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Abstract
Ensemble of classifiers can improve classification accu-
racy by combining several models. The fusion method
plays an important role in the ensemble performance.
Usually, a criterion for weighting the decision of each
ensemble member is adopted. Frequently, this can be
done using some heuristic based on accuracy or con-
fidence. Then, the used fusion rule must consider
the established criterion for providing a most reliable
ensemble output through a kind of competition among
the ensemble members. This article presents a new
ensemble fusion method, named centrality score-based
fusion, which uses the centrality concept in the con-
text of social network analysis (SNA) as a criterion for
the ensemble decision. Centrality measures have been
applied in the SNA to measure the importance of each
person inside of a social network, taking into account
the relationship of each person with all others. Thus,
the idea is to derive the classifier weight considering the
overall classifier prominence inside the ensemble net-
work, which reflects the relationships among pairs of
classifiers. We hypothesized that the prominent posi-
tion of a classifier based on its pairwise relationship
with the other ensemble members could be its weight in
the fusion process. A robust experimental protocol has
confirmed that centrality measures represent a promis-
ing strategy to weight the classifiers of an ensemble,
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showing that the proposed fusion method performed
well against the literature.

K E Y W O R D S

centrality measures, complex network, fusion of classifiers

1 INTRODUCTION

In the last decades, social network analysis (SNA) emerged as a multidisciplinary field belonging
to network science (NS) in which scientists try to understand the behavior of different types of
objects organized in a network.1 Different types of research use the NS to discover new patterns
that traditional approaches could not. One of the most meaningful contributions of the Moreno
study2 in 1934, a precursor of the SNA development, is to consider the set of people as a whole
and analyze how the people’s choices affect the group structure. For instance, Jackson describes
in Reference 3 that the social network pattern of the medieval elites from Scotland using the
PoMS database. His work described how SNA found a new pattern, and he also states that the pat-
tern could not be found using traditional historical methods. Jackson work reveals a new opinion
leader, a person who developed an important role that possibly leads to important happenings in
the course of Scotland history. Recently, NS gains pattern recognition attention in different appli-
cations, such as multiagent systems,4 concept drift,5,6 recommendation systems,7 and ensemble
of classifiers.8 The belief is the same as Jackson; NS can find patterns that common approaches
could not.

In this work, the classifier combination problem is presented as an ensemble network, which
is analyzed by centrality measures of the NS. Such measures are used to estimate the importance
of the members of a network in which the vertices represent ensemble members and the edges
represent a pairwise relationship among them. In this study, we aim to answer the following
questions:

1. May the centrality of each classifier inside the ensemble network built using pairwise diversity
contribute to improving the accuracy of the ensemble fusion?

2. Which pairwise diversity measure should be used to represent the ensemble network in which
the centrality information will be computed?

3. Which centrality measure is more appropriate to provide the importance of each classifier in
the ensemble network?

To answer these questions, we start by describing the centrality measures, associating them
with the ensemble learning theory. This theoretical association is the core of the article, providing
the background knowledge that is necessary to understand the proposed method. The expectation
is that by applying centrality measures is it possible to estimate how important is a classifier for
the ensemble concerning the complementarity of its errors when compared with the other ensem-
ble members. With this in mind, we developed a new method for static ensemble fusion, named
centrality score–based fusion (CSBF). With the CSBF method, we performed a set of experiments
to compare different combinations of pairwise relationship and centrality measures, which is
presented in Section 6.1. Besides, the best method setup is compared against the methods that
represent the state of art. Some statistical tests suggest that the proposed method differs from
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other approaches and also is recommended for several classification problems as we can see in
Section 6.2.

The contributions of this work are 3-fold. From the theory perspective, this study presents
an analysis of undirected and directed ensemble networks, which were structured by the classi-
fiers and their relationships based on pairwise diversity measures. This work aims to clarify the
importance of the classifiers according to their prominent position inside the ensemble network
from a centrality point of view. The proposed CSBF method is also a contribution, and its novelty
is related to the strategy used to combine classifiers considering their score of importance inside
the ensemble. Finally, as a practical contribution, the performance of the proposed method was
evaluated over 40 different machine learning problems and against 15 fusion methods available
in the literature. The results show that our approach is the best strategy for combining classifiers
in 70.33% of these problems.

The work is organized as follows: first, it presents in Section 2 a brief NS theory that will
introduce the basic concepts used in this work. Then, in Section 3, the main definitions related
to ensemble learning and a literature review of classifier fusion methods and diversity measures
are presented. The proposed fusion method is presented in Section 5. A robust set of experi-
ments is described in Section 6 and also discussed. Finally, Section 7 presents our conclusions
and perspectives of future work.

2 NETWORK SCIENCE

It is a multidisciplinary field that concerns the analysis of objects by their relationships. The the-
ory behind the area is continuously improved by researchers in the most different scientific fields
such as SNA, complex network, chemistry, traffic engineers, and computer science, to cite a few.
This section briefly describes the background theory used to propose and analyze classification
problems in the light of ensemble learning. To this end, first, a short history is presented to insti-
gate the reader who is not familiarized with the field to understand the powerful contribution of
this growing area. Useful and straightforward definitions here aim to be a guide to understanding
the properties used to build the ensemble network and finally compute the classifiers importance
by centrality measures.

2.1 Basic definitions

In this study, we describe only the basic definitions of NS to help the reader to understand the
possible contributions to ensemble learning. It represents a particular problem as a network in
which vertices represent objects, groups, or individuals and edges represent a relationship among
them. The edges are undirected in case of symmetric relations or direct in case of asymmetric.
An undirected network G(V,E) consists of two sets namely V ≠ ∅ and E. The set V = v1, v2,… , vT
representing objects (elements, individuals, groups, nodes) that are called vertices. The set
E = e1, e2,… , eU is a distinct and unordered group representing the pairs of elements of V , so each
element e is a pair of vertices i and j (i, j). Objects i and j are referred to as neighbors. Different
from undirected networks, in the direct ones (i, j) and (j, i) represent different edges. As one may
see, the network concept presented here is the same than graph.

A walk𝑤𝑎𝑙𝑘(x, y) from vertex x to vertex y is defined by Latora et al1 as an alternating sequence
of vertices and edges 𝑤𝑎𝑙𝑘 = (x ≡ v0, e1, v1, e2,…, el, vl ≡ y). It begins at x and ends at y, such that
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each edge ei = (vi−1, vi) for i = 1, 2,…, l). A walk is commonly represented as the sequence of the
traversed vertices, between two given vertices x and y, resulting in 𝑤𝑎𝑙𝑘 = (x ≡ v0, v1,…, vl ≡ y).
The length of a walk 𝓁(𝑤𝑎𝑙𝑘) is the number of edges in the sequence. A path is a walk where each
vertex is visited only once. The shortest path, also known as a geodesic, is a path of minimum
length from vertex x to vertex y. The term “distance” is frequently used to describe the alternating
vertex/edge relations between two vertices. In this article, we consider a graph G(V,E), in which
V = c1, c2,…, cT represents the pool of classifiers where each ci is an ensemble member of a team
composed of T classifiers, and the set of edges E represents their relationship or diversity. From
that network representing an ensemble of classifiers, we compute centrality measures, which are
described in the following section.

2.2 Centrality measures

Centrality measures are designed to weight the members of a network based on their topological
importance. In other words, centrality measures evaluate the importance of the individuals, con-
sidering the role they play with others, based on the relationships represented on the network.
The following four classic measures are commonly used in the literature: degree,9 betweenness,10

closeness,9 and eigenvector.11 These measures have focused on different pieces of information,
such as (a) the sum of edges (degree), (b) shortest paths (closeness, betweenness), and (c) walks
(eigenvector) also known as interactive refinement.12

The degree centrality Kci is related to the number of edges of a network member. It can be
also the sum of the weight of the edges in the context of weighted networks. It is defined by
Equation (1):

Kci =
T∑

cj=1
Ecicj , (1)

where edge Ecicj connects the members ci and cj, and T is the total amount of members (classifiers)
of the network or the total weight of these members. So, it is worth noting that the weight associ-
ated with Ecicj can be the original weight of the edge in a weighted network (weighted degree) or
simply 1.0 in the case of an unweighted representation (unweighted degree), which only indicates
the presence of an edge between ci and cj.

The degree centrality is a very simple measure to estimate. It considers only the local aspect
of the network to be estimated, for example, a member degree is evaluated as direct (unweighted
or weighted) connections with neighbors. As a result, the unweighted version of this measure
cannot be used in a complete network because every member has the same degree (T − 1). An
alternative, in this case, is to apply a simplification based on a pruning method.13,14 Therefore,
using the weighted degree in a weighted network does not demand a simplification process, which
can lead to an extra computational effort.

Another classic centrality measure is betweenness.9,10 This measure considers the number of
shortest paths from each member of the network to all others that pass through each particular
member, as denoted by Equation (2).

