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A B S T R A C T

Dopamine has a major behavioral impact related to drug dependence, learning and memory functions, as well
as pathologies such as schizophrenia and Parkinson’s disease. Phasic release of dopamine can be measured in
vivo with fast-scan cyclic voltammetry. However, even for a specialist, manual analysis of experiment results is
a repetitive and time consuming task. This work aims to improve the automatic dopamine identification from
fast-scan cyclic voltammetry data using convolutional neural networks (CNN). The best performance obtained
in the experiments achieved an accuracy of 98.31% using a combined CNN approach. The end-to-end object
detection system using YOLOv3 achieved an accuracy of 97.66%. Also, a new public dopamine release dataset
was presented, and it is available at https://web.inf.ufpr.br/vri/databases/phasicdopaminerelease/.

1. Introduction

The research to understand the role of the neurotransmitter dopa-
mine (DA) in brain functions under normal and pathological states
is one of the most active areas of neuroscience. Dopamine is the
main modulator of the glutamate synapses in a brain system dedicated
to action-selection [1]. When something better than expected hap-
pens, a phasic (fast) increase in dopamine release causes a long-lasting
strengthening in the glutamatergic synapses, between neurons that
encode the context in which the action was taken, and neurons that ini-
tiated the action [2,3]. It increases the likelihood that the same action
will be selected in the same context. In addition, in the presence of the
same stimuli which were present when that action happened, it causes
a new phasic release of dopamine that acts to increase the activation
of those neurons that start the learned action [4]. Therefore, failures in
dopaminergic neurotransmission is implicated in movement disorders
(e.g. Parkinson’s disease [5]), psychiatric disorders (e.g. obsessive–
compulsive disorder and schizophrenia [6]), and reward/motivation
related disorders (e.g. drug addiction [4]).

Hence, to better understand the role of DA in these normal and ab-
normal functions, it is critical to have a method to quantify the synaptic
DA release, which is reliable in terms of specificity and presents a
good temporal resolution to capture an event that last less than a
second (synaptic release and reuptake of dopamine). To data, the
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technique used to measure phasic DA release/reuptake in vivo is the
fast-scan cyclic voltammetry (FSCV), a type of cyclic voltammetry
that uses a high scan rate to improve selectivity [7]. The FSCV is an
electrochemical method which consists of applying a fast triangular
ramp of electrical potentials to a carbon-fiber electrode implanted in
the brain. In the ascending phase of the ramp, dopamine oxidizes to
a quinone that is reduced back to DA in the descending phase of the
ramp. When dopamine oxidizes, it donates electrons to the electrode
and the electrode donates these electrons to reduce the DA quinone
back into DA. Each ramp lasts less than 10 ms and it is usually repeated
10 times per second. In addition to dopamine, several other molecules
that are present in the brain tissue around the electrode are oxidized
and reduced. However, their concentration does not vary as fast as the
concentration of dopamine varies when it is released and reuptaken.
Therefore, the currents generated by oxi-reduction of other molecules
can be cleaned when the currents recorded at each cycle are subtracted
from those recorded in 2 s cycle before. The shape of the oxi-reduction
voltammogram (the potential vs. current plot) is characteristic of DA.

FSCV data are stored in a numerical matrix, which can be processed
into images represented by the applied potential on the 𝑦-axis and
the cycle (time) on the 𝑥-axis, and the current is represented by the
pixel intensity [8]. Fig. 1 shows an image generated from FSCV data,
in which there is DA release highlighted between vertical red lines.
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Fig. 1. Example of image generated from FSCV data using a standard color
scheme [10], in which a dopamine release is highlighted between vertical red lines.

This color plot image is a visual representation using a standard false
color palette used by FSCV analysis softwares [9]. This color scheme is
nonlinear and designed to enhance transitions. It also avoids the use of
colors that are not apparent to a red-green colorblind person [10].

Fast-scan cyclic voltammetry is more adequate than other tech-
niques to measure phasic dopamine release. However, the high tem-
poral resolution of this method generates a lot of data to be analyzed.
Moreover, noise signals present in the recordings make the identifica-
tion of DA releases a difficult task [9]. Even for a specialist, manual
analysis of experiment results is a repetitive activity and requires a lot
of time.

