
1540-7993/18©2018IEEE Copublished by the IEEE Computer and Reliability Societies November/December 2018 31

SECURITY AND PRIVACY IN BRAZIL

The Need for Speed: An Analysis
of Brazilian Malware Classifiers

Fabrício Ceschin, Felipe Pinagé, Marcos Castilho, David Menotti, Luiz S. Oliveira,
André Grégio | Federal University of Parana

Using a dataset containing about 50,000 samples from Brazilian cyberspace, we show that relying solely
on conventional machine-learning systems without taking into account the change of the subject’s
concept decreases the performance of classification, emphasizing the need to update the decision model
immediately after concept drift occurs.

T he sheer amount of malware variants released
daily underscores the urgent need to create auto-

mated classifiers/detectors. In general, malware classi-
fication through machine-learning techniques is based
in the literature on extracting program characteristics in
a way that they can be classified as malicious or benign
or even grouped into distinct malware families, depend-
ing on the attributes and datasets used. Shortcomings
of these prior efforts are their lack of reproducibility
and the neglect of authors in many cases to provide
the data, scripts, or programs and settings for sample
classification, analysis, and determining the represen-
tativeness of sample selection. Moreover, the focus of
most prior work has been on obtaining accuracy rates
close to 100 percent, without addressing the challenge
of dynamic updating of models as time goes by and
new malware samples appear.1–3 Because there is lit-
tle discussion about the effectiveness of the classifiers
over time and no available data for new tests by other
researchers, there are no guarantees that the results by

prior machine-learning models are exempt from the
bias caused by the chosen dataset.

Our work leveraged a set of representative, unfil-
tered (that is, without preselection of malware families)
benign software and malware samples collected in Bra-
zilian cyberspace from 2012 to 2018. Malware attacks
in Brazil are strongly motivated by profit. Attackers are
intent on either stealing the credentials of people bank-
ing via the Internet4 or they are trying to lure Internet
users into paying fake bills.5 On the one hand, Brazilian’s
cultural and economic aspects make the malware men-
ace distinct from that in other countries. On the other
hand, popular programs worldwide that are considered
benign elsewhere tend to be also popular in Brazil.

After the data collection, we extracted the attributes
of the samples using attributes from their portable exe-
cutable (PE) header. With that, we performed tradi-
tional experiments in the literature, with the focus on
obtaining accuracy rates close to 100 percent, followed
by experiments using thresholds that are of particular
interest in the industry. Then, we simulated the behav-
ior of conventional learning systems using two classifi-
ers [k-Nearest Neighbors (KNN) and Random Forest],

Digital Object Identifier 10.1109/MSEC.2018.2875369
Date of publication: 21 January 2019

32 IEEE Security & Privacy November/December 2018

SECURITY AND PRIVACY IN BRAZIL

updating their databases over time with known samples
to predict new ones. Then, we compared this approach
when updating the decision model only after concept
drift occurred, using concept-drift detection algorithms,
such as the Drift Detection Method (DDM) and the
Early Drift Detection Method (EDDM). We also ana-
lyzed what happened in the detected drift points on our
dataset, using t-distributed stochastic neighbor embed-
ding (t-SNE) projections to show differences in the data
related to these points.

Dataset
To create the dataset presented in this article, we used a
set of ≈200 GB of executable files (malware and benign
software) collected in Brazilian cyberspace or popular
Internet download sites from 2012 to early 2018. We
collected two classes of software to build the dataset:
goodware (allegedly benign software) and malware.
To obtain goodware samples, we implemented a web
crawler that downloaded software from three sources:
Sourceforge, Softonic, and CNET Download. We col-
lected ≈130 GB of binary files, which we assumed
benign, totaling 21,116 unique samples. We have an
established long-standing partnership with a major
Brazilian financial institution (which prefers to remain
anonymous) that provides us with daily malware
samples collected from detected infections in its cor-
porate perimeter or identified by customers via phish-
ing e-mail attachments. As the malware samples were
received by our server, we grouped them by day to save
the temporal information. This process has been exe-
cuted in an ongoing fashion since January 2013, with
the exception of the period from January to July 2016,
when the collection was suspended due to a shutdown
period in the storage server. At the time this article was
being written, we had collected approximately 80 GB
of malicious binary samples, totaling 29,704, of which
23,033 are unique.

After collecting the data, we extracted as many static
attributes as possible from the downloaded executables
with the goal of making these available to the research
 community without direct malware sharing, a practice
that is illegal in Brazil. We used Python’s pefile library
(github.com/erocarrera/pefile), which allowed us to
access the attributes of PE files.6 We extracted 27 attri-
butes from each sample. Of these, 22 are numerical attri-
butes (integer or floating-point numbers, such as base of
code, base of data, characteristics, dynamic link library
characteristics, file alignment, image base, machine,
magic, number of relative virtual addresses and their
sizes, number of sections, number of symbols, PE type,
pointer-to-symbol table, size, size of code, size of head-
ers, size of image, size of initialized data, size of optional
header, size of uninitialized data, time date stamp, and

entropy), three textual attributes (set of words, such
as list of dynamic libraries, functions, and compilers/
tools used), and two unique attributes (unique for each
executable MD5 and SHA1 hashes). It is worth not-
ing that only numerical and textual attributes are used
in this article: unique attributes are not of interest for
machine-learning algorithms, given that they are not
discriminant for the classes, only for the files.