Bci =
∑
cjck

gci
cjck

gcjck

, (2)
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where gcjck
is the number of geodesics between the vertex cj and the vertex ck; gci

cjck
refers to the

geodesic between cj and ck that pass through ci. As in degree centrality, the weight of the edges can
be considered. In this case, the betweenness centrality computes the shortest paths based on the
cost of each possible path, where the cost is the sum of weights of the edges belonging to the path.
This centrality measure imposes a high computational cost, but the authors in Reference 15 sug-
gest a different strategy to compute the shortest paths, which allows estimating the betweenness
centrality efficiently.

A commonly used measure that also is based on the shortest paths is the closeness
centrality.9,16 This measure estimates the average distance of a member to all others in the net-
work, taking into account the length of the average shortest paths. It considers that members
with high centrality are those closest to all others. Like betweenness, the closeness centrality also
depends on a connected network. Equation (3) can be used to compute the closeness centrality:

Cci =
1
li
= |T|∑

cj
hci,cj

, (3)

where li is the average shortest path length of each member to other members. The geodesic
length hci,cj of a member ci to any other member cj inside the network must be estimated, and
consequently summed. Averaging the number of vertices by the geodesics found leads to a higher
centrality when the value is low. The network must have only one component to estimate close-
ness centrality and betweenness centrality, so it is possible to calculate all the distances (paths)
between two given network members. For networks with more components, some alternatives
are presented in Reference 17.

One last classic measure is the eigenvector centrality,11,18,19 which can be used to compute the
centrality xi of a given node ci using a matrix equation, or sum, as shown in Equation (4).

𝜆x = Ax, 𝜆xi =
n∑

j=1
aijxj, i = 1,…,n, (4)

where A = (ai,j) is the adjacency matrix, that is, ai,j = 1 if vertex ci is linked to vertex cj and ai,j = 0
otherwise, 𝜆 is the largest eigenvalue of A, and (ai,jxj) is the each possible neighbor of ci, whereas
n is the number of vertices in the network. According to Reference 20, this centrality is based on
the idea that a given vertex can depend not only on the number of its adjacent vertices but also
on their value of centrality.

There are variants of the mentioned classic centrality measures for directed networks in which
we have asymmetric relationships. For the most simple measure, the degree centrality considers
indegree and outdegree of a vertex. The first counts the number of incoming arcs (or compute the
sum of the weights of these arcs), whereas the second is the opposite, that is, the number of arcs
directed to the node neighbors (or compute the sum of the weights of these edges). In this section,
we have presented classic centrality measures appearing in the literature. The choice of a cen-
trality measure depends on what a network represents and which questions the network analysis
intends to answer. Each measure focuses on different aspects of the network to evaluate the role
of its members, as shown in Figure 1. In Reference 21, the authors present several comparisons
between centrality measures and conclude that degree, betweenness, closeness, and eigenvector
are distinct, although related to the conceptual point of view. So, despite the most central vertex
could be the same for different centralities, the score of centrality is different and ranking them



ASSUMPÇÃO SILVA et al. 527

F I G U R E 1 Example of a network and its most important vertices according to specific centrality
measures. B, C, D, and E stands for highest betweenness, closeness, degree, and eigenvector, respectively [Color
figure can be viewed at wileyonlinelibrary.com]

can present different order. It is also known that the network presents some complexity to build,
to walk, and to view. The reader can find some information about these concerns in Reference 22.

3 ENSEMBLE LEARNING

Ensemble learning is concerned to explore the diversity in an ensemble team to improve the accu-
racy of classification problems. Several models are combined, and the final ensemble prediction is
the prediction of at least one ensemble member. For weighted combination methods, the ensem-
ble members differently influence the final prediction. The weight of the classifiers is usually an
equation using the number of the correct predictions over a validation set. This section aims to
elucidate necessary information concerning a static weighted combination of classifiers.

3.1 Basic concepts

Ensembles have been used as an attractive alternative to avoid the risk of selecting a single clas-
sifier as the solution for a pattern recognition problem. The ensemble divides the responsibility
of covering the entire problem space among the members of a team composed of diverse and
accurate classifiers. Merging the decisions of classifiers in which errors are different may lead
to an improvement in the classification performance. Ensemble learning is used in different
applications such as data stream,23,24 concept drift,25 class imbalance,26 and sentiment analysis.27

The ensemble is usually described as a system composed of three phases: generation, selec-
tion, and fusion.28-30 In the first phase, generation methods provide a set of accurate and diverse
classifiers. The second phase is responsible for finding a subset of classifiers, which can be more
accurate than using the whole pool. The selection phase is not obligatory. Finally, in the fusion
phase, methods use some rule for combining different classifiers expecting that any ensemble
member performs well but not so well as the final combined classifier.

Formally, an ensemble of classifiers is a set C = {c1, c2,…, cT}. Each ensemble member
represents an independent function ct ∶ Rn → W that assigns a class label wi ∈ W to x ∈ Rn,

http://wileyonlinelibrary.com
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where W = {w1,w2,…,wM}. A final decision takes into account the decisions of all the classi-
fiers in the ensemble, or part of them, selected statically or dynamically.29,31 If the final group
is T ≥ 2, so a fusion method must combine their decisions. The literature provides a variety of
fusion methods;32-34 some of them assume that all classifiers perform equally well and combine
the classifiers’ decisions without considering any mechanism to differentiate them concerning
competence.

Considering that classifiers can differ, an alternative has been to weight the vote of the classi-
fiers while assuming that they compete with one another in assigning the correct class label.35 The
competition among the classifiers in the ensemble through the use of weights is very promising.
The literature thus bears witness to a wide variety of static and dynamic strategies for weighting
the decision of each classifier in an ensemble. A static weighting strategy assesses the classifier
confidence during the training phase of a classification system, and the weights obtained remain
the same during the test phase, whereas in a dynamic weighting strategy, each classifier receives
a different score for each test instance.

Several authors proved that the accuracy of the ensemble depends on individual accuracy,
and the classifiers must commit different errors, in the sense of one complement the fails of
another.29,36-39 Selection methods made use of these information,40-42 although it has been poorly
used in fusion phase, as the number of works presented in section 4 suggests.

3.2 Pool generation

There are a wide variety of pool generation methods,33,34 also called ensemble generators or
ensemble creation methods. In this section, we also present some classic approaches for the
ensemble creation, such as bagging, boosting, and random subspaces.

Bagging43 requires a labeled dataset Strain. Then, it creates T bootstrap samples from the
training dataset to train classifiers c1,… , cT, one classifier on each sample. Every new dataset is
generated by sampling from the Strain dataset, choosing T bags formed randomly and with replace-
ment. Each bag has equal size, and the size can be the same as the original training dataset Strain
(%bag = 100), or it can be smaller. The ensemble vote is the combination of the votes of the T clas-
sifiers, for example, majority vote (MV) or it can be a decision rule based on the joint probability
distribution such as sum rule (SR), max rule, and product rule (PR), just to cite a few. Bagging
can create the T classifiers in parallel.

Boosting44 is similar to bagging considering the classifiers being built in different versions of
the original training set Strain. However, these classifiers are constructed on weighted versions of
the training set, which are dependent on the previous classification results. This approach first
creates a sampled training set derived from the original and build the first classifier. This classifier
is used to classify the training set, increasing the weight of each instance misclassified. From
the second sampled training set to the last, the sampled training set is composed with instances
from the original set, giving priority to those instances with high weights, that is, instances being
misclassified. Each classifier in boosting is created in sequence.

Random subspaces45 randomly selects a fixed number of subspaces from the original feature
space, building one classifier on each subspace. Each feature of the subspace is chosen without
replacement. The classifiers can be created in parallel, but there is no consensus on the size of
the subspace,33 so each researcher defines it differently, being fixed as seen in Reference 46 or
the researcher can vary the size of the subspace, searching to evaluate the effect of the subspace
dimension as seen in Reference 47.
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3.3 Diversity measures

Diversity can be explored in all phases of an ensemble. It can be estimated taking into account
pairs of classifiers (also known as pairwise diversity) or the whole ensemble (nonpairwise).
For the first approach, several measures are compared in Reference 39 as follows: Q statistics
(QS),48 correlation coefficient (CC),49 disagreement (Dis) measure,45,50 double-fault (DF) mea-
sure, 51 and kappa statistic (KS).52 The second one can be estimated using the following measures:
Kohavi-Wolpert variance,53 interrater agreement,54,55 entropy measure,56 measure of difficulty,57

generalized diversity,58 and coincident failure diversity,58 to cite a few. The focus of this section
is to present pairwise diversity measures. This kind of measure is the most proper to discover the
role of each classifier in the ensemble diversity. Pairwise measures are based on the relationship
of classifiers computed on their incorrect/correct predictions. Such a relationship between two
classifiers, ci and cj, is presented in Table 1. For a given instance, if both classifiers are correct,
then N11 is increased. If both classifiers are wrong, N00 is increased. If ci is correct, but cj is incor-
rect, then N10 is increased, otherwise N01 is increased. This pairwise relationship can be estimated
using the training or validation set.

