Tensorflow3

and Keras4 frameworks.

B. Benchmark results

This section presents the results obtained by each approach
in the closed-world and open-world protocols. We also per-
form an ablation study on the Multi-task learning network to
evaluate each task’s influence in the identification mode. First,
we show in Table V the size and the number of trainable
parameters of each CNN model used as a benchmark. This
information is from the models that we used on the closed-
world protocol since they have more neurons on the last layer
than the open-world protocol models.

TABLE V
SIZE (MB) AND NUMBER OF TRAINABLE PARAMETERS OF THE

CNN MODELS USED IN THE BENCHMARK.

Model Size (MB) Trainable parameters

VGG16 1088 135,886,084
VGG16-Face 1088 135,886,084
InceptionResNet 445 55,246,372
ResNet50V2 400 49,786,436
ResNet50 198 24,609,284
ResNet50-Face 198 24,609,284
Xception 176 21,908,204
DenseNet121 64 7,792,964
MobileNetV2 26 3,128,516

Multi-task 37 4,494,230

Siamese 21 2,551,808
Pairwise 20 2,349,479

As can be seen, the benchmark has a great diversity of mod-
els with different sizes and parameters due to their difference
in structure, depth, concept, and architectures.

1) Closed-world protocol: In the closed-world protocol,
we perform the benchmark for both the identification and
verification tasks. All results are presented in Table VI. As
can be seen, although MobileNetV2 is the smallest model in

3https://www.tensorflow.org/
4https://keras.io/

https://www.tensorflow.org/
https://keras.io/
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terms of size and trainable parameters, it achieved the best
results for both identification and verification tasks. Hence,
we used MobileNetV2 as the base model for the Multi-task,
Siamese, and Pairwise Filters networks.

In general, the Multi-task model achieved the best results
in terms of Rank 1, Rank 5, AUC, and EER. We highlight
that we only explored the other tasks – age, gender, eye side,
and mobile device model – at the training stage of this model.
For the evaluation, we extracted the representations for the
classification task and used it for the identification (using the
softmax layer) and verification (using the cosine distance)
tasks. The Siamese network obtained the worst results in the
benchmark, while the Pairwise Filters network reached the
higher Decidability index, indicating that it was the best at
separating genuine and impostors distributions. However, it
did not achieve the best results in terms of AUC and EER.

As stated in some previous works [28], [85], the models
pre-trained for face recognition generally achieve best results
than those pre-trained on the ImageNet dataset.

2) Open-world protocol: The main idea of the open-world
protocol is to evaluate the capability of the methods to extract
discriminant features from samples of classes that are not
present in the training stage. Thus, for this protocol, we
perform a benchmark only for the verification task. The results
are shown in Table VII.

As in the closed-world protocol, the Multi-task model
achieved the best results in Rank 1, Rank 5, AUC, and
EER, and the Pairwise network achieved the best Decidability
index. The Siamese and Pairwise Filters networks trained
using the closed-world validation split reached better results
than when trained using the open-world validation split. We
believe this occurred due to the fact that there are fewer
classes in the training set in the open-world validation split
than in the closed-world validation split. Although the open-
world validation split corresponds to a more realistic scenario
regarding the test set, the networks trained with samples from
a larger number of classes can reach a higher capability of
generalization, producing discriminative representations even
for samples from classes not present in the training stage.

3) Multi-task Learning: The Multi-task model achieved the
best results both in the closed- and open-world protocols.
As this network simultaneously learns different tasks, we
perform an ablation study by running some experiments with
4 new models created by removing one of the tasks at a
time. The experiments were carried out in the closed-world
protocol to evaluate the performance of both identification
and verification. We also evaluated the results achieved by
all models in each task.

According to Table VIII, the Multi-task network without the
prediction of the mobile device model was the most penalized
for the identification task, followed by the network variations
without age, gender, and eye side estimation, respectively. The
gender and eye side classification tasks were handled well by
all models, while the device model and age range classification
tasks proved to be more challenging. One problem in the
device model and age range classification is the unbalanced
number of samples per class, which can generate a bias during
the training stage.