FSCV is not only used to analyze dopamine. In addition to dopa-
mine, fast-scan cyclic voltammetry is also used to detect in vivo and
ex vivo changes in extracellular concentration of other neuronstrasmit-
ters, such as serotonin [11–13], noradrenaline [11,14,15] and acetyl-
choline [16]. Besides the neuroscience field, cyclic voltammetry is
used in industrial research to study the behavior of doped materi-
als with specific semiconductor and electrochemical properties [17],
as well as in the synthesis and characterization of inorganic metal–
polymer compounds [18]. Furthermore, Park et al. [19] examined
zirconium electrochemical redox behaviors based on cyclic voltamme-
try results. Masek et al. [20] investigated, using cyclic and differential
pulse voltammetry, the process and the kinetics of the electrochemical
oxidation of morin in an anhydrous electrolyte. And Borman et al.
[21] presented an algorithm for transient adenosine detection, but the
method does not use visual image information. An analysis of current
data is performed at specific adenosine oxidation voltages, and thus the
peak moments at these points are verified.

Important studies have been carried out in the area of pattern
recognition, which addresses the classification problems according to
certain classes, or categories, predicted in a domain of a problem [22].
In pattern recognition the classification task can be understood as the
assignment of a class to a feature vector, extracted from a sample to
be classified. In supervised learning problems there is a predefined
number of classes, in which the input and the desired output data are
provided. An optimal scenario will allow the correct classification for
unseen instances. However, the available attributes to characterize the
samples do not always differentiate each class.

The classical approach to the development of pattern recognition
systems foresees three well-defined steps: preprocessing, feature ex-
traction and classification [22]. And these types of recognition sys-
tems have been successfully employed in the tasks of automatic class
recognition in the most diverse application domains [23].

Despite the importance of dopamine, there is a gap in the literature
on automatic identification of DA release. To the best of our knowl-
edge, Matsushita et al. [9] introduced the first and only public dataset

of FSCV images. However, it was limited to few images generated
from 9 different experimental recordings, with a total of 295 phasic
dopamine release. From these images, a classification system was cre-
ated using extracted patches from regions containing DA release or not.
The approach uses texture descriptors to perform feature extraction,
and support vector machines (SVM) as a classifier. SVM is a widely
used classifier which presents competitive results in various application
domains [24]. The best f-measure obtained in Matsushita et al. [9] was
77.23%. The presented approach has a larger number of non-release
regions, and consequently results in several false positives.

Therefore, in this paper the authors propose to fill a gap in the lit-
erature regarding the development of new classification systems using
convolutional neural networks (CNN) and object detection techniques.
The proposed methodology uses combined approaches of entire images
and extracted patches, avoiding the previous problem of unbalanced
sample numbers between different classes. The best obtained result was
an accuracy of 98.31%. We also introduce a new and larger public
dataset with 1005 evoked dopamine release images and 1005 images
without dopamine release, which is available for research purposes
upon request.

2. Dataset

Fast-scan cyclic voltammograms color plot images were obtained
from the Laboratory of Central Nervous System of the Federal Uni-
versity of Parana (UFPR) at Curitiba, Brazil and from D. Robinson’s
Laboratory of the University of North Carolina (UNC) at Chapel Hill,
United States of America. The two laboratories used different animals
and FSCV setups. The UFPR laboratory used 29 male Swiss mice and
the UNC laboratory used 6 male Sprague Dawley rats.

Each animal was anesthetized with 1.5–1.8 mg/kg urethane (i.p.)
and mounted in a stereotaxic frame. A scalpel was used to make
a midline incision exposing the skull bone surface, and a stainless
steel burr was used to drill two circular opening above the nucleus
accumbens (NAc) and ventral tegmental area (VTA), respectively. The
openings were centered in the following stereotaxic coordinates: (i)
Mice: NAc, AP +1.2 mm, ML +1.2 mm; VTA, AP -3.8 mm; ML +0.2 mm.
(ii) Rats: NAc, AP +1.2, ML −1.2; VTA, AP −3.8, ML −0.2. Another hole
was opened above the contralateral frontal cortex to insert an Ag/AgCl-
reference electrode just below the dura mater. A recording carbon fiber
electrode was inserted in the NAc and an stainless steel electrode was
inserted into the VTA.

Dopamine release was evoked by electrical stimulation of the ven-
tral tegmental area (20 pulses, 0.5 ms per pulse). FSCV measurements
at UFPR were taken with a Wireless Instantaneous Neurotransmitter
Concentration Sensor system (WINCS, Mayo Clinic, Rochester, MN,
USA) and processed using WINCSware with MINCS software (version
2.10.4, Mayo Clinic, Rochester, MN, USA). Every 100 ms, a triangular
wave form potential of −0.4 V to +1.0 V to −0.4 V was applied at
a rate of 300 V/s to the carbon-fiber recording electrode versus the
Ag/AgCl-reference electrode. Oxidative and reductive currents were
continuously sampled at 100,000 samples/s and 944 samples/scan.
FSCV measurements at UNC were taken with a customized setup con-
trolled by a computer using Lab VIEW instrumentation software (Na-
tional Instruments, Austin, TX, USA) and the potential applied to the
carbon-fiber was of −0.4 V to +1.3 V at a rate of 400 V/s.