The following pairwise diversity measures (QS, CC, Dis, DF, and KS) are based on the possi-
ble relationship presented in Table 1. The relationship between classifiers can be symmetric, for
example, N00 and N11 or asymmetric, for example, N01 and N10. Symmetric relationships are also
observed in diversity measures; thus, pairwise diversity measures can be used as the edge score
of an undirected network.

A well-known pairwise diversity measure is QS, which is denoted by Equation (5), assuming
values in the interval [−1, 1]. For statistically independent classifiers, QS assumes 0. If the classi-
fiers tend to recognize the same instances correctly, QS will be positive. Otherwise, if they commit
errors in different instances, QS will be negative.

QS = N11 × N00 − N01 × N10

N11 × N00 + N01 × N10
. (5)

A similar measure is the CC that can be computed as shown in Equation (6). The CC values
lie within the interval [−1, 1].

CC = N11 × N00 − N01 × N10√
Δ

, (6)

where Δ = (N11 + N10) × (N11 + N01) × (N01 + N00) × (N10 + N00).
The Dis estimates the number of observations in which one classifier is incorrect, while the

other is correct. The diversity is represented by higher scores of Dis in the interval [0, 1]. This
measure is denoted by Equation (7):

Dis = N01 + N10

N
. (7)

T A B L E 1 Pairwise relationship
between two classifiers ci and cj adapted
from Reference 39

ci Correct (1) cj Incorrect (0)

ci correct (1) N11 N10

ci incorrect (0) N01 N00

Total N = N00 + N01 + N10 + N11
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Another interesting pairwise measure is the DF.51 It is defined as the number of examples that
have been misclassified by both classifiers ci and cj, as denoted by Equation 8. In contrast to the
Dis measure, DF is represented by lower scores in the interval [0, 1].

DF = N00

N
. (8)

Kappa statistic, proposed by Margineantu and Dietterich,52 considers three scenarios: classi-
fiers agree in each tested instance KS = 1, KS = 0 if the agreement is uncorrelated, and KS < 0 if
they agree less than expected by chance (rarely happens). KS is presented in Equation (9):

KS = Θ1 − Θ2

1 − Θ2
, (9)

where
Θ1 = N11 + N00

N
, (10)

and
Θ2 = (N11 + N10) × (N01 + N00) + (N11 + N01) × (N10 + N00)

N2 . (11)

The measurement of interrater agreement (MOIA) has a pairwise version, proposed by Fleiss55

and used in Reference 39. Equation (12) presents this measure:

MOIA = 2(N11N00 − N01N10)
(N11 + N10)(N01 + N00) + (N11 + N01)(N10 + N00)

. (12)

Product-moment (PM) correlation measure is proposed by Sharkey and Sharkey59 and pre-
sented in Reference 60. The pairwise version is denoted by the Equation (13):

PM = N00√
N∗0N0∗

. (13)

This section presented classical pairwise diversity measures used in a static context, that is,
using an entire dataset Sval. To estimate diversity dynamically, the reader can find it in References
61 to 63. They proposed different measures to deal with the difference between the ensemble
members vote for each test instance of the Stest. Ending this section, it worth mention that the
complexity of the presented pairwise measures differs from the nonpairwise. In Reference 64,
the authors present the complexity of these two approaches, for nonpairwise the complexity is
O(T × I), whereas for pairwise diversity, the complexity is O(T2 × I). Besides, the ensemble size T
and the size of a validation set Sval (used to estimate diversity) must be considered.

4 RELATED WORKS

Several works28,65-70 present some interesting reviews of topics related to ensembles of classi-
fiers, and one common observation running through them is that weighted fusion methods are
truly promising. Another general observation is that the fusion methods differ from each other.
In Reference 68, the authors describe a taxonomy for fusion methods, which consists of the
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following three types: class label fusion, trainable fuser, and support functions fusion. Each one
is based on class labels or support functions, and may demand extra training (trainable) or not
(nontrainable). The related works are focused on the trainable class label and also presents the
nontrainable support functions. The first group is related to the proposed method, whereas the
second group presents some classical approaches, also referred to as simple rules, such as sum,
min, max, product, mean, and average. Support functions also present more sophisticated meth-
ods, such as decision templates (DTE)34 and Dempster-Shafer (DS) combination.71 One may find
some recent works on support functions in References 70,72, 75.

The nontrainable class label fusion implements variations of MV.74 There are three varia-
tions of MV75 as follows: unanimous voting, simple majority, and plurality voting. The first one
assigns a final ensemble decision if all of its individuals have a voting agreement. The second
is considered the agreement of at least half ensemble members. In the last, a final ensemble
decision is simply the class most voted. Usually, the ensemble learning researchers referred
to majority voting this last variation. MV variations assume that all classifiers have the same
influence on the final decision, regardless of their respective ability to predict the sample cor-
rectly. Considering that classifiers are different, trainable class label fusion (weighted voting) are
distinct:74,75

• the weights Ψct are assigned to each classifier;
• the weights Ψct,w are assigned to classifiers and classes;
• the weights Ψct(x) are assigned to classifiers and are dependent on the feature space;
• the weights Ψct,w(x) are assigned to classifiers, classes, and are dependent on the feature

space.

This section presents only the methods of the first group, that is, approaches concerned to
assign the weight Ψct to each classifier, which is independent of classes and features. To weight
classifiers, conventional approaches use variations of the weighted majority vote (WMV),74 also
known as the simple weighted vote in Reference 76. In classical WMV, the final ensemble decision
is computed from the vote of each classifier in the ensemble, as shown in Equation (14):

votect =

{
Ψct if ct picksclass wi,

0 otherwise,
(14)

where Ψct is the weight defined for the classifier ct, and votect represents its vote for a specific class
wi. The votes are accumulated by class, as denoted in Equation (15), where Θc is the total number
of votes each class received. Finally, the class with the highest score constitutes the final decision
of the ensemble.

Θc =
T∑

t=1
votect . (15)

Kuncheva weighted majority vote (KWMV)34 estimates the weight of each classifier as defined
in Equation (16):

Ψct = log
(

𝛼ct

1 − 𝛼ct

)
, (16)
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where the weight Ψ of a classifier ct is logarithmic of the division in which the accuracy 𝛼 of the
classifier ct is the dividend, and the divisor is the error (1 − 𝛼ct) of the same classifier. The accuracy
𝛼 of each classifier is estimated on a validation set Sval.

The performance weighting (PW)66 approach normalizes the accuracy of each classifier before
using it as a weight, considering it as a proportion of the total accuracy of the ensemble, as denoted
in Equation (17):

Ψct =
1 − 𝜀ct∑T

j=1
𝜀cj

, (17)

where 𝜀ct is the normalized error of the classifier evaluated on a validation set Sval.
Bayesian combination (BC)77,78 uses the posterior probability and the classifier’s individual

accuracy 𝛼. BC is presented in Equation (18):

Ψct = P(𝛼ct |Sval) × P(wi|x), (18)

where P(𝛼ct |Sval) is the accuracy of the tth classifier ct in a validation set Sval, and P(wi|x) is the
posterior probability of the classifier ct for a class wi, given an instance x. After the sum of all
classifier outputs is computed, the new pattern will be labeled according to the highest score given
to the class wi.

In Reference 79, the authors proposed a set of empirical scores named “power value” (PV) as
a variation of WMV. The approach is shown in Equation (19):

Ψct =
𝛼

pv
ct∑T

j=1
𝛼

pv
cj

, (19)

where pv is an empirical value. The authors evaluate 13 different values and conclude that pv = 10
provides the best accuracy. For pv = 0, the Ψct is defined as an simple average.

Ψct = log
( act

1 − act

)
. (20)

The following approaches rescaled weighted vote (RSWV), best-worst weighted vote (BWWV),
and quadratic best-worst weighted vote (QBWWV) compute first the authority acT of classifiers
and then estimate the final weight using the Equation (20) inspired by Kuncheva.34 Some of these
can assign zero weights for classifiers with poor individual accuracy (in this case is a pruning of
the original ensemble instead of a combination of the ensemble). These methods are presented
as originally described in Reference 76. The first approach, RSWV, assigns zero as a score for
bad-performing classifiers. Equation (21) assesses the authority of classifiers:

act = max
{

0, 1 −
M × 𝜀ct

V × (M − 1)

}
, (21)

where M is the size of class set W , V is the size of Sval, and 𝜀ct is the number of errors of classifier
ct. If act ≤

1
M

, the classifier weight is zero, otherwise the weight is proportional to its accuracy
performance.

The BWWV assigns zero to the worst classifier, and one to the best classifier after the accuracy
of the entire ensemble is evaluated in a validation set Sval. As a consequence, the worst classifier
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is removed. The remaining classifiers are weighted linearly between these edges. Equation (22)
presents the BWWV weighting method.

act = 1 −
𝜀ct − 𝜀BEST

𝜀WORST − 𝜀BEST
, (22)

where 𝜀WORST = >maxT{𝜀ct} and 𝜀BEST = >minT{𝜀ct}.
The following QBWWV approach is inspired by BWWV but assigns even more weight to

better-performing classifiers. Equation (23) presents the QBWWV approach.

act =
(

𝜀WORST − 𝜀ct

𝜀WORST − 𝜀BEST

)2

. (23)

In the literature, there are some more sophisticated solutions. In Reference 80, the authors
proposed a signal strength–based combining approach. As in Reference 32, the algorithm starts
by collecting individual votes of the classifiers for a given test instance, creating a decision pro-
file. The decision profile is the basis for estimating some values, such as the signal strength and
the signal strength direction and uncertainty degree, which are used to estimate the classifiers’
influence and consequently the ensemble’s final vote.