Wrong Genuines (Best Impostors)
0.98 0.96 0.95 0.95

0.95 0.95 0.94 0.94

0.94 0.94 0.93 0.93

Wrong Impostors (Worst Genuines)
0.66 0.68 0.69 0.69

0.69 0.70 0.70 0.70

0.70 0.71 0.72 0.73

Fig. 8. Pairwise images wrongly classified by the model that obtained the
best result in the verification task in the open-world protocol. Higher scores
mean that the pair of periocular images is more likely to be genuine.

Note that in both closed-world and open-world protocols,
we only explored the class prediction for the matching. How-
ever, as shown in Table VIII, the multi-task architecture also
achieved promising results in the other tasks. In this sense, it
may be possible to further improve the recognition results by
adopting heuristic rules based on the scores of the other tasks.

4) Subjective evaluation: In this section, we perform a
subjective evaluation through visual inspection on the pairs of
images erroneously classified by the Multi-task model, which
achieved the best result in the verification task in the closed-
world protocol. The best impostors (impostors classified as
genuine) and the worst genuines (genuine classified as impos-
tors) pairs are presented in Fig. 8.

Performing a visual analysis of all pairwise errors, it is
clear that hair occlusion, age, eyeglasses, and eye shape were
the most influential factors that led the model to the wrong
classification of genuine pairs (intra-class comparison). In
pairs wrongly classified as impostors (inter-class comparison),
we saw that lighting, blur, eyeglasses, off-angle, eye-gaze,
reflection, and facial expression caused the main difference
between the images. We hypothesize that some errors caused
by lightning, blur, reflection, and occlusion can be reduced by
employing some data augmentation techniques in the training
stage. Attribute normalization [4] can also reduce the errors
caused by attributes present in the periocular region such as
eyeglasses, eye gaze, makeup, and some types of occlusion.
Although some methods can be applied to reduce the matching
errors, there are still several characteristics in these images that
make the mobile periocular recognition a challenging task,
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TABLE VI
BENCHMARK RESULTS IN THE CLOSED-WORLD PROTOCOL FOR THE IDENTIFICATION AND VERIFICATION TASKS.

Model Identification (1:N ) Verification (1:1)

Rank 1 (%) Rank 5 (%) AUC (%) EER (%) Decidability

VGG16 50.56± 3.30 68.73± 3.01 99.41± 0.11 3.59± 0.32 4.4544± 0.1502
VGG16-Face 56.29± 1.62 73.84± 1.48 99.43± 0.08 3.44± 0.28 4.5069± 0.1379
Xception 57.43± 1.43 75.88± 1.52 99.77± 0.04 2.19± 0.18 4.2470± 0.0538
ResNet50V2 63.18± 2.14 77.79± 1.81 99.74± 0.04 2.24± 0.18 4.9382± 0.1184
InceptionResNet 65.16± 2.45 81.53± 1.99 99.78± 0.15 1.85± 0.40 4.5561± 0.1183
ResNet50 71.06± 1.14 85.22± 0.82 99.89± 0.02 1.41± 0.10 5.1242± 0.0634
ResNet50-Face 73.76± 1.43 86.86± 1.02 99.83± 0.03 1.74± 0.12 5.2400± 0.0837
DenseNet121 75.54± 1.36 88.53± 0.97 99.93± 0.02 1.11± 0.09 5.1730± 0.0497
MobileNetV2 77.98± 1.08 90.19± 0.79 99.93± 0.01 1.13± 0.07 5.2477± 0.0650

Multi-task 84.32 ± 0.71 94.55 ± 0.58 99.96 ± 0.01 0.81 ± 0.06 5.1978± 0.0340

Siamese − − 98.94± 0.22 4.86± 0.44 3.0005± 0.1871
Pairwise − − 99.44± 0.66 3.06± 1.84 6.4503 ± 1.2270

TABLE VII
BENCHMARK RESULTS IN THE OPEN-WORLD PROTOCOL FOR THE VERIFICATION TASK.