The images were generated from 30 different experimental record-
ings with a total of 1005 electrically evoked dopamine release. Each
recording has dopamine release evoked with different magnitudes of
electrical stimulation, resulting in different patterns of form and inten-
sity. All experiments were performed in accordance with the NIH Guide
for the Care and Use of Laboratory Animals with procedures approved
by the Institutional Animal Care and Use Committee of the University
of North Carolina, and the Institutional Ethics Committee for Animal
Experimentation of the Federal University of Parana (Protocol 638).
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Fig. 2. Images generated using different background positions. In A, the background position was selected from the beginning of the image; In B, the background position was
selected from the middle of the image; In C, the background position was selected from the end of the image.

Fig. 3. An overview of the image patches approach [9], in which manually extracted patches features are used as training set for the classification and the automatically extracted
ones are used as testing set.

This new dataset version is composed of images generated from all
these experimental recordings, which include those in Matsushita et al.
[9] Dataset. Unlike the first version, the new one has not only color
plots of phasic dopamine release episodes, but also longer recordings
that include periods with no DA release. In total there are 2010 images,
1005 of each of these classes, with resolution of 875 × 656 pixels
representing a 20 s recording. During the generation of these FSCV
images, a background subtraction is commonly used before applying
a fake color palette. Normally for each image, one column or more
columns are selected to subtract the values from the others. In the case
of the first version of the dataset [9], this process was done manually
during its generation. In this new one, since we must consider that
we do not know where the dopamine release is present, the process
is done automatically choosing 3 different background positions: the
Background A was selected from a column at the beginning of each
image (0.5 s), the Background B from the middle of each image (10 s),
and the Background C from the end of each image (19.5 s).

These images with different background end up generating different
results, as it is possible to be observed in Fig. 2. Thus, it is possible
to explore different approaches of training and testing, since for each
DA release 3 images were generated. Each image containing DA was
manually labeled with the approximated information of each release
interval and peak. As in Matsushita et al. [9], all images were randomly
divided into 3 folds with same amount of samples from each of the
two classes: (1) phasic DA release images and (2) non-release images.
A new enhanced division was also performed, in which the images were
grouped into 10 folds with class balance, and images with DA release
from the same experiment were placed in the same fold. This ensures
that all dopamine releases from the same animal are not present in both
training set and testing set.

It was possible to notice the common dopamine release region [9]
between the pixel 320 and 520 of the 𝑦-axis. The common area was
used to delimit the suitable region to extract patches. Patches with
size of 200 × 200 pixels were manually extracted using the labeled
information. For each DA release patch created, one from a non-
release region was also extracted creating a balanced training dataset.
Following the testing dataset approach presented in Matsushita et al.
[9], patches were extracted automatically by applying a sliding window
over the original images and moving horizontally every 135 pixel inside
the common area, in which the patches were separated into two classes
using the approximated release interval information.

3. Proposed approach

Due to the limitations of the first public dataset, Matsushita et al. [9]
presented an approach wherein patches were extracted from regions
where there was dopamine release (Class 1) and from regions with no
release (Class 2). Fig. 3 illustrates this previous approach, which used
only image patches. Briefly, hand-crafted features were extracted from
labeled patches applying texture descriptors, then manually extracted
patches features were used as training set for the classification, while
the automatically extracted ones were used as testing set. The new
dataset presented is not only larger than the existing one, but also
provided the exploration of new approaches. Our proposed approach
follows the methodology of representation and classification presented
in Matsushita et al. [9], however it also uses original samples.

Fig. 4 shows an overview of this approach, which contains two main
steps: the original images approach and the image patches approach.
In the first main step, features are extracted from the original images
and then classified. In addition to the original samples, two zoning
variations were tested (Fig. 5): the first one uses only the common
region of phasic dopamine release, and the second one also adds a
region of the top of the original sample (between the pixel 0 and 90
of the y-axis), which in some releases has visual information that could
be important for extracting features.

In the second main step, once it was decided if an input contains a
DA release or not, patches were extracted from those images classified
as DA Release (Class 1). As it is assumed that each image contains
only one release of dopamine, the classification of these patches allows
a more precise decision of its location. If all patches from a single
image are classified as Class 2 (non-release), the image from which
they were extracted and reclassified to the other class. Otherwise, it
means that at least one patch has been identified as containing the DA
release and, if correct, the image itself was considered as a hit. With this
metric it was possible to calculate hits and errors per image, keeping
the dataset analysis more balanced and providing results of possible
dopamine release images as well as more precise regions within them.