A Bayes voting approach is present in Reference 81. The authors proposed to compute the
weight in regard to each class rather than to each expert. Those weights are computed by esti-
mating the joint probability distribution of each class concerning all classifiers. The probability
distribution is obtained using the naive Bayes probabilistic model.

Another recent solution for weighting classifiers is found in Reference 82. They proposed a
weighted multiple classifier framework based on random projections (WMCRP). Initially, some
training sets (called down-spaces) derived from the original training set are created, similarly to
Bagging approach. Then, the unlabeled observation is projected on the down-spaces, generating a
metadata by classifying the feature vectors of the observation in the down-spaces. The prediction
is obtained by weighted linear combinations of the predictions made by the base classifiers.

Some combination rules are obtained on the measurement level,32 such as minimum rule,
maximum rule (MAR), PR, SR, average rule, and median rule. The minimum rule estimates the
minimum score of each class between the classifiers and assigns the input pattern to the class with
the maximum score among the minimum scores. Similar to minimum rule, MAR first finds the
maximum score of each class between the classifiers, assigning the input pattern to the class with
the highest score among the maximum scores. PR is obtained by multiplying the score provided by
each base classifiers and assigns the class label with the highest computed score to the unlabeled
input pattern. Similar to PR, the SR assigns the class label with the maximum score to a given input
pattern but instead using the product of the outputs it uses the sum. The average rule computes
the mean of the scores of each class, concerning every classifier in the ensemble and assigns to
the input pattern the class with the highest score among. The median rule is similar average but
computes the median instead of the mean of the scores.

A modified PR was proven to be superior to the classical PR.73 The authors observed the
lower performance of PR when increasing the number of classifiers in the ensemble. Therefore,
they suggest an adaptation to the classic rule where they divide the joint probability distribution
product by the number of classifiers belonging to the given ensemble.

In Reference 83, the authors present a very interesting comparison of different strategies to
combine classifiers for the task of handwritten Indic script recognition, observing some improve-
ment against the use of a single classifier. The best result was observed when a logistic regression
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classifier is used as a secondary model to combine the outputs of primary models. Also dedicated
to handwritten Indic script recognition, the authors in Reference 71 present a fusion schema based
on the DS theory which is applied to combine the decisions of two MLP classifiers, observing a
significant improvement in recognition accuracy.

This section presented several combination methods. MV, the most simple, assigns equal
weight to the classifiers expecting they perform similarly; however, it is not observed in all clas-
sification problems. Therefore, it is plausible to assume the classifiers are different, and it is an
interesting idea to assign more weight to best-performing classifiers.69 This is the reason behind
the weighted majority voting. Concerning the reviews mentioned in this section, the classifier
diversity importance to the ensemble is ignored. Measuring the classifier’s significance to the
ensemble diversity is not trivial, that is, a difference is a property shared by another classifier,
a subgroup, or the entire group of classifiers. A method to evaluate the importance of a classi-
fier considering its interactions as a whole is needed. The next section presents an approach for
scoring the classifier importance based on the individual contribution to the ensemble using the
relationship a classifier has to all other ensemble members. These combination approaches often
use only the accuracy of individuals to weight classifiers.84

5 THE PROPOSED FUSION METHOD

Figure 2 presents a general overview of the proposed CSBF method, which is a static weighted
combination method organized into three phases. First, a pool of classifiers is generated in the
overproduction phase. In the pairwise phase, a measure of diversity is used to represent the rela-
tionship between the classifiers in the pool. Finally, the weighted combination phase is built an
ensemble network represented as a weighted graph G(V,E), then a centrality measure estimates
the importance of each classifier based on the weight of the relationship it has with its peers. The
centrality measure suggests a score regarding the classifier’s importance to the ensemble, and it
is used as the classifier weight in the combination process.

Generally speaking, CSBF requires a dataset S, which is divided into three distinct datasets
used for training, validation, and testing. The training set Strain provides instances xtrain to gen-
erate a pool C of accurate and diverse classifiers. Then, the pool C is used to estimate pairwise
relations 𝜛 among classifiers using a validation set Sval. The pool of classifiers C and the pairwise
relationship 𝜛 are used to build an ensemble network G(C, 𝜛) where vertices represent classi-
fiers, and the pairwise relationships are represented by edges (or arcs in the case of direction). A
centrality measure 𝜒 is used to estimate the importance of classifiers taking into account their
relationships. The importance score is the classifier weight Ψ. Finally, a combination rule uses
the weight of classifiers and their vote to classify a test instance xtest. Each phase is detailed in the
following sections.

5.1 Overproduction

The overproduction phase generates a pool of classifiers C = {c1, c2,… , cT}, in which each mem-
ber represents an independent function ct ∶ Rn → W that assigns a class label wi ∈ W to x ∈ Rn,
where W = {w1,w2,… ,wM}. The most popular pool generators are described in Section 3. Of
these, bagging43,85 is used in this work, even though CSBF as a combination method is not limited
to this generator.
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F I G U R E 2 Overview of the proposed weighted combination method, centrality scoreŰbased fusion, where
S is a dataset, train means training, val means validation, test means test, x is an instance, C is the pool of
classifiers, 𝜛 is the pairwise measure, G(C,𝜛) is the ensemble network, 𝜒 is a centrality measure, and Ψ is the
computed classifiers’s weight

5.2 Pairwise relationship

The pairwise relationship estimates how each pair of classifiers works together. In pairwise diver-
sity measures, the goal is to know how different one classifier is from another using any diversity
measure presented in Section 3.3, such as QS, CC, Dis, DF, or KS. In the case of a pairwise rela-
tionship such as N10, the main objective is to know how many times the first classifier is correct,
whereas the other is not. In this phase, the pool of classifiers C = {C1,… ,Ct} is used to estimate
the pairwise relationship 𝜛(Ci,Cj) between any classifier to all others. For this, a validation set is
used to avoid overfitting.

5.3 Weighted combination

The CSBF approach differs from the literature in one main aspect: the relationship among the
classifiers determines how important is each classifier for the ensemble. This section describes
the core of the proposal divided into three steps as follows:

• Network representation: the ensemble network is defined as the pool C and the pairwise rela-
tionship 𝜛 among them. A vertex represents a classifier in C, whereas the pairwise measure
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𝜛 can be represented by edges in case of symmetric relations or arcs in case of asymmetric.
Symmetric relationships are those in which 𝜛(Ci,Cj) = 𝜛(Cj,Ci). Asymmetric relationships
consider 𝜛(Ci,Cj) ≠ 𝜛(Cj,Ci). Any diversity measure in Section 3.3 is symmetric, whereas
only the relationship N01 and N10 are asymmetric. The output of this step is a direct or indirect
network G(V,E), where V = C and E = 𝜛.

• Centrality estimation: a network (represented as a graph) is an input to compute a centrality
measure. Classical centrality measures such as betweenness, closeness, degree, and eigenvec-
tor are appropriate to deal with symmetric relationships, whereas indegree and outdegree are
appropriate to deal with asymmetric. The parameter 𝜒 is referred to any of the mentioned cen-
trality measures. The centrality measures present in Section 2.2 score the importance of the
classifiers. It can give more importance to classifiers with strong or weak relationships. The
output of this step is the weight Ψ for each classifier in C.

• Combination: in this stage, CSBF already weighted the influence of classifiers, Ψ, stated as the
importance of the classifier for the whole ensemble. The importance is estimated by a centrality
measure which analyzes the classifiers’ relationships. Finally, the classifiers’ vote is weighted
by its influence to compose the ensemble’s final decision.

5.4 The CSBF algorithm

Figure 2 shows a simplified overview of the proposed method. Some aspects were retained to
facilitate understanding. Thus, a detailed description of the CSBF method is given through the
Algorithm 1 to make clear some important aspects concerning the ensemble network.

