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SECURITY AND PRIVACY IN BRAZIL

The Need for Speed: An Analysis  
of Brazilian Malware Classifiers
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André Grégio | Federal University of Parana

Using a dataset containing about 50,000 samples from Brazilian cyberspace, we show that relying solely 
on conventional machine-learning systems without taking into account the change of the subject’s 
concept decreases the performance of classification, emphasizing the need to update the decision model 
immediately after concept drift occurs.

T he sheer amount of malware variants released 
daily underscores the urgent need to create auto-

mated classifiers/detectors. In general, malware classi-
fication through machine-learning techniques is based 
in the literature on extracting program characteristics in 
a way that they can be classified as malicious or benign 
or even grouped into distinct malware families, depend-
ing on the attributes and datasets used. Shortcomings 
of these prior efforts are their lack of reproducibility 
and the neglect of authors in many cases to provide 
the data, scripts, or programs and settings for sample 
classification, analysis, and determining the represen-
tativeness of sample selection. Moreover, the focus of 
most prior work has been on obtaining accuracy rates 
close to 100 percent, without addressing the challenge 
of dynamic updating of models as time goes by and 
new malware samples appear.1–3 Because there is lit-
tle discussion about the effectiveness of the classifiers 
over time and no available data for new tests by other 
researchers, there are no guarantees that the results by 

prior machine-learning models are exempt from the 
bias caused by the chosen dataset.

Our work leveraged a set of representative, unfil-
tered (that is, without preselection of malware families) 
benign software and malware samples collected in Bra-
zilian cyberspace from 2012 to 2018. Malware attacks 
in Brazil are strongly motivated by profit. Attackers are 
intent on either stealing the credentials of people bank-
ing via the Internet4 or they are trying to lure Internet 
users into paying fake bills.5 On the one hand, Brazilian’s 
cultural and economic aspects make the malware men-
ace distinct from that in other countries. On the other 
hand, popular programs worldwide that are considered 
benign elsewhere tend to be also popular in Brazil.

After the data collection, we extracted the attributes 
of the samples using attributes from their portable exe-
cutable (PE) header. With that, we performed tradi-
tional experiments in the literature, with the focus on 
obtaining accuracy rates close to 100 percent, followed 
by experiments using thresholds that are of particular 
interest in the industry. Then, we simulated the behav-
ior of conventional learning systems using two classifi-
ers [k-Nearest Neighbors (KNN) and Random Forest], 
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updating their databases over time with known samples 
to predict new ones. Then, we compared this approach 
when updating the decision model only after concept 
drift occurred, using concept-drift detection algorithms, 
such as the Drift Detection Method (DDM) and the 
Early Drift Detection Method (EDDM). We also ana-
lyzed what happened in the detected drift points on our 
dataset, using t-distributed stochastic neighbor embed-
ding (t-SNE) projections to show differences in the data 
related to these points.

Dataset
To create the dataset presented in this article, we used a 
set of ≈200 GB of executable files (malware and benign 
software) collected in Brazilian cyberspace or popular 
Internet download sites from 2012 to early 2018. We 
collected two classes of software to build the dataset: 
goodware (allegedly benign software) and malware. 
To obtain goodware samples, we implemented a web 
crawler that downloaded software from three sources: 
Sourceforge, Softonic, and CNET Download. We col-
lected ≈130 GB of binary files, which we assumed 
benign, totaling 21,116 unique samples. We have an 
established long-standing partnership with a major 
Brazilian financial institution (which prefers to remain 
anonymous) that provides us with daily malware 
samples collected from detected infections in its cor-
porate perimeter or identified by customers via phish-
ing e-mail attachments. As the malware samples were 
received by our server, we grouped them by day to save 
the temporal information. This process has been exe-
cuted in an ongoing fashion since January 2013, with 
the exception of the period from January to July 2016, 
when the collection was suspended due to a shutdown 
period in the storage server. At the time this article was 
being written, we had collected approximately 80 GB 
of malicious binary samples, totaling 29,704, of which 
23,033 are unique.