Model Validation Verification (1:1)

AUC (%) EER (%) Decidability

VGG16 Closed-World 97.38± 0.53 8.52± 0.92 2.9599± 0.1572
VGG16-Face Closed-World 97.70± 0.42 7.78± 0.75 3.0327± 0.1428
ResNet50 Closed-World 98.60± 0.28 5.98± 0.67 3.3702± 0.1413
ResNet50V2 Closed-World 98.73± 0.28 5.69± 0.64 3.4312± 0.1459
Xception Closed-World 98.93± 0.16 5.23± 0.42 3.3493± 0.0712
InceptionResNet Closed-World 99.10± 0.24 4.61± 0.65 3.4982± 0.1208
ResNet50-Face Closed-World 99.18± 0.16 4.38± 0.47 3.8319± 0.1239
DenseNet121 Closed-World 99.51± 0.12 3.39± 0.46 3.8646± 0.1215
MobileNet Closed-World 99.56± 0.08 3.17± 0.33 3.9868± 0.1067

Multi-task Closed-World 99.67 ± 0.08 2.81 ± 0.39 3.9263± 0.0921

Siamese Closed-World 97.27± 0.64 8.10± 1.01 2.6678± 0.2433
Pairwise Closed-World 98.62± 0.72 5.77± 1.57 4.4404 ± 0.5834

Siamese Open-World 96.85± 0.70 8.87± 1.14 2.6218± 0.1514
Pairwise Open-World 97.80± 2.03 7.11± 3.66 4.1977± 1.0663

TABLE VIII
RESULTS (%) FROM SEVERAL MULTI-TASK MODELS TRAINED TO PREDICT DIFFERENT TASKS.

Model Rank 1 Rank 5 Device Model Age Gender Eye Side

Multi-task (no model) 80.76± 0.94 91.96± 0.51 − 82.14± 0.83 97.72± 0.17 99.99 ± 0.01
Multi-task (no age) 81.93± 0.99 93.51± 0.69 87.20± 0.63 − 97.65± 0.20 99.99 ± 0.01
Multi-task (no gender) 82.48± 0.64 93.55± 0.52 86.71± 0.54 83.17± 0.54 − 99.99 ± 0.01
Multi-task (no side) 83.72± 0.61 94.07± 0.54 87.22± 0.79 83.75± 0.53 97.70± 0.20 −
Multi-task 84.32 ± 0.71 94.55 ± 0.58 87.42 ± 0.65 84.34 ± 0.71 97.80 ± 0.21 99.98± 0.02

mainly to the high intra-class variations.

VI. CONCLUSION

This article introduces a new periocular dataset that contains
images captured in unconstrained environments on different
sessions using several mobile device models. The main idea
was to create a dataset with real-world images regarding
lighting, noises, and attributes in the periocular region. To
the best of our knowledge, in the literature, this is the first
periocular dataset with more than 1,000 subject samples and
the largest one in the number of different sensors (196).

We presented an extensive benchmark with several CNN
models and architectures employed in recent works for ocular
recognition. These architectures consist of models for Multi-
class classification and Multi-task Learning, in addition to

Siamese and Pairwise Filters networks. We evaluated the meth-
ods in the closed-world and open-world protocols, as well as
for the identification and verification tasks. For both protocols
and tasks, the Multi-task model achieved the best results. Thus,
we conducted an ablation study on this model to understand
which tasks had the most significant influence on the results.
We stated that the mobile device model identification task was
the most important one, followed by age range, gender, and
eye side classification. The model trained using all these tasks
reported the best result for the identification and verification
in the closed- and open-world protocols.

In a complementary way, we performed a subjective analysis
of the best/worst false genuine and true impostors image pair-
wise comparisons using the Multi-task model, which achieved
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the best performance for the verification task. We observed
that lighting, occlusion, and image resolution were the most
critical factors that led the model to wrong verification.

We believe that the UFPR-Periocular dataset will be of great
relevance to assist in evolving ocular biometric systems using
images obtained by mobile devices in unconstrained scenarios.
This dataset is the most extensive in terms of the number of
subjects in the literature and has natural within-class variability
due to samples captured in different sessions.

The Multi-task network using the MobileNetV2 as baseline
model achieved the best benchmark results for the identifica-
tion and verification tasks, reaching a rank 1 of 84, 32% and
an EER of 0.81% in the closed-world protocol, and an EER
of 2.81% in the open-world protocol. Therefore, there is still
room for improvement in both identification and verification
tasks.
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