Algorithm 1 CSBF(𝐶,𝜛, 𝜒 , 𝜏, 𝜑)

Input: Pool of classifiers 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑇 }
Input: Pairwise measure (𝜛), where 𝜛(𝑐𝑖, 𝑐𝑗)
Input: Centrality measure (𝜒)
Input: Normalization (𝜏)
Input: Inverse Function (𝜑)
Output: Centrality values Ψ

1: 𝑉 ← 𝐶

2: 𝐸 ← 𝜛

3: if 𝜑 = 𝑇𝑅𝑈𝐸 then
4: for 𝐸𝑖 ∈ 𝐸 do
5: 𝐸𝑖 = 𝐹 −1(𝐸𝑖)
6: end for
7: end if
8: if 𝜏 = 𝑇𝑅𝑈𝐸 then
9: 𝐸 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐸)

10: end if
11: Build network 𝐺(𝑉 ,𝐸)
12: Ψ ⇐ Compute centrality (𝜒,𝐺)
13: return Ψ
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As we can see, first, a pool of classifiers C is required. The parameter 𝜛 is responsible for
scoring the classifiers affinity by a pairwise arrangement. For this purpose, the pairwise diver-
sity measures presented in Section 3.3 are useful. In the case of symmetric pairwise relationships,
the number of pairs of classifiers to be evaluated is defined as a combination CombT,2 where T
is the size of pool C and 2 is the pair arrangement. For instance, a pool of T = 100 classifiers
has Comb100,2 = 4950 pairwise symmetric relationships. On the other hand, asymmetric relation-
ships is a permutation PT,2, so for the same pool size, there are 9900 pairs to be processed. The
centrality measure 𝜒 for symmetric evaluation can be betweenness, closeness, degree, and eigen-
vector, whereas indegree centrality can handle asymmetric evaluation. The normalization 𝜏 and
the inverse function 𝜑 are used to adapt some centrality measures when necessary. After fulfill-
ing the requirements, the pool of classifier C is used to form the group of vertices V in line 1. A
computed pairwise measure 𝜛 for the given pool C is used to define the edges E (line 2). In lines
3 to 7, the inverse function is applied to some centrality measures depending on the meaning of
the edge’s weight. It is explained later in this section. The normalization process (lines 8-10) is
optional, and the goal is to avoid negative weights in E. The graph G(V,E) must be built (line
11), which is referred to in this document as an ensemble network. To obtain the weight of the
classifier Ψ, that is, the score of the importance of each classifier in the ensemble, a chosen cen-
trality measure 𝜒 and the graph G is needed (line 12). The score of importance Ψ is related to the
importance of each classifier, providing a classifier’s final weight for the combination. Alterna-
tively, the classifier’s accuracy 𝛼ct can be multiplied to Ψt to provide the final weight. Therefore,
the method differs from the literature by considering the relationships among classifiers instead
using the classifier’s accuracy only.

Table 2 presents the interpretation of each centrality measure regarding the weight of the edge.
From the centrality’s point of view, degree assigns high scores to higher weight relationships,
whereas betweenness centrality does the opposite. For instance, the pairwise diversity DF assigns
lower scores for good relationships, that is, the pair of classifiers usually is correct. In an ensemble
network using DF relations, betweenness, and closeness can be estimated directly. On the other
hand, degree and eigenvector cannot appropriately estimate the centrality without adapting the
set of edges. In these cases, the parameter 𝜑 is TRUE. This parameter means that the weight
of the pairwise relationships must be reversed, so that the centrality measure can estimate the

T A B L E 2 Interpretation
of the centrality measures
concerning the edge’s weight

Centrality
measure Betweenness Closeness Degree Eigenvector

Edges’ weight
relation with
high centrality

↓ ↓ ↑ ↑

T A B L E 3 Diversity expressed as
a high (↑) or low value (↓) depending
on the centrality measure used to
estimate the classifiers importance

Centrality DF CC Dis QS KS

Degree ↑ ↑ ↓ ↑ ↑

Betweenness ↓ ↓ ↑ ↓ ↓

Closeness ↓ ↓ ↑ ↓ ↓

Eigenvector ↑ ↑ ↓ ↑ ↑

Abbreviations: CC, correlation coefficient; DF, double-fault; Dis,
disagreement; QS, Q statistics; KS, kappa statistic.
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importance of the classifiers correctly. Therefore, the centrality measure and the pairwise measure
must be considered together in the CSBF algorithm, adjusting the weight in the relationships in
such a way that centrality can use it properly for its estimation, as seen in Table 3.

Table 4 presents the parameters of the proposed method, 𝜛 stands for the pairwise diversity
measure, 𝜒 represents the centrality measure, 𝜑 represents the inverse function, being true (T) or
false (F), and 𝜏 is the normalization step, which also can be V or F. Therefore, as seen in Table 4,

𝝕 𝝌 𝝋 𝝉

DF Degree T T

Betweenness F F

Closeness F F

Eigenvector T T

CC Degree T T

Betweenness F T

Closeness F T

Eigenvector T T

Dis Degree F F

Betweenness T T

Closeness T T

Eigenvector F F

QS Degree T T

Betweenness F T

Closeness F T

Eigenvector T T

KS Degree T T

Betweenness F T

Closeness F T

Eigenvector T T

PM Degree T T

Betweenness F F

Closeness F F

Eigenvector T T

MOIA Degree T T

Betweenness F F

Closeness F F

Eigenvector T T

Abbreviations: CC, correlation coefficient; DF, double-fault; Dis,
disagreement; F, false; KS, kappa statistic; MOIA, measurement of
interrater agreement; QS, Q statistics; PM, product-moment; T, true.

T A B L E 4 Parameters suggested to use the
proposed approach as the combination method



ASSUMPÇÃO SILVA et al. 539

every time 𝜑 is TRUE, the normalization process is used. Another suggestion is the use of the
normalization process for every diversity measure that can assume values equal or below zero
(𝜛ci,cj ≤ 0). It is worth mention the importance of the parameters as some centrality measures
consider more important edges with high weights, whereas others are in the opposite direction.

In asymmetric networks, the relationship between the classifiers Ci and Cj may be different
from the relation between Cj and Ci. A directed network must be used to represent asymmetric
relationships, where its arrows indicate the direction of the relationship pointing to the correct
classifier. The centrality measure 𝜒 for directed networks can be indegree or outdegree. Indegree
centrality is more appropriate to deal with the relationship N10, so it can measure the weight of
the incoming arrows, that is, the arrows pointing the correct classifier.

6 EXPERIMENTS

We carried out experiments on 40 classification problems extracted from the following differ-
ent machine learning repositories: UCI machine learning repository,86 knowledge extraction
based on evolutionary learning (KEEL) repository,87 Ludmila Kuncheva Collection (LKC) of real
medical data,88 STATLOG project,89 and artificial datasets generated with the Matlab PRTools
toolbox.90 These datasets present only numeric features with no missing values, a varied num-
ber of instances, attributes, classes, and imbalance ratio (proportion of the number of instances
in the majority class to the number of instances in the minority class) as presented in Table 5.
There are 21 classification problems with 2 classes, 7 problems with 3 classes, 2 problems with
4 classes, 1 problem with 5 classes, 3 problems with 6 classes, 3 problems with 7 classes, 1 problem
with 8 classes, and 2 problems with 10 classes. Ecoli, PageBlocks, WineQRed, WineQWhite, and
Yeast are the most imbalanced datasets. The motivation for using such different machine learning
problems is to obtain a general performance of CSBF compared with the literature.

The experimental protocol was based on 6-fold cross-validation (three for training Strain (=50%
of the original database), two for validation Sval (≅32.3%) and one (≅16.7%) for testing Stest. The
Sval is used to estimate accuracy and diversity measures avoiding overfitting. A stratified sampling
was applied for class distribution balance in all subsets (Strain, Sval, and Stest). Bagging was used
to create a pool of T = 100 weak and diverse classifiers, and each bag used to train a classifier
has 66% of the Strain size. This bag size should provide more diversity than size 100% as observed
in Reference 91 and also is used in Reference 92. The use of perceptron as the base classifier is
recommended in Reference 93 to detect small differences in bags. With this in mind, we used
a more robust variation of the base classifier named perceptron with minimum square error.94

This base classifier is found in the Weka Data Mining Tool95 (version 3.9.1). All other parameters
were maintained default which, according to Amancio et al96 perform well, avoiding the task
of finding optimal setup. All individual classifiers trained have more than 50% of accuracy, then
the classifiers can perform better than random guessing. CSBF also needs a tool for creating the
network, so the graphstream97(version 1.3) is used to assess all the centrality measures presented
in Section 2.2.