After collecting the data, we extracted as many static 
attributes as possible from the downloaded executables 
with the goal of making these available to the research 
community without direct malware sharing, a practice 
that is illegal in Brazil. We used Python’s pefile library 
(github.com/erocarrera/pefile), which allowed us  to 
access the attributes of PE files.6 We extracted 27 attri-
butes from each sample. Of these, 22 are numerical attri-
butes (integer or floating-point numbers, such as base of 
code, base of data, characteristics, dynamic link library 
characteristics, file alignment, image base, machine, 
magic, number of relative virtual addresses and their 
sizes, number of sections, number of symbols, PE type, 
pointer-to-symbol table, size, size of code, size of head-
ers, size of image, size of initialized data, size of optional 
header, size of uninitialized data, time date stamp, and 

entropy), three textual attributes (set of words, such 
as list of dynamic libraries, functions, and compilers/
tools used), and two unique attributes (unique for each 
executable MD5 and SHA1 hashes). It is worth not-
ing that only numerical and textual attributes are used 
in this article: unique attributes are not of interest for 
machine-learning algorithms, given that they are not 
discriminant for the classes, only for the files.

Before using these attributes in a machine-learning 
model, it is necessary to preprocess and normalize 
them. The preprocess consists of transforming the tex-
tual attributes into numerical attributes; that is, the set 
of words is converted into a set of floating-point num-
bers that can be “understood” by a classifier. The aim 
of this preprocessing is to cluster similar texts (docu-
ments). This way, programs that use the same libraries, 
functions, and compilers tend to be close in the fea-
tures’ space. To make that possible, each set of words is 
transformed in a document (in the context of informa-
tion retrieval), where each word is separated by a space. 
Thus, three “documents” are created by file, one for each 
textual attribute.

Following that, all text is case-folded and normal-
ized: text content was kept in lowercase, and any special 
characters, accent marks, and numbers were removed. 
Therefore, we obtained statistical measures about every 
document based on their words, using the vector space 
model (VSM), which represents a document through the 
relative importance of its words.7 With that, the program-
ing language, compiler, packer, and imported libraries 
used as well as the functions the program invoked can help 
to differentiate benign and malicious software. Each text/
document is represented by a sparse vector that contains 
its term frequency–inverse document frequency, a statis-
tic measure used to evaluate how important a word is 
to a document in relation to a collection of documents,8 
and measures for each word in the vocabulary, which can 
be reduced to a number V of words that are most pres-
ent in the given documents or words that are between 
a range of thresholds (minimum and maximum docu-
ment frequency).

In this article, we use a range of thresholds (mini-
mum document frequency of 10 percent and maximum 
of 45 percent) because doing so obtains better results 
than a fixed vocabulary. Finally, after preprocessing all 
textual attributes, each VSM vector is concatenated to 
the other attributes of the file, resulting in a new vec-
tor with 22 + 3 × V, where 22 is the number of numeri-
cal attributes and V is the size of the vocabulary that 
resulted after applying the range of thresholds. How-
ever, there is still a difference in the extracted charac-
teristics scale, leading to the need to normalize them. 
The normalization technique applied on the extracted 
features was the MinMax, which scales every feature 
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(characteristic) into an interval between zero and one. 
From this moment on, all the files are normalized and 
ready for the classification step.

Experiments
Using the representations (set of features) extracted, we 
initially performed experiments with four classifiers: 
multilayer perceptron (MLP), the most frequent type 
of neural network used for classification purposes; sup-
port vector machine (SVM); KNN, a distance-based 
supervised clustering algorithm; and Random Forest, 
an ensemble of decision trees. The MLP used is imple-
mented by TFLearn, a high-level application program-
ming interface built on top of TensorFlow, the Google 
artificial intelligence library.9 For these experiments, we 
considered an MLP that consisted of two hidden lay-
ers: the first with F/2 neurons and the second with F/3, 
where F is the number of features extracted, which var-
ies according to the VSM.

The remaining classifiers used are implementa-
tions from the Scikit Learn library,10 where the chosen 
SVM (support vector classification implementation) 
was set to use linear kernel (default C = 1)—we did 
experiments with the radial basis function kernel and 
grid-search, but the results were not promising—while 
KNN had the value of K fixed in 5. We tried several other 
parameter values, but the ones mentioned produced 
better overall results. To validate our experiments, we 
used 50 percent of the goodware and malware samples 
in the testing set, while the remaining were used in the 
training set. We repeated this procedure 10 times using 
cross-validation with 10 partitions (folds). Note that 
this approach is considered traditional in the literature, 
with the focus on obtaining accuracy rates close to 
100 percent.