3.1. Feature extraction

The representation or feature extraction stage is quite important
in the development of pattern recognition systems. Although the main
objective of this work is the use of convolutional neural networks, the
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Fig. 4. An overview of the combined approach, which the first main step performs
the classification of the original images, and from this decision the extraction and
classification of the patches are carried out.

initial tests were performed using hand-crafted texture features, which
has been successfully used in several application domains: medical
diagnosis [25], face recognition [26], musical genre recognition [27],
handwriting identification [28] and classification of bird species [24].
Texture corresponds to a visual pattern which is usually related to the
pixel distribution in a region and properties of the image object such
as color, brightness, and size. Thus, this attribute contains significant
information about the content of the image.

The descriptors chosen to be used were the Local Binary Pattern
(LBP) [29] and the Local Phase Quantization (LPQ) [30], which were
the same used in Matsushita et al. [9], allowing also the comparison
of the results obtained in the two datasets. The texture feature ex-
traction was performed using grayscale input images, that there is no
lost information and it does not compromise the performance of the
classifier. LBP operates on an image pixel and its adjacent ones to find
a histogram of local binary patterns. To be able to operate textures of
different scales, it can create patterns considering different pre-defined
quantities of neighbors for its operation. Such variations are identified
by LBP𝑃 ,𝑅 in which P is the number of neighboring pixels existing in a
region of radius R around the central pixel. A LBP8,2 was applied using
the so-called uniform patterns, which results in a feature vector with
59 values. A LBP variant was also tested, and its known as Robust
Local Binary Pattern (RLBP) [31]. LPQ is based on the blur invari-
ance property and uses the local phase information extracted using
the 2D Discrete Fourier Transform (DFT) calculated in a rectangular
neighborhood, which is a local window for each pixel of the image.
The best LPQ results were obtained using a window size of 3, which
generates a vector with 256 values. For some experiments, different
texture operators were combined using Early Fusion technique, that is
the concatenation of the LPQ vector with a LBP/RLBP one, generating
a larger single vector.

3.2. Classification

The classification with hand-crafted features was performed using
Support Vector Machine (SVM). This classifier introduced by Vap-
nik [32] has been widely used with success. As well as the chosen
texture descriptors, SVM has presented competitive results compared
to other classifier methods in the most diverse applications [24,27,
28,33,34], besides having been previously used for dopamine release
identification [9].

Support vector machine is a set of supervised learning techniques
able to analyze data, recognize patterns and classify them. The standard
SVM is defined as a non-probabilistic binary linear classifier, that inputs
a set of data, and is able to predict for each input which of the possible
classes it is part of. Initially, with a training algorithm and set of
examples already defined to which category each belongs, the SVM
constructs a model that assigns the new examples to one category or
another. The SVM experiments were carried out using a RBF kernel,
and gamma and cost parameters were optimized by using grid-search
to attain better results. A cross-validation was used, in which when one
fold was used as testing set, the other two were used as training.

For each sample, SVM outputs present an estimate of probability
for each class in the classification system, thus it is possible to perform
a combination of classifiers. In Kittler et al. [35], some merging rules
to combine the predictions of different classifiers were proposed. The
best results were obtained when the Sum Rule was used: it sums all the
predictions values of each class in all classifiers, and chooses the class
with the highest final value.

3.3. Convolutional neural networks

The performance of a classifier system is heavily dependent on the
choice of data representation or features used. The inability to extract
and organize discriminative information from the data impacts the
results that can be obtained [36]. Automatic learning representation
can make it easier to extract important information to build a clas-
sification system. Among the ways of learning representations, there
are the deep learning methods, like convolutional neural networks
(CNN). Convolutional neural networks have been applied successfully
in different problems such as breast cancer classification [37], diagnosis
of seizures [38], forest species identification [39], and it was used by
replacing the two previous steps: feature extraction and classification.
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Fig. 5. Examples of the original image and two zoning variations: A common DA release region (I); and a concatenated zones (I and II).

CNN is a variation of multi-layer perceptrons network and consists
of layers with different functions. Initially, it is common to apply
the data to input layers known as convolutional layers [40]. These
layers are composed of neurons, and each neuron is responsible for
applying a trainable filter to a specific image area. Basically a neuron
is being connected to a set of pixels of the previous layer and for
each connection a weight is applied. The respective weights of its
connections produce an output passed to the next layer. The weights
assigned to the connections of a neuron can be interpreted as a matrix
representing the filter of a convolution of images in the spatial domain
(kernel). The weights are shared across neurons from a same layer,
leading the filters to learn patterns which occur in any part of the
image.