Two sets of experiments are performed. First, in Section 6.1, several pairwise diversity mea-
sures and centrality measures are evaluated to observe how the importance of the classifier in
the ensemble network is related to ensemble’s accuracy. The analysis of this section supports
the choice of the centrality measure for the proposed method, and also the type of relationship
between classifiers is the most promising. Then, in Section 6.2, we compared the proposed method
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T A B L E 5 The main characteristics of each classification problem

Base # I # F # C IR Repository

Australian 690 14 2 1.25 UCI

Banana 2000 2 2 1.00 PRTools

Blood 748 4 2 3.20 UCI

CMC 1473 9 3 1.89 UCI

CTG 2126 21 3 9.40 UCI

Dermatology 358 34 6 5.55 KEEL

Diabetes 766 8 2 1.86 UCI

Ecoli 336 7 8 71.50 UCI

Faults 1941 27 7 12.24 UCI

German 1000 24 2 2.33 UCI

Glass 214 9 6 8.44 UCI

Haberman 306 3 2 2.78 UCI

Heart 270 13 2 1.25 UCI

ILPD 579 10 2 2.51 UCI

Ionosphere 351 34 2 1.79 UCI

Laryngeal1 213 16 2 1.63 LKC

Laryngeal3 353 16 3 4.11 LKC

Lithuanian 2000 2 2 1.00 PRTools

Liver 341 6 2 1.40 UCI

Magic 19 020 10 2 1.84 UCI

Mammo 830 5 2 1.06 UCI

Monk 432 6 2 1.12 KEEL

Optdigits 5620 64 10 1.03 KEEL

PageBlocks 5473 10 5 175.46 UCI

Phoneme 5404 5 2 2.41 ELENA

Ring 7400 20 2 1.02 KEEL

Segmentation 2310 19 7 1.00 UCI

Sonar 208 60 2 1.14 UCI

ThyroidNew 215 6 3 5.00 UCI

Vehicle 846 18 4 1.10 UCI

Vertebral2C 310 6 2 2.10 UCI

Vertebral3C 310 6 3 2.50 UCI

WDBC 569 30 2 1.68 UCI

WDVG 5000 21 3 1.03 UCI

Weaning 302 17 2 1.00 LKC

(Continues)
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T A B L E 5 (Continued)

Base # I # F # C IR Repository

Wifi 2000 7 4 1.00 UCI

Wine 178 13 3 1.48 UCI

WineQRed 1599 11 6 68.10 UCI

WineQWhite 4898 11 7 439.60 UCI

Yeast 1484 8 10 92.60 UCI

Abbreviations: # C, number of classes; # F, number of features; # I, number of instances; IR, imbalance ratio.

against 15 related works. Finally, we discuss about the most important factors that affect the
performance of the method in Section 6.3.

6.1 Evaluation of pairwise diversity and centrality measures

The goal of these experiments is to explain how we compared the pairwise relationships, the
classifier prominence, and the ensemble accuracy to define the best set of parameters for the CSBF
method. Then, those parameters are explored to explain the relationship between diversity and
accuracy.

We assessed a combination of seven pairwise diversity measures (DF, CC, Dis, QS, KS, PM,
and MOIA) and also four different weighted centrality measures (betweenness, closeness, degree,
and eigenvector), resulting in 28 experiments. Besides these symmetric measures, an asymmetric
relationship N10 is evaluated with indegree centrality. It is worth mention that in these experi-
ments, sometimes the values of the QS and the CC diversity measures were set to 1.0 to avoid a
division by zero, as suggested in Reference 98. It occurs when at least one of the possible rela-
tionships (N00, N01, N10, or N11) between two classifiers described in Table 1 is not present, so
measuring the pairwise diversity can be an issue. All the centrality measures use the edge weight
to compute a score, reflecting the importance of the classifier for the given relationship repre-
sented in the ensemble network. For each pairwise diversity, an adaptation of the edge weight
is needed. Thus, measures that evaluate prominence using more weight like the degree is capa-
ble of finding the best score for classifiers successfully. On the other hand, centrality measures
such as betweenness uses the geodesics to score classifiers meant that less is more. Therefore, the
network analysis depends on the meaning of the pairwise relationship for the ensemble perfor-
mance (measure score means high/low diversity) and the centrality measures (high edge weight
means more/less important). As a reminder, this important step is presented in Tables 2 to 4 of
Section 5.4.

After performing the experiments considering the selected 40 classification problems, we
computed Friedman and Nemenyi statistical tests. Friedman assesses the ranks according to the
performance of the compared approaches, so the best receives 1, the second 2, and so on. Two or
more approaches with the same performance have their nearest ranks (upper and lower) aver-
aged. The average rank considers all datasets. Therefore, as low as the average rank, better the
approach.

Figure 3 shows the rank created that suggests the best setup: indegree centrality of classifiers
computed in a network using the asymmetric relation N10 (CSBF: indegree N10). Indegree cen-
trality computed how much each classifier complement the others. So, it suggests that weight
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F I G U R E 3 Friedman test and Nemenyi post-hoc test to assess pairwise diversity and centrality. The
centrality measures are estimated using different weighted graphs: Q statistics (QS), correlation coefficient (CC),
disagreement (Dis), double fault (DF), kappa statistics (KS), the pairwise MOIA, product moment (PM), and the
asymmetric relation N10 [Color figure can be viewed at wileyonlinelibrary.com]

classifiers by their capacity to complement other errors are the most promising strategy. Very
close to the indegree N10 rank is seen closeness DF, degree DF, and eigenvector DF. Both were
estimated using DF as the pairwise relation represented in the ensemble network. Thus, clas-
sifiers avoiding mutual errors (DF) with other ensembles are promising. The worse results
were observed for betweenness centrality, for any pairwise measure forming the edges of the
given network. It suggests that classifiers frequently present in small groups that highly dis-
agree with each other are poorly related to the ensemble’s accuracy. Those small groups are the
geodesics in which the betweenness centrality scores the classifiers by their presence in these
geodesics.

Figure 4 presents the Friedman and post-hoc Nemenyi tests for the best seven approaches. It
is observed that the diversity measures that most contribute to the ensemble accuracy are PM, DF,
and N10. The approaches performed similarly according to the critical distance (CD). However,
Indegree N10 is still the best performing approach in regard to the rank score.

Considering the pairwise diversity measures, DF is a tested pairwise relation that detects clas-
sifiers that commit simultaneous errors. It is particularly useful for combining classifiers because
classifiers equally wrong cannot improve the performance of an ensemble of classifiers. On the
contrary, avoiding these classifiers should improve classification performance. Therefore, DF is
the symmetric measure more related to the ensemble’s accuracy, according to the average rank.
The best centrality measures for symmetric relations were closeness, eigenvector, and degree, as
seen in DF pairwise relations (the most promising ranks observed). This experiment also shows
the lack of relationship between the analysis of diversity relations with ensemble accuracy, due

F I G U R E 4 Friedman test and Nemenyi post-hoc test
to assess pairwise diversity and centrality for the best seven
approaches. The centrality measures are double fault (DF),
product moment (PM), and the asymmetric relation N10

[Color figure can be viewed at wileyonlinelibrary.com]
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to classic measures such as KS, Dis, and CC did not perform so well as DF, which only detects
mutual errors and is not concerned to how different the pair of classifiers are.

Although the CSBF:indegree N10 is statistically different and perform better than the other
measures evaluated, why this weighting procedure works must be clarified. Table 6 presents the
CSBF approach in a directed ensemble network, in which the centrality measure indegree esti-
mates the classifier’s weight considering N10 relationship, that is CSBF:indegree N10. The weights
of the classifiers is compared with individual accuracy and average diversity. The average diver-
sity is the average of the incoming arrows. Classifier id “52” presents the higher weight and also
is one of the most accurate (estimated at the Sval). At the end of Table 6, Pearson correlation tests
are reported. The correlation between classifier’s weight and diversity relation (N10) is strong (as
expected) and also a strong correlation between the classifier’s weight with accuracy (0.68). The
average diversity of a classifier is the average of its pairwise relationships; in this case, high values
are preferred. The average diversity of the ensemble is the average of instances in which only one
classifier is correct, so a classifier prominent is the one whose average is higher than the ensem-
ble average. The classifier “3” presented the lower weight and also one of the worst individual
accuracy. Its average diversity is lower than the ensemble. Table 6 showed that the most impor-
tant classifier is accurate, but, most important, frequently it performs correct classification while
its pairs fail.

In this section, we provided the information concerned to the best set of pairwise relation-
ship and centrality measure to use in the proposed approach. The amount of 40 classification
problems and the k-fold cross-validation (k = 6) result in the creation of 240 different ensem-
bles. Then, the 29 combinations of the pairwise relationship with the centrality measure used
to score the classifiers lead to the analysis of 6960 ensembles scored differently. Therefore,
we choose CSBF:indegree N10 as the CSBFs best set based on the statistical analysis of the
results, which suggests that computing the importance of the classifiers by the CSBF approach
is promising when the ensemble network is built using N10 as the pairwise relationship and ana-
lyzed by the indegree centrality. The following section compares the CSBFs best set with the
literature.

6.2 Comparison with state-of-art methods

We presented the performance of CSBF:Indegree N10—which is the CSBF approach computed
in the symmetric network (N10 relation) using indegree centrality to calculate the most influent
classifier—against 15 literature methods: (i) the MV, (ii) the WMV by accuracy, (iii) the PW, (iv)
the KWMV, (v) the BC, (vi) PV, (vii) RSWV, (viii) QBWWV, (ix) BWWV, (x) DTE, (xi) DS combi-
nation, (xii) SR, (xiii) PR, (xiv) MAR, and (xv) medium rule (MER). All of these approaches were
described or at least referenced in Section 4.

Table 7 shows the new approach compared to the combination rules. The approach reaches
the best result in 26 out of 40 classification problems and is also statistically different from DS,
DTE, MAR, and PR combination rules. Table 8 presents the comparison of the approach with
weighted majority combination schemes and the classic MV.