We calculated the average values obtained in this 
training/testing process for the measures of accuracy, 
recall, precision, and F1 score (the harmonic mean of 
precision and recall)—classic measures for binary clas-
sification problems (malware/goodware) where class 
is imbalanced—for each of the four applied classifiers. 
The Random Forest classifier achieved the best overall 
result, with better values for all metrics (98.00 percent 
for accuracy, 98.07 percent for F1 score, 97.52 percent 
for recall, and 98.63 percent for precision).

Random Forest is usually successfully applied to 
other classification problems that rely on security 
data, such as offensive tweets, malware in general, 
deanonymization, malicious web pages, and spam. It 
was followed by the KNN (97.11 percent for accu-
racy, 97.22  percent for F1 score, 96.91 percent for 
recall, and 97.54 percent for precision), MLP (96.98 
percent for accuracy, 97.11 percent for F1 score, 97.04 
percent for recall, and 97.07 percent for precision), 

and SVM (94.85 percent for accuracy, 94.93 per-
cent for F1 score, 92.39 percent for recall, and 97.60 
percent for precision), which was about three per-
centage points below Random Forest in almost all 
metrics. However, the presented metrics may not be 
useful for real applications in this area because false 
positives can have a direct influence on users’ actual 
protection. This happens because a classifier that 
causes legitimate software to be blocked/quarantined 
would still represent a precision of 100 percent. Also, 
this is not a good approach to evaluate this problem 
because cross-validation takes into account “samples 
from future”; that is, data from different epochs are 
mixed in the training and validation sets, which can 
help the classifier obtain better results (ignoring the 
concept-drift problem).

When a user installs a benign program, the running 
antivirus must be flexible enough to avoid classifying 
this new software as malware. Hence, the number of 
false positives should be decreased, even though it 
means some malware will not be identified. In machine 
learning, this can be achieved using a threshold that 
defines a minimum value for an item to be effectively 
labeled. For this reason, we evaluated the classifiers’ 
performance with distinct thresholds to decrease 
the number of false positives. In Figure 1, we present 
the false-positive rate (FPR) and false-negative rate 
(FNR) for the SVM, MLP, KNN, and Random For-
est classifiers, respectively (thresholds range between 
zero and one). As expected, the higher the threshold, 
the higher the number of false negatives; that is, the 
number of undetected malware grows as they are clas-
sified as goodware. On the other hand, while the false 
negatives increase, the false positives decrease, reduc-
ing the risk of classifying goodware as malware. Par-
ticular observations regarding distinct thresholds T 
are as follows.

■■ SVM’s FNR starts to increase and its FPR starts to 
decrease slowly when T is close to 50 percent. When 
T is close to 95 percent, the FNR starts to increase 
drastically, achieving a value close to 85 percent when 
T is near 100 percent, while the FPR achieves a value 
close to 0 percent.

■■ MLP’s FNR starts to increase slowly when T is close 
to 50 percent, while its FPR decreases slowly. FNR 
starts to increase drastically when T is close to 90 per-
cent (value close to 5 percent). However, in this case, 
the FPR is already near 0 percent, showing a good 
result from this classifier.

■■ KNN presents more consistent results. Its FPR starts 
to decrease from T = 60 percent and remains stable up 
to 80 percent, when the value drops to ≈0 percent and 
remains stable. The opposite can be observed in the 
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FNR: the values keep stable at around 5 percent from 
T = 80 percent on.

■■ Random Forest seems to have properties even more 
interesting for this problem; given that at T = 50 per-
cent, its FPR and FNR are below 5 percent (really 
close to 0 percent). However, from T = 90 percent 
on, although the FNR stays close to zero, the FNR 
reaches almost 10 percent.

In Figure 2, we show the results of the receiver 
operating characteristic curve of the classifiers. It clari-
fies what has been previously reported in the figures: 
due to the threshold increase, the FPR will be lower; 
that is, fewer samples of goodware will be misclassi-
fied. However, the side effect on the true-positive rate 
(TPR) is that it tends to decrease. The curve also 

shows the consistency of Random Forest, which main-
tains a low FPR and still has a TPR above 87 percent 
even with very high thresholds. The KNN behavior 
is also stable (it manages to maintain an FPR below 
1  percent and a TPR above 93 percent). This shows 
that both classifiers present great certainty about most 
of the learned data. 