In the CNN convolutional layers, it is not necessary to specify which
filters or features to be used. It defines only the architecture of the
filters: sizes, stride and quantity per layer. The learning process of
the network changes the weights throughout the training, searching
automatically for the best values for the input dataset. A very important
layer commonly used after the convolutions is the pooling layer. The
function of this layer is to reduce the dimensionality of the data in
the network. This reduction is important for training faster, but also
to create spatial invariance. The pooling layer only reduces the height
and width of a map. When it is desired to perform a classification, it
is appended after the set of the convolutional and pooling layers at
least one fully-connected layer. This fully-connected layer is responsible
for tracing a decision path to each class based on results of the filters
from previous layers. After the fully-connected layers the last step is
the classification function.

The use of neural networks requires lot of training samples for good
performance. Although this second version dataset has already a signif-
icantly larger number of images than the first one, a data augmentation
technique has been applied for some tests. The technique consisted
of adding up to three random variation in training images including:
rotation, translation, brightness, blur, saturation, and sharpening. Fig. 6
shows examples after the data augmentation, in which an original
training sample generates 14 new samples increasing the training set.

The main convolutional neural network model used in this work
was proposed by Roecker et al. [41]. It was designed with principles
to simplify the model and use low-resolution images, useful to de-
velopment of systems with limited resources. Table 1 describes the
model architecture. It receives as input an RGB image, in which the
input passed through a stack of convolutional layers with variable

Table 1
Roecker et al. [41] CNN architecture model.

# Layer Parameters Stride (𝑥, 𝑦)

1 Convolutional 3 × 3 × 32 (1, 1)
2 Convolutional 3 × 3 × 32 (1, 1)
3 Pooling 2 × 2 (2, 2)

4 Convolutional 3 × 3 × 64 (1, 1)
5 Convolutional 3 × 3 × 64 (1, 1)
6 Pooling 2 × 2 (2, 2)

7 Fully-connected 512 –
8 Fully-connected 512 –
9 Fully-connected 2 –

10 Softmax 2 –

number of filters 3 × 3. The convolution output was set up with a leaky
rectifier activation function (LReLU). Then, a spacial pooling performed
a maximum-value subsampling with a 2 × 2 window and a stride of 2.
Fully-connected layers have structure similar to multilayer perceptron
(MLP) receiving the previously stages results as input [41]. The only
existing difference of the model used in this work for the one presented
by [41], is the last layer which does the classification and has 2 units,
since in this case we have a binary problem, which did not happen in
that work. In this output, a softmax (normalized exponential function)
was applied to result into probabilities. The best results were using a
learning rate of 0.0001 and the batch size was 50. These tests were
run for 100 epochs. In addition to the default dropout parameters in
this model, we took care to make sure no overfitting occurs during
training. For all CNN models tested, not only the accuracy/error rate
of the testing set was analyzed, but also in the training set throughout
the epochs. Thus, the values for the epoch/iteration parameters were
chosen before any overfitting situation occurred.

Some experiments were also carried out using the Inception v3
network, which is a deep convolutional neural network architecture
with a design that allows increasing the depth and also the width of
the network, while keep the computational cost constant [42]. Images
from the same class may have huge variations in the location and size
of the information. Choosing the best kernel size for the convolution is
not so easy. So the Inception uses multiple size filters operating on the
same level.

This network model consisted of inception modules stacked upon
each other, with occasional max-pooling layers to reduce the resolution
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Fig. 6. Examples of Data Augmentation, in which a patch image generates 14 new samples, adding up to three random variations such as rotation, translation, brightness, blur,
saturation, sharpening.

of the grid. The use of this dimension reduced inception module, a
neural network known as GoogLeNet (Inception v1) was built. Through
Inception v2 and v3, several improvements were applied in the network
model [43], such as smart factorization methods. A filter 𝑛 × 𝑛 can be
factored into a combination of 1 × 𝑛 and 𝑛 × 1 convolutions to improve
computational speed.

For our experiments, RGB input images were resized to 299 × 299 ×
3 which is the default value of the Inception v3 model used. For these
tests, the transfer learning technique was applied, using the pre-trained
parameters on ImageNet dataset [44]. The only altered layer of the
original network was the end of the fully-connected layers, so that it
had the output for our two classes. In transfer learning, we reused these
transferred weights for the feature extraction layers, which is the most
complex part of the model. The parameters learned are transferred to
the target task, except for the last layer. The classification part (fully-
connected layers) was re-trained using our dataset as input. The best
results were obtained using a learning rate of 0.01 and the batch size
was 100. These tests were run for 15,000 iterations.