Before using these attributes in a machine-learning
model, it is necessary to preprocess and normalize
them. The preprocess consists of transforming the tex-
tual attributes into numerical attributes; that is, the set
of words is converted into a set of floating-point num-
bers that can be “understood” by a classifier. The aim
of this preprocessing is to cluster similar texts (docu-
ments). This way, programs that use the same libraries,
functions, and compilers tend to be close in the fea-
tures’ space. To make that possible, each set of words is
transformed in a document (in the context of informa-
tion retrieval), where each word is separated by a space.
Thus, three “documents” are created by file, one for each
textual attribute.

Following that, all text is case-folded and normal-
ized: text content was kept in lowercase, and any special
characters, accent marks, and numbers were removed.
Therefore, we obtained statistical measures about every
document based on their words, using the vector space
model (VSM), which represents a document through the
relative importance of its words.7 With that, the program-
ing language, compiler, packer, and imported libraries
used as well as the functions the program invoked can help
to differentiate benign and malicious software. Each text/
document is represented by a sparse vector that contains
its term frequency–inverse document frequency, a statis-
tic measure used to evaluate how important a word is
to a document in relation to a collection of documents,8
and measures for each word in the vocabulary, which can
be reduced to a number V of words that are most pres-
ent in the given documents or words that are between
a range of thresholds (minimum and maximum docu-
ment frequency).

In this article, we use a range of thresholds (mini-
mum document frequency of 10 percent and maximum
of 45 percent) because doing so obtains better results
than a fixed vocabulary. Finally, after preprocessing all
textual attributes, each VSM vector is concatenated to
the other attributes of the file, resulting in a new vec-
tor with 22 + 3 × V, where 22 is the number of numeri-
cal attributes and V is the size of the vocabulary that
resulted after applying the range of thresholds. How-
ever, there is still a difference in the extracted charac-
teristics scale, leading to the need to normalize them.
The normalization technique applied on the extracted
features was the MinMax, which scales every feature

www.computer.org/security 33

(characteristic) into an interval between zero and one.
From this moment on, all the files are normalized and
ready for the classification step.

Experiments
Using the representations (set of features) extracted, we
initially performed experiments with four classifiers:
multilayer perceptron (MLP), the most frequent type
of neural network used for classification purposes; sup-
port vector machine (SVM); KNN, a distance-based
supervised clustering algorithm; and Random Forest,
an ensemble of decision trees. The MLP used is imple-
mented by TFLearn, a high-level application program-
ming interface built on top of TensorFlow, the Google
artificial intelligence library.9 For these experiments, we
considered an MLP that consisted of two hidden lay-
ers: the first with F/2 neurons and the second with F/3,
where F is the number of features extracted, which var-
ies according to the VSM.

The remaining classifiers used are implementa-
tions from the Scikit Learn library,10 where the chosen
SVM (support vector classification implementation)
was set to use linear kernel (default C = 1)—we did
experiments with the radial basis function kernel and
grid-search, but the results were not promising—while
KNN had the value of K fixed in 5. We tried several other
parameter values, but the ones mentioned produced
better overall results. To validate our experiments, we
used 50 percent of the goodware and malware samples
in the testing set, while the remaining were used in the
training set. We repeated this procedure 10 times using
cross-validation with 10 partitions (folds). Note that
this approach is considered traditional in the literature,
with the focus on obtaining accuracy rates close to
100 percent.

We calculated the average values obtained in this
training/testing process for the measures of accuracy,
recall, precision, and F1 score (the harmonic mean of
precision and recall)—classic measures for binary clas-
sification problems (malware/goodware) where class
is imbalanced—for each of the four applied classifiers.
The Random Forest classifier achieved the best overall
result, with better values for all metrics (98.00 percent
for accuracy, 98.07 percent for F1 score, 97.52 percent
for recall, and 98.63 percent for precision).

Random Forest is usually successfully applied to
other classification problems that rely on security
data, such as offensive tweets, malware in general,
deanonymization, malicious web pages, and spam. It
was followed by the KNN (97.11 percent for accu-
racy, 97.22 percent for F1 score, 96.91 percent for
recall, and 97.54 percent for precision), MLP (96.98
percent for accuracy, 97.11 percent for F1 score, 97.04
percent for recall, and 97.07 percent for precision),

and SVM (94.85 percent for accuracy, 94.93 per-
cent for F1 score, 92.39 percent for recall, and 97.60
percent for precision), which was about three per-
centage points below Random Forest in almost all
metrics. However, the presented metrics may not be
useful for real applications in this area because false
positives can have a direct influence on users’ actual
protection. This happens because a classifier that
causes legitimate software to be blocked/quarantined
would still represent a precision of 100 percent. Also,
this is not a good approach to evaluate this problem
because cross-validation takes into account “samples
from future”; that is, data from different epochs are
mixed in the training and validation sets, which can
help the classifier obtain better results (ignoring the
concept-drift problem).