On the other hand, MLP achieved a TPR closer to 
that of Random Forest. However, MLP’s FPR is closer 
to 3 percent (Random Forest achieves this rate with an 
FPR below 1 percent). The worst results were achieved 
with SVM: a maximum TPR close to 93 percent and 
FPR greater than 2.5 percent. Nonetheless, if we think 
of an “ideal” classifier for the commercial scenario (for 
example, antivirus), when a goodware would never be 
classified as a malware, the MLP would also exhibit this 

Figure 1. Threshold experiments using (a) SVM, (b) MLP, (c) KNN, and (d) Random Forest classifiers.
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property but with a false-negative rate (FNR = 1 − TPR) 
close to 80 percent.

We compared two classification approaches that 
could be employed daily in industry. The first uses an 
incremental learning method11: as soon as new samples 
appear, we update our model with them, grouping these 
samples with all others that we already collected. To 
do so in this experiment, we divided the samples into 
two groups: one containing samples created up to a cer-
tain month of a year (in the case of malware, this corre-
sponds to the year the sample was collected and sent to 
us from our partner; in the case of goodware, we fetched 
the creation date from their headers and assumed them 
correct), which are used for training, and the other with 
samples created 1 month after that said month, which 
are used for validation. 

For example, if the month indicated is February and 
the year indicated is 2015, the training set contained 
samples that were created up until February 2015 (a 
cumulative set), while the validation set contained sam-
ples created only in March 2015 (1 month after Febru-
ary 2015). This simulates a real-world situation because 
we train with data that were already seen, that is, mal-
ware and goodware that were created before a particular 
month, and test with data from the present (from the 
selected month). 

With both sets created, we used them in two off-the-
shelf machine-learning classifiers—KNN and Ran-
dom Forest—in collected samples from 2012 to 2017, 
excluding months that have no goodware or malware to 
test. Figure 3 shows the experiment results (accuracy, F1 
score, recall, and precision) for KNN. The best accuracy 
obtained by KNN was in July 2013, with 98.81 percent, 
and the worst, in December 2012, with only 35.95 per-
cent. The F1 score is also its worst in December 2012, 
with just 39.69 percent, reaching its peak in April 2014, 
with 99.29 percent. The same happens for the recall, with 
only 24.80 percent in December 2012 and 98.72 percent 
in April 2014. A different scenario occurs with precision, 
which achieves 100 percent about 10 times and has the 
worst result in December 2015, with 91 percent.

In Figure 4 we can see Random Forest results for the 
same experiment. The best accuracy obtained by Ran-
dom Forest was in November 2016, with 99.38 percent, 
and the worst in December 2012, with only 15.43 per-
cent. The F1 score is also worst in December 2012, with 
only 0.97 percent, reaching its peak in September 2013, 
with 99.40 percent. The same happened for recall, with 
only 0.49 percent in December 2012 and 99.06 percent 
in September 2013. A different scenario occurs with 
precision, which achieves 100 percent more than 20 
times. The worst result, 95.92 percent, was in Decem-
ber 2015. The fact that precision is always higher than 
90  percent in both cases shows that the false-positive 

rate is always low; that is, few examples of goodware are 
classified as malware. 

On the other hand, both classifiers have limita-
tions in preventing false negatives in this case, because 
recall never achieves 100 percent. Both classifiers had 
similar results in most cases. This is clear in the overall 
results (collecting the sum of confusion matrices from 
all classifiers). Random Forest achieved 93.18 percent 
for accuracy, 95.50 percent for F1 score, 92.46 percent 
for recall, and 98.74 percent for precision, while KNN 

Figure 2. The ROC curve of the classifier results when using distinct thresholds.
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Figure 3. The results obtained in KNN when updating database samples over time.
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achieved 93.22 percent for accuracy, 95.53 percent for 
F1 score, 92.41 percent for recall, and 98.86 percent for 
precision. The significant drop and recovery of all met-
rics through time in both classifiers demonstrate the 
existence of a concept drift in this dataset and indicate 
that this approach is not good for handling this problem.

In data streams, it is normal for occurring events to 
compromise the performance of classification systems. 

Such events may be concept drifts, which means that 
the system needs updating using the most recent exam-
ples.11 To analyze the existence of drifts in the proposed 
dataset, we applied two of the most popular drift detec-
tors found in the literature: DDM12 and EDDM.13 
Both DDM and EDDM are online supervised methods 
based on sequential error (prequential) monitoring; 
that is, each incoming example, processed separately, 
estimates the prequential error rate. In this way, both 
methods assume that the increasing prequential error 
rate suggests the occurrence of concept drifts.