3.3.1. Object detection
Finally, some experiments were performed using a YOLOv3 end-

to-end system. This approach is based on object detection, which has
also been used successfully in different applications [33,45,46]. YOLO
is an accurate and fast approach for object detection [47], in which
a single neural network evaluation predicts bounding boxes and class
probabilities directly from full images. You Only Look Once (YOLO) at
a sample to predict the classes and their locations [48].

The YOLO model initially divides the input sample into an 𝑆 × 𝑆
grid. Each grid cell predicts a fixed number bounding boxes. If the
center of an object falls into the cell, it is responsible for predicting
that object. Each cell predicts 𝐵 bounding boxes and each box has a
confidence score. This score shows how confident the YOLO is that
there is an object in the box and how accurate it is [48]. The confidence
score should be zero if there is no object in that grid cell. Each bounding
box also consists of: (𝑥, 𝑦, 𝑤, ℎ). The box width 𝑤 and height ℎ are
normalized, 𝑥 and 𝑦 are offsets to the corresponding cell. 𝑥, 𝑦, 𝑤,
ℎ are between 0 and 1. Each cell also predicts 𝐶 conditional class
probabilities. And it is the probability that the detected object belongs

to a specific class. All of these predictions are encoded as an (𝑆, 𝑆,
𝐵×5+𝐶) tensor.

YOLOv1 predicted the bounding boxes using fully-connected layers,
which were removed since its second version and know uses anchor
boxes. So instead of directly predicting a bounding box, YOLOv2 and
v3 predict offsets from a predetermined set of predetermined boxes.
The YOLOv3 network for performing feature extraction uses successive
3 × 3 and 1 convolutional layers [49]. The model is significantly larger
than other versions (v1, v2, fast and tiny) with 53 convolutional layers.

In this way, it was possible to use original images as input and
provide an accurate result of the location of the dopamine release
in the sample, without the necessity of the two different CNN steps
with patches extraction. YOLO identifies the Class 1 (phasic dopamine
release) in the input samples. And, unlike all other approaches, there
will be only one class to be identified. When it is not detected, then it
is assumed that there is no release of dopamine (Class 2).

The DA release labels were converted to the YOLO pattern of bound-
ing boxes. Some training sessions were carried out with only files of
the DA images, and others with all the images. The evaluation metrics
are similar to the previous one. If a dopamine release is identified in
the correct location, compared with the original labels, it is already
considered a hit. If there is any identification in an image of Class 2, it
will be considered a miss classification.

Two models were used: Yolo and Tiny Yolo with weights pre-trained
on ImageNet, both in version 3. From its default settings, only the
input resolution size and the output classes has been changed. Different
tests were performed, some using the default input size of 416 × 416
and others using its variable of random resize. Since the version 2
model, the convolutional and pooling layers can be resized on the fly, it
means that instead of using only one input size, for each 10 iterations,
the network size will be randomly resized (input and output) to size
between 320 × 320 and 608 × 608. The best results were obtained using
a learning rate of 0.001 and the batch size was 64 and 8 subdivision.
These tests were run for 25,000 iterations.

4. Results

In Matsushita et al. [9], the experiments were accomplished using
their first version of DA release dataset, and they were performed
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Table 2
Best results obtained in Matsushita et al. [9] using the automatically extracted patches
approach.

Patch size Descriptor F-Measure(%)

120 × 120 LPQ9 77.23±1.20
120 × 120 LBP8,2 62.32 ± 0.43
120 × 120 RLBP8,2 69.85 ± 0.40

only following the image patches approach with texture descriptors.
The training set used was composed of 120 × 120 manually extracted
patches from the original samples and 120 × 120 automatically ex-
tracted patches as testing set. An automatic extraction generates dif-
ferent numbers of samples between the two classes, in which there
are more patches without the DA release, and consequently, f-measures
were used to evaluate these specific tests.

Table 2 summarizes the best [9] results obtained using features
extracted with LPQ (window size 9), LBP8,2 and RLBP8,2 descriptors,
and SVM as classifier. As each type of test was performed three times,
one for each fold, the mean results are presented with the respective
standard deviation. The LPQ performance was superior to the other
descriptors, and the best obtained f-measure was 77.23% ± 1.20. The
authors also tried to use combinations of feature vectors (early fusion)
or predictions (late fusion), but they did not improve the final result.