When a user installs a benign program, the running
antivirus must be flexible enough to avoid classifying
this new software as malware. Hence, the number of
false positives should be decreased, even though it
means some malware will not be identified. In machine
learning, this can be achieved using a threshold that
defines a minimum value for an item to be effectively
labeled. For this reason, we evaluated the classifiers’
performance with distinct thresholds to decrease
the number of false positives. In Figure 1, we present
the false-positive rate (FPR) and false-negative rate
(FNR) for the SVM, MLP, KNN, and Random For-
est classifiers, respectively (thresholds range between
zero and one). As expected, the higher the threshold,
the higher the number of false negatives; that is, the
number of undetected malware grows as they are clas-
sified as goodware. On the other hand, while the false
negatives increase, the false positives decrease, reduc-
ing the risk of classifying goodware as malware. Par-
ticular observations regarding distinct thresholds T
are as follows.

 ■ SVM’s FNR starts to increase and its FPR starts to
decrease slowly when T is close to 50 percent. When
T is close to 95 percent, the FNR starts to increase
drastically, achieving a value close to 85 percent when
T is near 100 percent, while the FPR achieves a value
close to 0 percent.

 ■ MLP’s FNR starts to increase slowly when T is close
to 50 percent, while its FPR decreases slowly. FNR
starts to increase drastically when T is close to 90 per-
cent (value close to 5 percent). However, in this case,
the FPR is already near 0 percent, showing a good
result from this classifier.

 ■ KNN presents more consistent results. Its FPR starts
to decrease from T = 60 percent and remains stable up
to 80 percent, when the value drops to ≈0 percent and
remains stable. The opposite can be observed in the

34 IEEE Security & Privacy November/December 2018

SECURITY AND PRIVACY IN BRAZIL

FNR: the values keep stable at around 5 percent from
T = 80 percent on.

 ■ Random Forest seems to have properties even more
interesting for this problem; given that at T = 50 per-
cent, its FPR and FNR are below 5 percent (really
close to 0 percent). However, from T = 90 percent
on, although the FNR stays close to zero, the FNR
reaches almost 10 percent.

In Figure 2, we show the results of the receiver
operating characteristic curve of the classifiers. It clari-
fies what has been previously reported in the figures:
due to the threshold increase, the FPR will be lower;
that is, fewer samples of goodware will be misclassi-
fied. However, the side effect on the true-positive rate
(TPR) is that it tends to decrease. The curve also

shows the consistency of Random Forest, which main-
tains a low FPR and still has a TPR above 87 percent
even with very high thresholds. The KNN behavior
is also stable (it manages to maintain an FPR below
1 percent and a TPR above 93 percent). This shows
that both classifiers present great certainty about most
of the learned data.

On the other hand, MLP achieved a TPR closer to
that of Random Forest. However, MLP’s FPR is closer
to 3 percent (Random Forest achieves this rate with an
FPR below 1 percent). The worst results were achieved
with SVM: a maximum TPR close to 93 percent and
FPR greater than 2.5 percent. Nonetheless, if we think
of an “ideal” classifier for the commercial scenario (for
example, antivirus), when a goodware would never be
classified as a malware, the MLP would also exhibit this

Figure 1. Threshold experiments using (a) SVM, (b) MLP, (c) KNN, and (d) Random Forest classifiers.

1

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

SVM: FPR and FNR × Threshold MLP: FPR and FNR × Threshold

FPR FNR

F
P

R
 a

nd
 F

N
R

1

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

F
P

R
 a

nd
 F

N
R

1

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

KNN: FPR and FNR × Threshold Random Forest: FPR and FNR × Threshold

F
P

R
 a

nd
 F

N
R

1

0.9

0.8

0.7

0.6

0.5
0.4

0.3

0.2

0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

(a) (b)

(c) (d)

F
P

R
 a

nd
 F

N
R

www.computer.org/security 35

property but with a false-negative rate (FNR = 1 − TPR)
close to 80 percent.

We compared two classification approaches that
could be employed daily in industry. The first uses an
incremental learning method11: as soon as new samples
appear, we update our model with them, grouping these
samples with all others that we already collected. To
do so in this experiment, we divided the samples into
two groups: one containing samples created up to a cer-
tain month of a year (in the case of malware, this corre-
sponds to the year the sample was collected and sent to
us from our partner; in the case of goodware, we fetched
the creation date from their headers and assumed them
correct), which are used for training, and the other with
samples created 1 month after that said month, which
are used for validation.

For example, if the month indicated is February and
the year indicated is 2015, the training set contained
samples that were created up until February 2015 (a
cumulative set), while the validation set contained sam-
ples created only in March 2015 (1 month after Febru-
ary 2015). This simulates a real-world situation because
we train with data that were already seen, that is, mal-
ware and goodware that were created before a particular
month, and test with data from the present (from the
selected month).

