Unconstrained Periocular Recognition: Using Generative Deep Learning Frameworks for Attribute Normalization

Luiz A. Zanlorensi^{1,2}, Hugo Proença^{2,3} and David Menotti¹

¹Federal University of Paraná, Curitiba, Brazil
 ²University of Beira Interior, Covilhã, Portugal
 ³IT: Instituto de Telecomunicações, Portugal

Presenter: Luiz A. Zanlorensi

ARS-01 – Image Video Biometric Analysis ICIP, 2020

(日) (四) (日) (日) (日)

• Periocular Recognition

- Unconstrained Environments
- Motivation
- 2 Methodology
 - Proposed Method
 - Databases
 - Att-GAN Training Process
 - Evaluation

3 Results

- Qualitative Results
- Quantitative Results
- Result Analysis

Final Considerations

• Discussion and Conclusions

Periocular Recognition Unconstrained Environments Motivation

Eye regions

11日、人口、人口、人口、人口、

Periocular Recognition Unconstrained Environments Motivation

Problem

- Ocular biometric systems under unconstrained environments:
 - Image: blur, motion blur, lighting, occlusion, specular reflection;
 - Subject: Eye gaze, off-angle, eyeglasses, contact lenses, makeup;
 - Feature extraction quality;
 - High intra-class variability:
- Samples:

Periocular Recognition **Unconstrained Environments** Motivation

Automatic Image Editing Frameworks - Deep Learning

PR

Adapted from [He et al., 2019].

Proposed Method Databases Att-GAN Training Process Evaluation

Proposed Method

Introduction Pro Methodology Dat Results Att Final Considerations Eva

Proposed Method Databases Att-GAN Training Process Evaluation

7/14

Databases

- UFPR-Eyeglasses (Eyeglasses):
 - 2270 images of both eyes (4540) from 83 subjects;
 - Images collected by the participant himself using a mobile app through 3 sections;
 - Iris bounding boxes manually annotated;
 - Images normalized regarding rotation and scale;
 - Variability factors: illumination, occlusion, distance, reflection, and eyeglasses;
- UBIPr (Eye gaze):
 - 10250 eye images from 344 subjects;
 - Variability factors: distance, scale, occlusion, pose, eye gaze, and eyeglasses;

Proposed Method Databases Att-GAN Training Process Evaluation

Attribute GAN training

• Training data:

- Eyeglasses: Entire UBIPr dataset;
- Eye gaze: First half of the subjects from the UBIPr dataset;
- The training only used information about Eyeglasses and Eye gaze;
- Simplified process for training and test:

Adapted from [He et al., 2019].

8/14

Introduction Proposed Method Methodology Databases Results Att-GAN Training Process Final Considerations Evaluation

Evaluation

- Protocol:
 - Verification Open-world: AUC and Decidability;
 - Pairwise with different attributes;
 - All against all comparison;
 - UFPR-Eyeglasses pairs: 3,072 genuine x 274,464 impostors;
 - UBIPr pairs: 22,012 genuine x 6,246,232 impostors;
- Benchmark:
 - Handcrafted features:
 - [Park et al., 2011]: LBP, HOG, SIFT;
 - [Ahmed et al., 2017]: MB-TLBP;
 - LBP, LPQ, HOG, SIFT;
 - Deep learning based-models:
 - [Luz et al., 2018]: VGG-16
 - [Zanlorensi et al., 2020]: ResNet-50
 - Matching: Cosine distance;

9/14

イロト イヨト イヨト イヨト

Qualitative Results Quantitative Results Result Analysis

UBIPr

Samples of the normalized images by the Att-GAN model

UFPR-Eyeglasses

10/14

Qualitative Results Quantitative Results Result Analysis

Quantitative Results

Benchmarks - Agnostic Evaluation

Method - Features	Att. Norm.	UFPR-Eyeglasses		UBIPr	
		AUC (%)	Decidability	AUC (%)	Decidability
Ahmed et al. [Ahmed et al., 2017]		73.0	0.77	84.9	1.16
	\checkmark	73.2	0.79	85.2	1.17
Park et al. [Park et al., 2011]		78.8	1.11	89.6	1.73
	\checkmark	85.2	1.43	87.8	1.62
LBP + LPQ +		75.9	0.92	90.2	1.71
HOG + SIFT	\checkmark	87.2	1.58	90.0	1.77
Luz et al. [Luz et al., 2018]		85.9	1.57	98.3	3.64
	\checkmark	89.0	1.81	98.1	3.50
Zanlorensi et al. [Zanlorensi et al., 2020]		92.2	2.09	99.2	4.00
	\checkmark	92.9	2.16	99.4	4.14

<ロト < 団 ト < 三 ト < 三 ト 三 三 の < ()</p>

Qualitative Results Quantitative Results Result Analysis

Pairwise mathcing score analysis

0

0.25

0.87

440

0.90

0.91

0.66

0:92 ▶ < □ ▶ < ≡ ▶ < ≡

Discussion and Conclusions

Discussion and Conclusions

- Attribute normalization scheme (preprocessing) to reduce the intra-class variability;
- Our proof-of-concept was conducted in two datasets and five different baseline;
- The results corroborated our hypothesis that the attribute normalization can reduce the intra-class variabilities, without compromising the discriminability between classes;

Discussion and Conclusions

Acknowledgments

- National Council for Scientific and Technological Development (CNPq);
- Coordination for the Improvement of Higher Education Personnel (CAPES);
- FCT/MEC and FEDER PT2020;
- We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

Thank you!

e-mail: lazjunior@inf.ufpr.br

14/14

Ahmed, N. U., Cvetkovic, S., Siddiqi, E. H., Nikiforov, A., and Nikiforov, I. (2017).

Combining iris and periocular biometric for matching visible spectrum eye images. *Pattern Recognition Letters*, 91:11–16.

- He, Z., Zuo, W., Kan, M., Shan, S., and Chen, X. (2019).
 Attgan: Facial attribute editing by only changing what you want. *IEEE Transactions on Image Processing*, 28(11):5464–5478.
- Luz, E., Moreira, G., Zanlorensi Junior, L. A., and Menotti, D. (2018). Deep periocular representation aiming video surveillance. *Pattern Recognition Letters*, 114:2–12.
- Park, U., Jillela, R. R., Ross, A., and Jain, A. K. (2011).
 Periocular biometrics in the visible spectrum.
 IEEE Transactions on Information Forensics and Security, 6(1):96–106.

 Zanlorensi, L. A., Laroca, R., Luz, E., Britto Jr., A. S., Oliveira, L. S., and Menotti, D. (2019).
 Ocular recognition databases and competitions: A survey. *arXiv preprint*, arXiv:1911.09646:1–20.

Zanlorensi, L. A., Lucio, D. R., Britto Jr., A. S., Proença, H., and Menotti, D. (2020).
 Deep representations for cross-spectral ocular biometrics.
 IET Biometrics, 9:68–77.