The second and more complete version of the dataset, introduced
here, allows us to better explore new approaches. As in the previous
experiments [9], the initial tests were made exploring texture descrip-
tors and their best parameters. However, the samples used to compose
the training and the testing set were only the original images, without
patches extraction.

4.1. Texture descriptors

There are three different training sets, each generated with different
backgrounds as presented. Table 3 shows the results obtained by train-
ing and testing full images with a specific background and different
texture descriptors: LBP8,2, RLBP8,2 and LPQ (window size 3), and SVM
as classifier. All of these initial tests were performed using 3 folds
division. However, for each dataset, tests were also performed with
their two zoning variations: the first containing only the common DA
release region and the second containing two regions of the image
concatenated. It was possible to notice that of all the varied images,
the best results were always using the background positions A and C.
And the best result in these preliminary tests was using the common
DA release region, the background position C dataset and LPQ as
descriptor, with an accuracy of 75.72% ± 0.60.

In addition to the experiments performed separately, tests were also
done combining the training sets of different background positions.
Thus, the respective folds of positions A, B and C were grouped, keeping
the same original images together. But the best result was 73.88%±1.17
(testing set using background C, descriptor LPQ and SVM classifier) and
it was not better than the previously one (75.72%) besides having a
higher cost for the training.

In addition to the support vector machines some other classifiers
were tested. However, they did not obtain better results. Random
Forests and Gradient Boosting classifiers obtained accuracy of 72.28%±
1.24 and 72.19%±0.25 respectively, both using the common DA release
region, background position C dataset and LPQ as descriptor.

Using the best results with background positions A and C, late fusion
tests were also performed using the sum rule. The combination of SVM
score obtained through LPQ features resulted in 79.15%±0.67 accuracy,
and it was the best result obtained with texture descriptors and these
samples. To finalize the investigations with texture descriptors, the
same tests using automatically extracted patches approach [9] were
performed. The best automatically extracted patches f-measure was of
74.78% ± 0.93, slightly inferior to the 77.23% in the literature. And as
in Matsushita et al. [9], early and late fusions did not improve results.

Table 3
Results obtained with texture descriptors.

Background position Descriptor Accuracy(%)

Background A LBP8,2 73.77±0.31
Background A RLBP8,2 73.28 ± 0.64
Background A LPQ3 73.44 ± 0.78

Background B LBP8,2 69.20 ± 0.58
Background B RLBP8,2 69.10 ± 1.89
Background B LPQ3 72.04±2.72

Background C LBP8,2 70.15 ± 1.52
Background C RLBP8,2 70.70 ± 1.85
Background C LPQ3 73.93±0.31
Background C LPQ5 73.13 ± 1.29

4.2. Convolutional neural networks

Our new dataset brought greater complexity, and many images
without dopamine release. In these images, there are the most diverse
variations and noises. Despite the greater challenge, it was possible
to explore new approaches such as the use of Convolutional Neural
Networks. The first 3 folds experiments were made using the Inception
v3 and the model presented in Roecker et al. [41]. As shown in the
previous section, the Inception tests were performed using RGB input
images (resized to 299 × 299 × 3) and pre-trained weights on ImageNet.
These experiments were run for 15,000 iterations, using learning rate
of 0.01 and the batch size of 100. The best accuracy was 95.72%± 0.51
using data augmentation in the original images training set, which was
already much better than all results obtained with texture descriptors.

Unlike the Inception tests, no pre-trained parameters were used for
the Roecker et al. [41] model. Each of the training sets were performed
for 100 epochs and initially only images generated using the back-
ground position A were used. Initial tests without data augmentation
served to test different input sizes. From them, only the best parameters
were used for the tests with the other training sets and using data
augmentation (Table 4). An accuracy of 97.31% ± 0.64 was the best
result obtained, using a training set of zoned images in the common
DA release region and generated by background B. In spite of the
excellent result obtained, when we analyzed the predictions, it was
possible to observe that both false positives and false negatives had
very high values. Perhaps for this reason, no predictions fusion tests
showed improvements, no longer being an interesting approach to use.

Tests using automatically extracted patches approach and this model
with data augmentation also got competitive results. The best result had
an f-measure of 95.64% ± 1.04 using the background C and patch size
200 × 200. However, for 1005 DA release, there are more than 9000
patches without release, generating hundreds of false positives.

The alternative to this problem was to extract the patches directly
from the images classified as positive of the best experiment from
Table 4, and then classify these patches. Following the methodology
presented in the previous chapter, this approach allowed even a re-
vision of the false positives: Considering the 41 FP occurrences there
were only 17 now, and the final accuracy of the complete process was
98.36%±2.39. This classifier was very versatile in identifying phasic
dopamine release in different situations, even in small amounts or in
the middle of noises.