With both sets created, we used them in two off-the-
shelf machine-learning classifiers—KNN and Ran-
dom Forest—in collected samples from 2012 to 2017,
excluding months that have no goodware or malware to
test. Figure 3 shows the experiment results (accuracy, F1
score, recall, and precision) for KNN. The best accuracy
obtained by KNN was in July 2013, with 98.81 percent,
and the worst, in December 2012, with only 35.95 per-
cent. The F1 score is also its worst in December 2012,
with just 39.69 percent, reaching its peak in April 2014,
with 99.29 percent. The same happens for the recall, with
only 24.80 percent in December 2012 and 98.72 percent
in April 2014. A different scenario occurs with precision,
which achieves 100 percent about 10 times and has the
worst result in December 2015, with 91 percent.

In Figure 4 we can see Random Forest results for the
same experiment. The best accuracy obtained by Ran-
dom Forest was in November 2016, with 99.38 percent,
and the worst in December 2012, with only 15.43 per-
cent. The F1 score is also worst in December 2012, with
only 0.97 percent, reaching its peak in September 2013,
with 99.40 percent. The same happened for recall, with
only 0.49 percent in December 2012 and 99.06 percent
in September 2013. A different scenario occurs with
precision, which achieves 100 percent more than 20
times. The worst result, 95.92 percent, was in Decem-
ber 2015. The fact that precision is always higher than
90 percent in both cases shows that the false-positive

rate is always low; that is, few examples of goodware are
classified as malware.

On the other hand, both classifiers have limita-
tions in preventing false negatives in this case, because
recall never achieves 100 percent. Both classifiers had
similar results in most cases. This is clear in the overall
results (collecting the sum of confusion matrices from
all classifiers). Random Forest achieved 93.18 percent
for accuracy, 95.50 percent for F1 score, 92.46 percent
for recall, and 98.74 percent for precision, while KNN

Figure 2. The ROC curve of the classifier results when using distinct thresholds.

1
0.95
0.9

0.85
0.8

0.75
0.7

0.65
0.6

0.55
0.5

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0 0.005 0.01 0.015 0.02 0.025 0.03

FPR

TPR × FPR

T
P

R

FPR
SVM
KNN
Random Forest

Figure 3. The results obtained in KNN when updating database samples over time.

100

120
100
80
60
40
20
0

90
80
70
60
50
40
30

A
cc

ur
ac

y/
F

1
S

co
re

 (
%

)
R

ec
al

l/P
re

ci
si

on
 (

%
)

D
ec

 2
01

2

M
ar

 2
01

3

Ju
ne

 2
01

3

S
ep

 2
01

3

D
ec

 2
01

3
M

ar
 2

01
4

Ju
ne

 2
01

4

S
ep

 2
01

4

D
ec

 2
01

4
M

ar
 2

01
5

Ju
ne

 2
01

5

S
ep

 2
01

5

D
ec

 2
01

5
O

ct
 2

01
6

F
eb

 2
01

7

M
ay

 2
01

7

A
ug

 2
01

7

N
ov

 2
01

7

Train Month and Year

D
ec

 2
01

2

M
ar

 2
01

3

Ju
ne

 2
01

3

S
ep

 2
01

3

D
ec

 2
01

3
M

ar
 2

01
4

Ju
ne

 2
01

4

S
ep

 2
01

4

D
ec

 2
01

4
M

ar
 2

01
5

Ju
ne

 2
01

5

S
ep

 2
01

5

D
ec

 2
01

5
O

ct
 2

01
6

F
eb

 2
01

7

M
ay

 2
01

7

A
ug

 2
01

7

N
ov

 2
01

7

Train Month and Year

Conventional KNN Recall/Precision

Conventional KNN Accuracy/F1 Score

Accuracy
F1 Score

Recall
Precision

36 IEEE Security & Privacy November/December 2018

SECURITY AND PRIVACY IN BRAZIL

achieved 93.22 percent for accuracy, 95.53 percent for
F1 score, 92.41 percent for recall, and 98.86 percent for
precision. The significant drop and recovery of all met-
rics through time in both classifiers demonstrate the
existence of a concept drift in this dataset and indicate
that this approach is not good for handling this problem.

In data streams, it is normal for occurring events to
compromise the performance of classification systems.

Such events may be concept drifts, which means that
the system needs updating using the most recent exam-
ples.11 To analyze the existence of drifts in the proposed
dataset, we applied two of the most popular drift detec-
tors found in the literature: DDM12 and EDDM.13
Both DDM and EDDM are online supervised methods
based on sequential error (prequential) monitoring;
that is, each incoming example, processed separately,
estimates the prequential error rate. In this way, both
methods assume that the increasing prequential error
rate suggests the occurrence of concept drifts.