These drift detectors triggered two levels: warning and 
drift. The warning level suggests that the concept starts 
to drift, then an alternative classifier is updated using the 
examples that rely on this level. The drift level suggests 
that the concept drift occurred; then, the alternative clas-
sifier built during the warning level is used to replace the 
current classifier. In these experiments, both DDM and 
EDDM used Hoeffding trees as base classifiers, and our 
dataset was ordered by date, alternating malware and 
goodware [since we have fewer examples of goodware 
(imbalanced data), we used a circular list, repeating the 
first samples so that malware and goodware always alter-
nated]. In total, 59,408 alternating samples were used 
(half malware and half goodware). We present the follow-
ing evaluation metrics: accuracy, recall, precision, and the 
detection points. Because some drifts occur in the grad-
ual transition period, we consider as true detections only 
the common detection points suggested by both DDM 
and EDDM in a range of at least 1,000 examples. There-
fore, all five drifts suggested by EDDM and six of eight 
drifts suggested by DDM are assumed to be true detec-
tions. All detections are shown in Figure 5, where red is 
DDM and black is EDDM; a peak in prequential error 
indicates a drift point.

Before analyzing the detected drifts, it is possible 
to compare the overall results obtained by DDM and 
EDDM with the incremental learning method. DDM 
obtained an accuracy of 98.70 percent, an F1 score of 
98.81 percent, recall of 98.87 percent, and precision 
of 98.75 percent, while EDDM obtained accuracy of 
98.36 percent, an F1 score of 98.57 percent, recall of 
98.42 percent, and precision of 98.72 percent. Compar-
ing this to the previous approach, DDM was the best, 
followed by EDDM, KNN, and Random Forest, show-
ing the need to take into account the change of concept, 
because both algorithms were about five percentage 
points better in almost all metrics.

DDM detected drift in points 2,320, 2,801, 
5,353, 20,590, 28,444, 42,559, 45,320, and 59,233, 
while EDDM detected drift in points 2,419, 4,476, 
21,436, 28,432, and 44,652. Combining these 
points, we created five inter vals (2,320–2,419, 
4,476–5,353, 20,590–21,436, 28,432–28,444, and 
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Figure 4. The results obtained in the Random Forest classifier when updating 
database samples over time.

Figure 5. The DDM and EDDM detected drifts. Peaks in prequential error  
indicate a drift point.
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44,652–45,320) to compare the samples before and 
after the drift, as shown in Figure 6. Given a start 
point S and an endpoint E, both detected by DDM or 
EDDM, two sets were created by interval: one con-
taining samples around point S (70 samples before 
that point and 70 after), which we call before-drift set 
(purple), and one containing samples around point 
E (also 70 samples before that point and 70 after), 
which we call after-drift set (light green). With both 
sets we can see what happens between the interval 
(from point S to E), which we call drift window, an 
interval where we assume that the transition of con-
cept occurs.

An extremely useful tool for visualizing high- 
dimensional data is t-SNE,14 which creates a faithful rep-
resentation of these data in a lower-dimensional space 
(usually two-dimensional or three-dimensional), cluster-
ing similar samples. Figure 7 shows a t-SNE projection 
of before-drift and after-drift sets of each interval listed, 
where blue and green points represent goodware before 
and after the drift, and red and yellow points represent 
malware before and after a drift. Well-defined clusters are 
also well-defined concepts, and those clusters that are not 
so well defined may still be in a transition phase. From 
this we can conclude the following.

1)	 In January 2013 (2,320–2,419), a new concept of 
malware and goodware appears (left yellow cluster 
and small green cluster next to it).

2)	 In February 2013 (4,476–5,353), a new concept 
of goodware appears (left green cluster), and a 
small malware cluster appears in the center (yel-
low points next to blue and green points). Also, 
we can see that there are no well defined malware 
clusters on the right, which could indicate a transi-
tion phase.

3)	 In November 2013 (20,590–21,436), a new con-
cept of malware appears [next to goodware (blue 
and green points) on the left], and more goodware 
appears next to the malware cluster in the right.

4)	 In April 2014 (28,432–28,444), a new concept of 
goodware appears in the top right, a few examples 
of new malware among goodware appear in bottom 
right, and a small cluster of malware appears toward 
the top.