All experiments have been performed using a random 3-fold division
with class balance proposed by Matsushita et al. [9]. However, some DA
release images from the same animal may be present in both the testing
set and the training set. Thus, experiments were also performed with
an enhanced 10-fold division, in which all dopamine release samples
from the same experimental recording were placed in the same fold.
This not only increases the complexity of the problem, but also the
computational cost of performing 10 training models with more images
each. Thus, the best parameters previously obtained were replicated for
this new dataset organization. The 10-fold complete approach using
the Roecker et al. [41] model, training set of zoned images in the
common DA release region and generated by background B, resulted
in a final accuracy of 97.35%±5.84.
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Table 4
Results obtained with Data Augmentation using the Roecker et al. [41] CNN model.

Background position Zoning type Accuracy(%)

Background A Original Samples (175 × 131) 96.47 ± 0.61
Background A DA Release Region (175 × 40) 96.47 ± 0.67
Background A Concatenated Zones (175 × 58) 96.22 ± 1.42

Background B Original Samples (175 × 131) 96.72 ± 0.12
Background B DA Release Region (175 × 40) 97.31±0.64
Background B Concatenated Zones (175 × 58) 96.62 ± 0.55

Background C Original Samples (175 × 131) 94.78 ± 1.06
Background C DA Release Region (175 × 40) 96.22 ± 0.14
Background C Concatenated Zones (175 × 58) 95.77 ± 0.78

4.2.1. YOLO
Despite excellent results already obtained, the previous approach

requires two different steps of training and classification with neural
networks. Using YOLO, it was possible to directly identify the original
image without the need to extract patches. The best 3-fold accuracy
obtained using the Tiny model and RGB inputs with size of 416 × 416
was 96.82% ± 1.13. The training set was composed only of phasic
dopamine release samples, and background position A. These same
parameters were replicated to the complete YOLOv3 model, which is
larger and has a higher computational cost. However, the accuracy did
not improve, being 96.57% ± 0.68. The last two tests performed were
accomplished again using the best parameters and using the random
resize. New anchors were calculated using kmeans in the new dataset
to result in the same default number of the model: 6. The result was
97.56%±0.49, but the best accuracy was 97.66%±0.67 using the default
anchors. This best model was also used for a 10-fold test and resulted
in an accuracy of 96.62%±5.94.

YOLO only identifies the phasic dopamine release class, but it is
possible to analyze true and false positives predictions. As in the results
of the other model, false positives also have a high value. These high
values present in CNN also made it impossible to apply a good threshold
for rejection, which may improve the final decision. Like the other
classifier, YOLO also makes correct DA identification in the most varied
situations.

5. Conclusion

In this paper, we aimed to fill a gap in the literature by mitigating
new approaches and parameters to identify phasic dopamine release in
fast-scan cyclic voltammetry images. The methodology proposed using
neural networks presented results with higher accuracy than those
previously reported. But for that, it was necessary to create a larger
dataset and it is now publicly available to the scientific community.

The new presented dataset not only allowed to explore/investigate
new approaches but also a way to circumvent the problem of the
unbalanced classes. The tests in this dataset, which contains greater
diversity in phasic dopamine releases and also complete images without
any release, resulted in similar values using texture descriptors and
automatically extracted patches. The f-measure with automatically ex-
tracted patches was 74.78% using LBP. And the accuracy with entire
images approach using Late Fusion of different background positions
predictions was 79.15%. But by far the best results were achieved using
Convolutional Neural Networks.

The model presented in Roecker et al. [41] was used to perform 3-
fold classification of entire images with an accuracy of up to 97.31%. By
itself, this result is already very good by classifying DA release within
20 s of an experimental recording. But using a combined approach,
extracting patches from images classified as Class 1, it was also possible
to provide a more accurate result within each of the images with
an accuracy of 98.31%. The best accuracy obtained for the enhanced
10-fold dataset was 97.35%.

The combined approach provides an excellent result, but YOLO
tests resulted in an accuracy of 97.66% using 3-fold random division,

and 96.62% using 10-fold division by animals. Even though this value
is somewhat lower, the YOLO allows the identification of phasic DA
release directly from the original samples, without the need for two
different training and classification steps. This method also results in
identifications in varied positions and sizes, being more versatile and
accurate than patches, which are always restricted to a defined size.
Thus, in a problem of identifying a substance that varies many patterns,
YOLO also becomes an excellent choice for an automatic classification.
Although there were visual variations in the images, there was no
definitive background position that was always better than the others.
It was possible to achieve great results in all of them.
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