These drift detectors triggered two levels: warning and
drift. The warning level suggests that the concept starts
to drift, then an alternative classifier is updated using the
examples that rely on this level. The drift level suggests
that the concept drift occurred; then, the alternative clas-
sifier built during the warning level is used to replace the
current classifier. In these experiments, both DDM and
EDDM used Hoeffding trees as base classifiers, and our
dataset was ordered by date, alternating malware and
goodware [since we have fewer examples of goodware
(imbalanced data), we used a circular list, repeating the
first samples so that malware and goodware always alter-
nated]. In total, 59,408 alternating samples were used
(half malware and half goodware). We present the follow-
ing evaluation metrics: accuracy, recall, precision, and the
detection points. Because some drifts occur in the grad-
ual transition period, we consider as true detections only
the common detection points suggested by both DDM
and EDDM in a range of at least 1,000 examples. There-
fore, all five drifts suggested by EDDM and six of eight
drifts suggested by DDM are assumed to be true detec-
tions. All detections are shown in Figure 5, where red is
DDM and black is EDDM; a peak in prequential error
indicates a drift point.

Before analyzing the detected drifts, it is possible
to compare the overall results obtained by DDM and
EDDM with the incremental learning method. DDM
obtained an accuracy of 98.70 percent, an F1 score of
98.81 percent, recall of 98.87 percent, and precision
of 98.75 percent, while EDDM obtained accuracy of
98.36 percent, an F1 score of 98.57 percent, recall of
98.42 percent, and precision of 98.72 percent. Compar-
ing this to the previous approach, DDM was the best,
followed by EDDM, KNN, and Random Forest, show-
ing the need to take into account the change of concept,
because both algorithms were about five percentage
points better in almost all metrics.

DDM detected drift in points 2,320, 2,801,
5,353, 20,590, 28,444, 42,559, 45,320, and 59,233,
while EDDM detected drift in points 2,419, 4,476,
21,436, 28,432, and 44,652. Combining these
points, we created five inter vals (2,320–2,419,
4,476–5,353, 20,590–21,436, 28,432–28,444, and

100

100

80

60

40

20

0

80

60

30

20

0

A
cc

ur
ac

y/
F

1
S

co
re

 (
%

)
R

ec
al

l/P
re

ci
si

on
 (

%
)

Train Month and Year

Conventional Random Forest Recall/Precision

Conventional Random Forest Accuracy/F1 Score

Accuracy
F1 Score

Recall
Precision

D
ec

 2
01

2

M
ar

 2
01

3

Ju
ne

 2
01

3

S
ep

 2
01

3

D
ec

 2
01

3
M

ar
 2

01
4

Ju
ne

 2
01

4

S
ep

 2
01

4

D
ec

 2
01

4
M

ar
 2

01
5

Ju
ne

 2
01

5

S
ep

 2
01

5

D
ec

 2
01

5
O

ct
 2

01
6

F
eb

 2
01

7

M
ay

 2
01

7

A
ug

 2
01

7

N
ov

 2
01

7

Train Month and Year

D
ec

 2
01

2

M
ar

 2
01

3

Ju
ne

 2
01

3

S
ep

 2
01

3

D
ec

 2
01

3
M

ar
 2

01
4

Ju
ne

 2
01

4

S
ep

 2
01

4

D
ec

 2
01

4
M

ar
 2

01
5

Ju
ne

 2
01

5

S
ep

 2
01

5

D
ec

 2
01

5
O

ct
 2

01
6

F
eb

 2
01

7

M
ay

 2
01

7

A
ug

 2
01

7

N
ov

 2
01

7

Figure 4. The results obtained in the Random Forest classifier when updating
database samples over time.

Figure 5. The DDM and EDDM detected drifts. Peaks in prequential error
indicate a drift point.

1

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 1 2 3 4 5 6

Number of Examples × 104

DDM (Red) × EDDM (Black)

P
re

qu
en

tia
l E

rr
or

www.computer.org/security 37

44,652–45,320) to compare the samples before and
after the drift, as shown in Figure 6. Given a start
point S and an endpoint E, both detected by DDM or
EDDM, two sets were created by interval: one con-
taining samples around point S (70 samples before
that point and 70 after), which we call before-drift set
(purple), and one containing samples around point
E (also 70 samples before that point and 70 after),
which we call after-drift set (light green). With both
sets we can see what happens between the interval
(from point S to E), which we call drift window, an
interval where we assume that the transition of con-
cept occurs.

An extremely useful tool for visualizing high-
dimensional data is t-SNE,14 which creates a faithful rep-
resentation of these data in a lower-dimensional space
(usually two-dimensional or three-dimensional), cluster-
ing similar samples. Figure 7 shows a t-SNE projection
of before-drift and after-drift sets of each interval listed,
where blue and green points represent goodware before
and after the drift, and red and yellow points represent
malware before and after a drift. Well-defined clusters are
also well-defined concepts, and those clusters that are not
so well defined may still be in a transition phase. From
this we can conclude the following.

1) In January 2013 (2,320–2,419), a new concept of
malware and goodware appears (left yellow cluster
and small green cluster next to it).

2) In February 2013 (4,476–5,353), a new concept
of goodware appears (left green cluster), and a
small malware cluster appears in the center (yel-
low points next to blue and green points). Also,
we can see that there are no well defined malware
clusters on the right, which could indicate a transi-
tion phase.

3) In November 2013 (20,590–21,436), a new con-
cept of malware appears [next to goodware (blue
and green points) on the left], and more goodware
appears next to the malware cluster in the right.