5)	 In April 2015 (44,652–45,320), new concepts of 
goodware appear (right and bottom green clus-
ters), and a large number of new malware examples 
appears in the center (yellow cluster surrounded by 
a few red points).

To complement the projections, we also present the 
distribution of malware families for before- and after-drift 
sets in each interval. With that, we can better understand 

what is happening in each drift detected, because new 
malware families usually imply new concepts. As shown 
in Figure 8, we conclude the following about each inter-
val (in addition to previous conclusions):

1)	 In January 2013, the new concept of malware that 
appears is represented by about 28 percent of the 
malware after the drift in this period (from homa 
to dillerch families). We can also see some families 
before drift that do not appear after it (allaple, virut, 
and others).

2)	 In February 2013, the small malware cluster appear-
ing in the projection is represented by the new fami-
lies that have low prevalence after the drift, such as 
hoax, conjar, and bestafera. Malware that appear 
after the drift have a prevalence of only about 29 per-
cent. Some families, such as wecod, present only 
before the drift (with about 18 percent prevalence in 
total) and simply disappear after it.

3)	 In November 2013, again, a small malware cluster that 
appears in the projection after the drift is represented 
by three families with low prevalence in this period 
(delf, amonetize, and delfinject). Also, some families 
disappear after the drift, such as installmonster.

4)	 In April 2014, the new concepts are represented by 
the families razy, autoit, spamies, and bancos, that is, 
the yellow points dispersed in the projection. Some 
families, such as atraps, agentb, banbra, jacard, and 
midia, do not appear again after the drift.

5)	 In April 2015, families barys, limitail, iespy, bancos, 
and bankfraud appear after the drift as new con-
cepts. Although a small prevalence, together they 
represent that cluster in the center of the projection. 
The families agentb, zusy, delf, delphi, and score do 
not show up again.

Finally, due to the previously mentioned peculiari-
ties of Brazil, malware targeting its users may change 
to other file types or go against the trend of more 
global malware,15 therefore occurring in drifts unseen in 
other countries.

Figure 6. The drift window scheme. Samples around starting point S comprise 
before-drift set, and samples around ending point E comprise after-drift set.

. . .
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I n this article, we presented the methodology used to 
collect and a method to statically extract programs’ 

attributes to produce comparable labeled feature vec-
tors. These vectors of attributes and their correspond-
ing description were obtained from the database we 
built for this article, which we will make available to the 

scientific community. Thus, we can highlight this arti-
cle’s main points:

1)	 Our research involved a real dataset containing 
50,820 samples, where 21,116 are goodware and 
29,704 are malware.

Figure 7. Projections of before-drift and after-drift sets for each interval listed.
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2)	 Traditional experiments that try to reach 100 per-
cent accuracy are not good in this area because they 
do not take into account the change of concept and 
thus do not reflect a real scenario.

3)	 The industry is interested in machine learning 
because it reaches precision levels close to 100 per-
cent with few false positives; that is, benign pro-
grams are rarely blocked.

4)	 Despite having quite good results, updating the 
training dataset by adding new samples only (incre-
mental learning) is not be the best approach due to 
the samples’ change of concept.

5)	 Online drift detectors, such as DDM and EDDM, 
help improve the classification performance as time 

goes by, because they obtained better overall results 
than incremental learning approaches.

6)	 The t-SNE projections presented for each inter-
val detected, as well as their distribution of mal-
ware families before and after the proposed drift, 
prove the existence of concept drift in our dataset, 
because sample clusters form before and after it and 
new families appear.

In addition, because concept drift can affect the clas-
sification system’s effectiveness, the main recommenda-
tion is to update it constantly, always with the most recent 
samples. One possible solution is to update it periodi-
cally. However, when the concept is stable, some of these 

Figure 8. The distribution of malware families for before- and after-drift sets in each interval listed.
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updates will be unnecessary. Such updates increase the 
computational cost (bad for systems that receive a large 
amount of data). Hence, it would be ideal to detect the 
moment when the drift occurs and only then update the 
classification system (as DDM and EDDM).

We intend to study other solutions to better describe 
the types of concept drifts presented in this scenario, 
including deep learning, as well as to aggregate the 
extraction of dynamic features observed in the collected 
samples, which will enable us to use hybrid approaches 
and apply several other classification techniques to 
compare with the results gathered from static analysis. 
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