Table 8 shows the average accuracy and corresponding SD of the proposed method against
nine fusion methods of the literature. As can be seen, the CSBF method reaches the best possible
result in 17 of 40 classification problems, whereas the best competitors (PW and PV) show the best
possible result in ninth and eighth classification problems, respectively. CSBF is also statistically
different from 9 out of the 15 related works (Tables 8 and 7).
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T A B L E 6 A case of success of indegree centrality estimated on N10 relations (directed graph)

Id Weight Accuracy Avrg div Id Weight Accuracy Avrg div

0 5858 67.23 59.17 35 5293 65.07 53.46

1 6331 66.46 63.95 36 5235 65.38 52.88

2 6044 67.23 61.05 37 5047 65.69 50.98

3 4361 61.67 44.05 38 5696 66.00 57.54

4 6343 67.54 64.07 39 5985 66.00 60.45

5 5460 64.45 55.15 40 5658 64.91 57.15

6 6532 68.16 65.98 41 5988 67.39 60.48

7 5205 62.29 52.58 42 5735 67.23 57.93

8 5319 65.07 53.73 43 5336 65.22 53.90

9 5916 67.54 59.76 44 5885 68.47 59.44

10 5129 64.61 51.81 45 5999 65.07 60.60

11 5064 65.69 51.15 46 5087 64.14 51.38

12 5689 66.46 57.46 47 5323 63.37 53.77

13 6737 68.01 68.05 48 5879 68.47 59.38

14 5420 65.53 54.75 49 5704 66.31 57.62

15 5480 63.37 55.35 50 5638 66.00 56.95

16 6793 66.92 68.62 51 5411 66.77 54.66

17 5968 67.70 60.28 52 7628 68.93 77.05

18 5326 65.53 53.80 53 5931 67.08 59.91

19 6835 67.08 69.04 54 5133 66.62 51.85

20 5573 65.84 56.29 55 5912 65.38 59.72

21 5163 66.15 52.15 56 5981 66.62 60.41

22 6073 66.46 61.34 57 5530 65.53 55.86

23 5115 66.15 51.67 58 6040 68.32 61.01

24 5925 68.01 59.85 59 5658 66.31 57.15

25 6949 67.54 70.19 60 5292 65.53 53.45

26 6250 67.39 63.13 61 5064 64.45 51.15

27 5460 66.15 55.15 62 5499 66.77 55.55

28 6207 67.08 62.70 63 6231 65.53 62.94

29 5668 65.07 57.25 64 6677 68.32 67.44

30 6218 67.70 62.81 65 5599 66.92 56.56

31 5757 65.53 58.15 66 5568 66.92 56.24

32 6015 67.54 60.76 67 6748 67.39 68.16

33 4857 65.69 49.06 68 4912 63.68 49.62

34 5958 65.84 60.18 69 5202 65.07 52.55

(Continues)
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T A B L E 6 (Continued)

Id Weight Accuracy Avrg div Id Weight Accuracy Avrg div

70 6419 67.39 64.84 85 5812 67.23 58.71

71 6179 68.32 62.41 86 6061 65.22 61.22

72 6176 67.85 62.38 87 6046 67.23 61.07

73 6142 66.15 62.04 88 5468 67.08 55.23

74 7173 68.16 72.45 89 5970 67.08 60.30

75 6558 69.71 66.24 90 5969 67.39 60.29

76 5493 63.52 55.48 91 5252 63.83 53.05

77 6659 69.55 67.26 92 6099 66.92 61.61

78 5779 66.62 58.37 93 5899 65.07 59.59

79 5587 67.23 56.43 94 5511 65.69 55.67

80 6568 66.46 66.34 95 6436 66.62 65.01

81 5555 66.77 56.11 96 6248 67.70 63.11

82 5549 60.90 56.05 97 5717 65.38 57.75

83 5866 65.22 59.25 98 5048 61.05 50.99

84 6106 66.15 61.68 99 6461 68.62 65.26

Pearson weight/accuracy 0.68

Pearson weight/diversity 1

Pearson accuracy/diversity 0.68

Avrg diversity ensemble 58.82

Abbreviation: avrg div, average diversity regarding the classifier’s direct neighbors.

Centrality score-based fusion is also compared with all other approaches in a pairwise fashion
using the sign test.99 Figure 5 presents the number of wins, ties, and losses in a grouped column.
The dashed line represents the critical value (cv), which uses the number of experiments (nexp)
for its estimation. The null hypothesis H0 stands for statistically equivalent methods. Otherwise,
the rejection of the hypothesis suggests that one approach is better than the other. Equation (24)
presents the (cv). CSBF method shows a significantly better result when compared with literature
methods. The critical value (cv = 25.20) is obtained from the nexp = 40 with a significance level
𝛼 = .05 (z𝛼 = 1.645) using Equation (24100). According to cv, all literature methods perform worse
than CSBF, except PW, KWMV, and PV, in which the number of wins is not higher than cv. In sum-
mary, when considering the whole set of experiments, the CSBF won in 422 out of 600 experiments
(70.33%), lost in 142 cases (23.67%), and tied in 36 cases (6.00%).

cv =
nexp

2
+ z𝛼 ×

√
nexp

2
. (24)

Figure 6 presents a statistical analysis using the Friedman test and the Nemenyi post-hoc test.
As can be seen, the proposed method is not statistically different from most of the methods eval-
uated. A thorough analysis of Figure 6 shows that the proposed method is statistically different
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F I G U R E 5 Pairwise comparison of the proposed method (CSBF:indegree N10) with 15 literature methods
[Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 6 Friedman and Nemenyi post-hoc tests comparing the proposed method (CSBF:indegree N10)
with the literature [Color figure can be viewed at wileyonlinelibrary.com]

from QWWV, BWWV, MAR, and RSWV (according to CD). The highest score is assigned to CSBF,
so it suggests the new approach performs well against the literature.

In another statistical analysis, the Wilcoxon test was performed to compare the proposed
method against each of the 15 methods in the literature in a pairwise fashion. The results in
Tables 7 and 8 show that the proposed method provides better results compared with the litera-
ture methods at 𝛼 = .05 significance level, but that these results are significant for most pairwise
comparisons.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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6.3 Discussion

This work aimed to answer some important research questions about the use of centrality mea-
sures to provide the importance of each classifier for a static fusion ensemble method. The first
research question is related to the improvement of the ensemble accuracy by the use of centrality
measures. To answer this question, we represent the ensemble of classifiers in a structure named
ensemble network to estimate the importance (centrality) of the classifiers based on the analy-
sis of their relationships. When compared with the literature, it has shown to be an interesting
alternative to combine classifiers. Considering the literature approaches (MV, WMV, PW, RSWV,
QBWWV, BWWV, DTE, DS, SR, PR, MAR, and MER), the proposed method CSBF:indegree N10
was capable of performing better in 422 out of 600 experiments (70.33%), while lost in 142 cases
(23.67%).

The ensemble network built to study the CSBF approach involved the study of different
pairwise relations, which is the basis to estimate the importance of the classifiers. Diversity
measures are some of the most common pairwise relations in ensemble learning. However,
there is no consensus on which one is the most related to the ensemble’s accuracy.39 There-
fore, we evaluated some well-known diversity measures such as DF, QS, CC, Dis, KS, and the
pairwise relation N10, which is used to estimate these diversity measures. These pairwise rela-
tions were analyzed by the centrality measures to score the classifiers in the fusion process. The
most interesting relations concerning the ensemble’s accuracy were N10 and DF. The first rela-
tion, N10, is the only asymmetric relation analyzed, so indegree centrality was used to score
the classifiers according to their importance. It showed to be a promising alternative to weight
the classifiers as it identifies and assigns high scores for classifiers that are frequently correct,
while its pairs are not. The symmetric pairwise relation DF was the second most interesting
relation analyzed, according to the scores provided by eigenvector and degree centrality. So,
classifiers that frequently avoid the mutual error (DF) are preferred in comparison with diver-
sity measures concerned on assessing only the difference between classifiers such as Dis, QS,
CC, and KS. Product measurement also presents good results, so DF and product measure-
ment, which focus on the mutual error, were the best diversity measures to aim the ensemble’s
accuracy.

The centrality measure most appropriated to score the importance of the classifiers depends
on the pairwise relationship used to represent the ensemble network. Therefore, closeness,
eigenvector, and degree centrality performed better concerned symmetric relationships, whereas
indegree was the most interesting for the asymmetric measure analyzed. Indegree central-
ity computed the number of relationships directed to a classifier (N10), which reflects how
much that classifier complements the ensemble’s errors. Such a classifier received more score
(weight), leading to a more influent vote. Degree centrality was computed by summing the
weight of the symmetric relationship, so the most influent classifiers observed highly avoids the
mutual errors (DF) regarding its pairwise relationship with the other ensemble members. This
weighting method lost only for closeness centrality in the context of the symmetric relation-
ships; however, this centrality requires the estimation of geodesics, which increases the method
complexity.