4) In April 2014 (28,432–28,444), a new concept of
goodware appears in the top right, a few examples
of new malware among goodware appear in bottom
right, and a small cluster of malware appears toward
the top.

5) In April 2015 (44,652–45,320), new concepts of
goodware appear (right and bottom green clus-
ters), and a large number of new malware examples
appears in the center (yellow cluster surrounded by
a few red points).

To complement the projections, we also present the
distribution of malware families for before- and after-drift
sets in each interval. With that, we can better understand

what is happening in each drift detected, because new
malware families usually imply new concepts. As shown
in Figure 8, we conclude the following about each inter-
val (in addition to previous conclusions):

1) In January 2013, the new concept of malware that
appears is represented by about 28 percent of the
malware after the drift in this period (from homa
to dillerch families). We can also see some families
before drift that do not appear after it (allaple, virut,
and others).

2) In February 2013, the small malware cluster appear-
ing in the projection is represented by the new fami-
lies that have low prevalence after the drift, such as
hoax, conjar, and bestafera. Malware that appear
after the drift have a prevalence of only about 29 per-
cent. Some families, such as wecod, present only
before the drift (with about 18 percent prevalence in
total) and simply disappear after it.

3) In November 2013, again, a small malware cluster that
appears in the projection after the drift is represented
by three families with low prevalence in this period
(delf, amonetize, and delfinject). Also, some families
disappear after the drift, such as installmonster.

4) In April 2014, the new concepts are represented by
the families razy, autoit, spamies, and bancos, that is,
the yellow points dispersed in the projection. Some
families, such as atraps, agentb, banbra, jacard, and
midia, do not appear again after the drift.

5) In April 2015, families barys, limitail, iespy, bancos,
and bankfraud appear after the drift as new con-
cepts. Although a small prevalence, together they
represent that cluster in the center of the projection.
The families agentb, zusy, delf, delphi, and score do
not show up again.

Finally, due to the previously mentioned peculiari-
ties of Brazil, malware targeting its users may change
to other file types or go against the trend of more
global malware,15 therefore occurring in drifts unseen in
other countries.

Figure 6. The drift window scheme. Samples around starting point S comprise
before-drift set, and samples around ending point E comprise after-drift set.

. . .
S E

S+70S–70 E–70 E+70

Drift Window

Before Drift After Drift

38 IEEE Security & Privacy November/December 2018

SECURITY AND PRIVACY IN BRAZIL

I n this article, we presented the methodology used to
collect and a method to statically extract programs’

attributes to produce comparable labeled feature vec-
tors. These vectors of attributes and their correspond-
ing description were obtained from the database we
built for this article, which we will make available to the

scientific community. Thus, we can highlight this arti-
cle’s main points:

1) Our research involved a real dataset containing
50,820 samples, where 21,116 are goodware and
29,704 are malware.

Figure 7. Projections of before-drift and after-drift sets for each interval listed.

400

Interval from 2,320 to 2,419 (January 2013) Interval from 4,476 to 5,353 (February 2013)

Interval from 20,590 to 21,436 (November 2013)

Interval from 44,652 to 45,320 (April 2015)

Interval from 28,432 to 28,444 (April 2014)

1,000

500

–500

–1,000

0

200

–200

–400

–600

50

25

0

–25

–50

–75

–100

400

200

–200

–400

0

–125

1,000

500

–500

–1,000 –500 0 500 1,000

0

–1,250 –1,000 –1,000 –500 0 500 1,000 1,500–1,500–750 –500 –250 0 250 500 750

–50 –600 –400 –200 0 200–25 0 25 50 75 100

0

Goodware Before Drift
Goodware After Drift
Malware Before Drift
Malware After Drift

www.computer.org/security 39

2) Traditional experiments that try to reach 100 per-
cent accuracy are not good in this area because they
do not take into account the change of concept and
thus do not reflect a real scenario.

3) The industry is interested in machine learning
because it reaches precision levels close to 100 per-
cent with few false positives; that is, benign pro-
grams are rarely blocked.

4) Despite having quite good results, updating the
training dataset by adding new samples only (incre-
mental learning) is not be the best approach due to
the samples’ change of concept.

5) Online drift detectors, such as DDM and EDDM,
help improve the classification performance as time

goes by, because they obtained better overall results
than incremental learning approaches.

6) The t-SNE projections presented for each inter-
val detected, as well as their distribution of mal-
ware families before and after the proposed drift,
prove the existence of concept drift in our dataset,
because sample clusters form before and after it and
new families appear.

In addition, because concept drift can affect the clas-
sification system’s effectiveness, the main recommenda-
tion is to update it constantly, always with the most recent
samples. One possible solution is to update it periodi-
cally. However, when the concept is stable, some of these

Figure 8. The distribution of malware families for before- and after-drift sets in each interval listed.

