The Impact of Preprocessing on Deep Representations for Iris Recognition on Unconstrained Environments

Luiz Zanlorensi¹, Eduardo Luz², Rayson Laroca¹, Alceu Britto Jr.³, Luiz S. Oliveira¹ and David Menotti¹

> ¹VRI Group - Vision, Robotics and Image Federal University of Paraná
> ²Federal University of Ouro Preto
> ³Pontifical Catholic University

> > SIBGRAPI, 2018

(a)

Introduction Iris Recognition

2 Methodology

- Image Preprocessing
- Feature Extraction
- Dataset and Matching
- 3 Protocol, Results and Discussion

Introduction

Methodology Protocol, Results and Discussion Future Work and Unpublished results

Iris Recognition

Eye regions

Image from NICE.II dataset [Proença and Alexandre, 2012].

Iris Recognition

Iris recognition steps:

- Image acquisition;
- Preprocessing:

- Feature extraction;
- Matching;

Image Preprocessing Feature Extraction Dataset and Matching

Image Preprocessing

Segmentation: Winner of the NICE.I contest [Tan et al., 2010].

Normalization: Rubber sheet model [Daugman, 1993].

Image Preprocessing Feature Extraction Dataset and Matching

Image Preprocessing

Image Preprocessing Feature Extraction Dataset and Matching

Recognition System

Original Image

Preprocessing

Deep features extraction

Matching

Image Preprocessing Feature Extraction Dataset and Matching

CNN models

- VGG16: convolution, activation(ReLu), pooling and fully connected layers.
- ResNet-50: residual information.
- Architecture modification: fully-connected layer with 256 neurons.

Image Preprocessing Feature Extraction Dataset and Matching

イロト 不得下 イヨト イヨト

9/20

CNN models training

- Transfer learning from the face domain (VGGFace) with fine-tuning (do not freezing any weights).
- Data augmentation rotation.
- 30 epochs: 10 with lr = 0.001 and 20 with lr = 0.0005.
- SGD optimizer;
- Feature extractor training SoftMax (identification)

Image Preprocessing Feature Extraction Dataset and Matching

Data Augmentation

Image Preprocessing Feature Extraction Dataset and Matching

Dataset

• NICE.II official contest database and protocol:

- Training: 1000 images from 171 classes;
- Testing: 1000 images from 150 classes;

- 31

Protocol and Matching

- Verification protocol (open world):
 - All against All:
 - 4,634 intra-class pairs;
 - 494,866 inter-class pairs;
- Metrics:
 - EER (Equal Error Rate): FAR = FRR;
 - Decidability: how well separated are intra- and inter-classes;
- Cosine distance metric;

Experiments Analysis

- CNN models: VGG16 and ResNet50;
- Normalization: 8:1, 4:2 and Non-Norm;
- Data Augmentation;
- Segmentation;
- Delineation;
- 30 repetitions;
- t-test for statistical difference;

Data Augmentation

Network	Norm.	DA	EER (%)	Decidability
VGG16	8:1		26.19 ± 1.95	1.3140 ± 0.1246
VGG16	8:1	\checkmark	23.63 ± 1.33	1.4712 ± 0.0881
ResNet-50	8:1		24.38 ± 1.41	1.4297 ± 0.0916
ResNet-50	8:1	\checkmark	19.18 ± 0.75	1.7988 ± 0.0552
VGG16	4:2		24.77 ± 1.42	1.4127 ± 0.1001
VGG16	4:2	\checkmark	18.74 ± 0.89	1.8527 ± 0.0712
ResNet-50	4:2		22.78 ± 1.22	1.5307 ± 0.0853
ResNet-50	4:2	\checkmark	17.11 ± 0.53	1.9822 ± 0.0482
VGG16	Non-Norm		$\textbf{23.32} \pm \textbf{1.10}$	1.4891 ± 0.0740
VGG16	Non-Norm	\checkmark	$\textbf{17.49} \pm \textbf{0.90}$	1.9529 ± 0.0760
ResNet-50	Non-Norm		21.51 ± 0.97	1.6119 ± 0.0677
ResNet-50	Non-Norm	\checkmark	$\textbf{13.98} \pm \textbf{0.55}$	$\textbf{2.2480} \pm \textbf{0.0528}$