The answer for the proposed research questions was obtained by a robust experimental pro-
tocol using 40 different classification problems, leading to 240 different ensembles (considering
the number of datasets and k-fold cross-validation with k = 6), to evaluate 29 combinations of
pairwise relation and centrality measure per fold, resulting in 174 different scored ensembles per
problem and 6960 in total.
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7 CONCLUSION AND FUTURE WORK PERSPECTIVES

We have presented a novel ensemble fusion method based on the concept of centrality in the
context of complex network theory. In the proposed CSBF method, the ensemble is represented
as a complex network created to reflect the relationship between the classifiers. The importance
of each classifier in that network is estimated employing centrality measures, which combines
with accuracy, provide the weight used in the fusion process.

The experimental results on 40 classification problems confirmed our main hypothesis. The
centrality concept used to represent the importance of classifiers within the ensemble network
is a promising strategy for weighting the decisions of the classifiers in the fusion method. Differ-
ent pairwise relationship and centrality measures were evaluated to find out the best setup for
the proposed method. The best results were achieved using the DF pairwise diversity measure
to generate the ensemble network and the degree centrality measure to estimate the importance
of each classifier. The experimental results showed that the proposed fusion method was able to
present the best accuracy on 17 over 40 classification problems when compared with nine differ-
ent weighting methods in the trainable class label literature (Table 8), whereas the second best
method in that comparison presented the best accuracy in just 9 cases. Such comparison was also
conducted concerning combination rules. The CSBF method presents the best accuracy on 26
over 40 classification problems when compared with six different nontrainable support functions
methods in the literature (Table 7). Among a total of 600 comparisons, the proposed method was
able to prevail in 422(70.33%), tie in 36(6.00%), and losing in only 142 cases (23.67%).

Further work is necessary to investigate the best parameters to compose the pairwise rela-
tionship between classifiers. The concept of pairwise relationship of classifiers is directly related
to edges in complex network. The use of pairwise diversity measures in ensembles is found in
several works in the literature.101-104 However, in this work, the only asymmetric relation tested
shows more relationship with ensemble accuracy by the point of view of centrality measures.
Thus, another type of asymmetric relationships could be investigated. Another direction for future
research is the use of other centrality measures, such as PageRank,105 Katz,106 and 𝛽-centrality.107
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72. Krawczyk B, Woźniak M. Untrained weighted classifier combination with embedded ensemble pruning.

Neurocomputing. 2016;196:14-22.
73. Hassan Mohammed Falih, Abdel-Qader Ikhlas. Analysis of multiple classifier system using product and

modified product rules. Paper presented at: IEEE International Conference on Electro/Information Technol-
ogy (EIT); 2015:152-157.

74. Kuncheva LI. Combining Pattern Classifiers. Hoboken, NJ: John Wiley & Sons; 2004.
75. Michal W. Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination Studies in Computa-

tional Intelligence. Vol 519. Berlin/Heidelberg: Springer; 2014.
76. Moreno-Seco Francisco, Iñesta José M, León Pedro J Ponce, Micó Luisa. Comparison of classifier fusion meth-

ods for classification in pattern recognition tasks. In: Yeung Dit-Yan, Kwok James T, Fred ALN, Roli F, de
Ridder D, eds. Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshops,
SSPR 2006 and SPR 2006, Hong Kong, China, August 17–19, 2006. Proceedings; Springer: Berlin, Germany;
2006:705-713.

77. Rokach L. Ensemble Methods for Classifiers. New York, NY: Springer-Verlag; 2010.
78. Buntine Wray Lindsay. A Theory of Learning Classification Rules. [PhD thesis]. Sydney, Australia: University

of Technology, 1992.
79. Li Wenxing, Hou Jian, Yin Lizhi. A classifier fusion method based on classifier accuracy. Paper presented at:

2014 International Conference on Mechatronics and Control (ICMC) 2014;32:2119-2122.
80. He H, Cao Y. SSC : a classifier combination method based on signal strength. IEEE Trans Neural Netw

Learning Syst. 2012;23(7):1100-1117.
81. De Stefano C, Fontanella F, di Freca AS. A Novel Naive Bayes Voting Strategy for Combining Classifiers.

Paper presented at: 2012 International Conference on Frontiers in Handwriting Recognition; Bari, Italy;
2012:467-472.

82. Nguyen TT, Dang MT, Liew AWC, Bezdek JC. A weighted multiple classifier framework based on random
projection. Inform Sci. 2019;490:36-58.

83. Mukhopadhyay A, Singh PK, Sarkar R, Nasipuri M. A study of different classifier combination approaches
for handwritten indic script recognition. J Imag. 2018;4:39.

84. Liu Z, Pan Q, Dezert J, Martin A. Combination of classifiers with optimal weight based on evidential
reasoning. IEEE Trans Fuzzy Syst. 2018;26(3):1217-1230.

https://doi.org/10.1515/jisys-2017-0431


556 ASSUMPÇÃO SILVA et al.

85. Skurichina M, Duin Robert PW. Bagging for linear classifiers. Pattern Recogn. 1998;31(7):909-930.
86. Dua D, Graff C. UCI Machine Learning Repository. Irvine, CA: University of California, School of Information

and Computer Science; 2017.
87. Alcalá-Fdez J, Fernández A, Luengo J, et al. KEEL data-mining software tool: Data set repository, integration

of algorithms and experimental analysis framework. J Multi Valued Logic Soft Comput. 2011;17(2-3):255-287.
88. Kuncheva Ludmila. Ludmila Kuncheva Collection LKC. 2004. http://pages.bangor.ac.uk/~mas00a/activities/

real_data.htm.
89. King RD, Feng C, Sutherland AS. Comparison of classification algorithms on large real-world problems. Appl

Artif Intell. 1995;9(3):289-333.
90. Lei B, Xu G, Feng M, et al. Classification, Parameter Estimation and State Estimation: An Engineering

Approach Using MATLAB. John Wiley & Sons; 2017:480.
91. Martínez-Muñoz G, Suárez A. Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognit.

2010;43(1):143-152.
92. Ko AHR, Sabourin R, de Souza Britto A, Oliveira L. Pairwise fusion matrix for combining classifiers. Pattern

Recognit. 2007;40(8):2198-2210.
93. Cruz RMO, Sabourin R, Cavalcanti GDC. META-DES.Oracle: meta-learning and feature selection for

dynamic ensemble selection. Inf Fusion. 2017;38:84-103.
94. Juang BH, Katagiri S. Discriminative learning for minimum error classification. IEEE Trans Signal Process.

1992;40(12):3043-3054.
95. Frank E, Hall MA, Witten IH. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine

Learning Tools and Techniques.” 4th ed. San Francisco, CA: Morgan Kaufmann Publishers Inc.; 2016.
96. Amancio DR, Comin CH, Casanova D, et al. A systematic comparison of supervised classifiers. PLoS One.

2014;9(4):e94137.
97. Dutot Antoine, Guinand Frédéric, Olivier Damien, Pigné Yoann. GraphStream: a tool for bridging the gap

between complex systems and dynamic graphs. Emergent Properties in Natural and Artificial Complex
Systems. Satellite Conference within the 4th European Conference on Complex Systems (ECCS’2007);2007.

98. Tsymbal Alexey, Pechenizkiy Mykola, Cunningham Pádraig. Diversity in Ensemble Feature Selection.
Department of Computer Science, Trinity College Dublin; 2003:1–38.

99. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006;7:1-30.
100. Cruz RMO, Sabourin R, Cavalcanti GDC. Analyzing different prototype selection techniques for dynamic

classifier and ensemble selection. Paper presented at: 2017 International Joint Conference on Neural
Networks (IJCNN); 2017; Anchorage, AK.

101. Kapp MN, Sabourin R, Maupin P. An empirical study on diversity measures and margin theory for ensembles
of classifiers. Paper presented at: 2007 10th International Conference on Information Fusion (IEEE); 2017;
Québec City, Canada.

102. Cavalcanti GDC, Oliveira LS, Moura TJM, Carvalho GV. Combining diversity measures for ensemble
pruning. Pattern Recognit Lett. 2016;74:38-45.

103. Kuncheva LI, Whitaker CJ. Ten measures of diversity in classifier ensembles: limits for two classifiers.
Paper presented at: In A DERA/IEE Workshop on Intelligent Sensor Processing (Ref. No. 2001/050), 2001;
Birmingham, UK.

104. Johansson U, Löfström T, Boström H. Paper presented at: 2013 IEEE Symposium on Computational
Intelligence and Ensemble Learning (CIEL); 2013; Singapore.

105. Page Lawrence, Brin Sergey, Motwani Rajeev, Winograd Terry. The PageRank Citation Ranking: Bringing
Order to the Web; 1999.

106. Katz L. A new status index derived from sociometric analysis. Psychometrika. 1953;18(1):39-43.
107. Bonacich P. Power and centrality: a family of measures. Am J Sociol. 1987;92(5):1170-1182.

How to cite this article: Silva RA, Britto Jr AS, Enembreck F, Sabourin R, Oliveira LES.
CSBF: A static ensemble fusion method based on the centrality score of complex networks.
Computational Intelligence. 2020;36:522–556. https://doi.org/10.1111/coin.12249

http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm
http://pages.bangor.ac.uk/~mas00a/activities/real_data.htm