35
30
25
20
15
10

5
0

(%
)

35
30
25
20
15
10

5
0

(%
)

35
40
45
50
55

30
25
20
15
10
5
0

(%
)

35
40
45

30
25
20
15
10
5
0

(%
)

35
40
45

30
25
20
15
10
5
0

(%
)

A
lla

pl
e

S
IN

G
LE

T
O

N
S

V
iru

t
B

an
lo

ad
B

an
br

a
B

an
co

s
P

oe
bo

t
B

uz
us

F
ly

st
ud

io
V

ils
el

D
el

f
B

es
ta

fe
ra

S
to

ld
t

C
he

pr
o

H
om

a
D

el
et

er
Z

ap
ch

as
t

N
et

pa
ss

S
un

ny
di

gi
ts

M
ai

lp
as

sv
ie

w
H

oa
x

S
co

re
D

ap
at

o
X

or
al

a
D

ill
er

ch

In
st

al
lm

on
st

er

Z
us

y

A
ut

oi
t

D
ap

at
o

P
ro

xy
ch

an
ge

r
G

am
ar

ue
E

xp
lo

re
hi

ja
ck

B
es

ta
fe

ra
S

co
re

S
co

re

A
tr

ap
s

A
ge

nt
b

B
an

br
a

Ja
ca

rd

M
id

ia

R
az

y

A
ut

oi
t

S
pa

m
ie

s

B
an

co
s

T
op

to
ol

s
V

bi
nd

er
C

on
tu

ed
o

O
pe

nc
an

dy
S

od
eb

ra
l

A
m

on
et

iz
e

D
el

fin
je

ct

S
IN

G
LE

T
O

N
S

S
IN

G
LE

T
O

N
S

S
IN

G
LE

T
O

N
S

B
an

lo
ad

B
an

co
s

D
el

f

D
el

f

C
he

pr
o

C
he

pr
o

B
an

lo
ad

B
an

lo
ad

W
ec

od
D

ap
at

o
S

co
re

B
an

br
a

D
el

f
P

ro
xy

ch
an

ge
r

M
ai

lp
as

sv
ie

w
B

la
ck

C
he

pr
o

B
ra

do
p

Z
us

y
B

an
co

s
D

el
ba

r
H

oa
x

C
on

ja
r

B
es

ta
fe

ra
Z

ap
ch

as
t

D
el

et
er

M
on

te
ra

S
IN

G
LE

T
O

N
S

B
an

lo
ad

A
ut

oi
t

A
ge

nt
b

B
la

da
bi

nd
i

C
he

pr
o

Z
us

y

B
an

br
a

D
el

f

D
el

ph
i

S
co

re

B
ar

ys

Li
m

ita
il

Ie
sp

y

B
an

co
s

B
an

kf
ra

ud

Interval from 2,320 to 2,419 (January 2013) Interval from 4,476 to 5,353 (February 2013)

Interval from 20,590 to 21,436 (November 2013)

Interval from 44,652 to 45,320 (April 2015)

Interval from 28,432 to 28,444 (April 2014)

Before Drift
After Drift

40 IEEE Security & Privacy November/December 2018

SECURITY AND PRIVACY IN BRAZIL

updates will be unnecessary. Such updates increase the
computational cost (bad for systems that receive a large
amount of data). Hence, it would be ideal to detect the
moment when the drift occurs and only then update the
classification system (as DDM and EDDM).

We intend to study other solutions to better describe
the types of concept drifts presented in this scenario,
including deep learning, as well as to aggregate the
extraction of dynamic features observed in the collected
samples, which will enable us to use hybrid approaches
and apply several other classification techniques to
compare with the results gathered from static analysis.

Acknowledgments
We thank Google for supporting this article through the
2017 Google Research Awards for Latin America.

References
 1. W. Huang and J. W. Stokes, “Mtnet: A multi-task neu-

ral network for dynamic malware classification,” in
Proc. 13th Int. Conf. Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (DIMVA), 2016, pp.
399–418.

 2. O. E. David and N. S. Netanyahu, “Deepsign: Deep learn-
ing for automatic malware signature generation and classi-
fication,” in Proc. Int. Joint Conf. Neural Networks (IJCNN),
July 2015, pp. 1–8.

 3. C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. v. Steen, “Prudent practices
for designing malware experiments: Status quo and out-
look,” in Proc. IEEE Symp. Security and Privacy, May 2012,
pp. 65–79.

 4. A. R. A. Gregio, D. S. Fernandes, V. M. Afonso, P. L. de
Geus, V. F. Martins, and M. Jino, “An empirical analysis
of malicious Internet banking software behavior,” in Proc.
28th Annu. ACM Symp. Applied Computing, 2013, pp.
1830–1835.

 5. V. Blue. (2014). Rsa: Brazil’s ‘Boleto Malware’ stole
nearly $4 billion in two years. ZDNet. [Online]. Available:
https://www.zdnet.com/article/rsa-brazils-boleto-malware-
stole-nearly-4-billion-in-two-years/

 6. M. Pietrek. (2016). Peering inside the PE: A tour of
the Win32 portable executable file format. Microsoft.
[Online]. Available: https://msdn.microsoft.com/en-us
/library/ms809762.aspx

 7. P. D. Turney and P. Pantel. (2010, Mar. 4). From frequency
to meaning: Vector space models of semantics. arXiv.
[Online]. Available: http://arxiv.org/abs/1003.1141

 8. C. D. Manning, P. Raghavan, and H. Schutze, Introduction
to information retrieval. New York: Cambridge University
Press, 2008.