*white rows represent that there is statistical difference between: Models,

Segmentation for noise removal

Network	Norm.	Seg.	EER (%)	Decidability
VGG16	8:1	\checkmark	22.58 ± 1.07	1.5437 ± 0.0697
VGG16	8:1		$\textbf{23.63} \pm \textbf{1.33}$	1.4712 ± 0.0881
ResNet-50	8:1	\checkmark	$\textbf{20.68} \pm \textbf{1.39}$	1.6801 ± 0.1071
ResNet-50	8:1		19.18 ± 0.75	1.7988 ± 0.0552
VGG16	4:2	\checkmark	18.00 ± 0.93	1.9055 ± 0.0750
VGG16	4:2		18.74 ± 0.89	1.8527 ± 0.0712
ResNet-50	4:2	\checkmark	17.44 ± 0.85	1.9450 ± 0.0803
ResNet-50	4:2		17.11 ± 0.53	1.9822 ± 0.0482
VGG16	Non-Norm	\checkmark	$\textbf{17.48} \pm \textbf{0.68}$	1.9439 ± 0.0589
VGG16	Non-Norm		17.49 ± 0.90	1.9529 ± 0.0760
ResNet-50	Non-Norm	\checkmark	14.89 ± 0.78	2.1781 ± 0.0794
ResNet-50	Non-Norm		13.98 ± 0.55	2.2480 ± 0.0528

*painted rows represent that there is no statistical difference

315

・ロト ・四ト ・ヨト ・ヨト

Delineation

Delineated

Non-delineated (Bounding box)

Method	Delineated	EER (%)	Decidability
VGG16 VGG16	\checkmark	$\begin{array}{c} 17.49 \pm 0.90 \\ 17.52 \pm 0.98 \end{array}$	$\begin{array}{c} 1.9529 \pm 0.0760 \\ 1.9652 \pm 0.0790 \end{array}$
Resnet-50 Resnet-50	\checkmark	$\begin{array}{c} 13.98 \pm 0.55 \\ 14.26 \pm 0.47 \end{array}$	$\begin{array}{c} 2.2480 \pm 0.0528 \\ 2.2304 \pm 0.0542 \end{array}$

The state of the art comparison (Unpublished results)

Results on the NICE.II contest dataset.

Method	EER (%)	Decidability
Wang et al.[Wang et al., 2012]	19.00	1.8213
Silva et al.[Silva et al., 2018] (Best Model)	14.56	2.2200
Proposed ResNet-50	13.98	2.2480
Proposed ResNet-50 ensemble (5 models)	9.53	2.8132
Proposed ResNet-50 ensemble (10 models)	9.27	2.8538
Proposed ResNet-50 ensemble (20 models)	9.21	2.8643
Proposed ResNet-50 ensemble (30 models)	9.15	2.8725

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Conclusion

- Data Augmentation by rotation significantly improved the results;
- Non-normalized iris achieved a better result;
- ResNet-50 reported better result than VGG16;
- Delineated and Non-delineated images reported no statistical difference.

Future work - Other databases

Database	Spectrum	Classes/Images	Resolution
CASIA-Lamp	NIR	819/16212	$\begin{array}{c} 640 \times 480 \\ 640 \times 480 \end{array}$
CASIA-Thousand	NIR	2000/20000	
UbirisV2	VIS	522/11102	$\begin{array}{c} 400 \times 300 \\ 2322 \times 4128 \text{ to } 640 \times 480 \\ 3264 \times 2448 \text{ to } 640 \times 480 \\ 240 \times 160 \\ 300 \times 200 \end{array}$
MICHE DB	VIS(3 sensors)	184/3732	
CSIP	VIS(10 sensors)	100/2004	
VISOB	VIS(3 sensors)	1100/158136	
MobBio	VIS	210/1680	

Thank you!

e-mail: lazjunior@inf.ufpr.br

📄 Daugman, J. (1993).

High confidence visual recognition of persons by a test of statistical independence.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11):1148–1161.

- Luz, E., Moreira, G., Junior, L. A. Z., and Menotti, D. (2017). Deep periocular representation aiming video surveillance. *Pattern Recognition Letters*.
- - Proença, H. and Alexandre, L. A. (2012).

Toward covert iris biometric recognition: Experimental results from the NICE contests.

IEEE Transactions on Information Forensics and Security, 7(2):798–808.

Bibliography II

 Silva, P., Luz, E., Zanlorensi, L. A., Menotti, D., and Moreira, G. (2018).

Multimodal feature level fusion based on particle swarm optimization with deep transfer learning.

Research Gate.

Tan, T., He, Z., and Sun, Z. (2010).

Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition.

Image and Vision Computing, 28(2):223–230.

Wang, Q., Zhang, X., Li, M., Dong, X., Zhou, Q., and Yin, Y. (2012).

Adaboost and multi-orientation 2D Gabor-based noisy iris recognition.

Pattern Recognition Letters, 33(8):978-983.