 9. A. Damien et al. (2016). Tflearn: Deep learning library fea-
turing a higher-level API for TensorFlow. Github. Available:
https://github.com/tflearn/tflearn, 2016.

 10. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” J. Mach. Learning Res., vol. 12,
pp. 2825–2830, 2011.

 11. F. A. Pinage, E. M. dos Santos, and J. M. P. da Gama, “Clas-
sification systems in dynamic environments: An over-
view,” Wiley Interdisciplinary Rev.: Data Mining Knowledge
Discovery, vol. 6, no. 5, pp. 156–166, 2016.

 12. J. Gama, P. Medas, G. Castillo, and P. Rodrigues,
“Learning with drift detection,” in Advances in Artifi-
cial Intelligence – SBIA 2004, A. L. C. Bazzan and S.
Labidi, Eds. Berlin: Springer Berlin Heidelberg, 2004,
pp. 286–295.

 13. M. Baena-Garcıa, J. del Campo-Ávila, R . Fidalgo-
Merino, A. Bifet, R. Gavald, and R. Morales-Bueno.
2006), Early drift detection method. ResearchGate,
Berlin. [Online] Available: https://www.researchgate
.net/publication/245999704_Early_Drift_Detection_
Method

 14. L. van der Maaten and G. Hinton, “Visualizing high-
dimensional data using t-SNE,” J. Mach. Learning Res., vol. 9,
pp. 2579–2605, 2008.

 15. M. Botacin, P. L. de Geus, and A. R. A. Gregio, “The
other guys: Automated analysis of marginalized mal-
ware,” J. Computer Virology Hacking Techniques, vol. 14,
no. 1, pp. 87–98, 2018. [Online]. Available: https://doi
.org/10.1007/s11416-017-0292-8.

Fabrício Ceschin is a Ph.D. student at Federal University of
Paraná, Brazil, where he received his M.S. degree in infor-
matics. His research interests include machine learning
and deep learning applied to security. He has received
support from the Google Research Awards for the
Latin America program. Contact him at fjoceschin@
inf.ufpr.br.

Felipe Pinagé is a postdoctoral researcher at the Federal
University of Paraná, Brazil. His research interests
include machine learning, data streams, and concept
drift. Pinagé received a Ph.D. in informatics from the
Federal University of Amazonas, Brazil, in 2017. Con-
tact him at fapinage@inf.ufpr.br.

Marcos Castilho is a full professor at the Federal
University of Paraná, Brazil. His research inter-
ests include artificial intelligence and free software
for scientific computing. He coordinates research
and development projects funded by the Brazilian
Ministry of Education, with a focus on informatics
applied to education, transparency, and monitor-
ing of public resources. Castilho received a Ph.D.
in informatics from the Université Toulouse III Paul

www.computer.org/security 41

Sabatier, France, in 1998. Contact him at marcos@
inf.ufpr.br.

David Menotti is an associate professor at the Federal
University of Paraná, Brazil. He has research projects
funded by the Brazilian National Counsel of Techno-
logical and Scientific Development (CNPq) and had
an approval for a Ph.D. IBM fellowship nomination in
2017. His research interests include pattern recogni-
tion, computer vision, image processing, and machine
learning. He has been a CNPq research fellow since
2015 and an IEEE Senior Member since March 2018.
Contact him at menotti@inf.ufpr.br.

Luiz S. Oliveira is an associate professor at the Federal
University of Paraná, Brazil. His research interests
include pattern recognition, machine learning, and
computer vision. In 2017, he received an IBM Fac-
ulty Award for work on texture classification. He
has been a Brazilian National Counsel of Techno-
logical and Scientific Development research fel-
low (level 1D) since 2006. Contact him at luiz
.oliveira@ufpr.br.

André Grégio is an assistant professor at the Federal
University of Paraná, Brazil. His research interests
include several aspects of computer and network
security, such as countermeasures against malicious
codes, security data visualization/analysis, and
mobile security. He has research projects funded
by the Brazilian National Counsel of Technological
and Scientific Development, the Brazilian Minis-
try of Health, and Google. Grégio received a Ph.D.
in computer engineering from the University of
Campinas, Brazil, in 2012. Contact him at gregio@
inf.ufpr.br.

Executive Committee (ExCom) Members: Jeffrey Voas, President;

Dennis Hoffman, Sr. Past President, Christian Hansen, Jr. Past

President; Pierre Dersin, VP Technical Activities; Pradeep Lall, VP

Publications; Carole Graas, VP Meetings and Conferences; Joe Childs,

VP Membership; Alfred Stevens, Secretary; Bob Loomis, Treasurer

Administrative Committee (AdCom) Members:

Joseph A. Childs, Pierre Dersin, Lance Fiondella, Carole Graas, Samuel

J. Keene, W. Eric Wong, Scott Abrams, Evelyn H. Hirt, Charles H.

Recchia, Jason W. Rupe, Alfred M. Stevens, Jeffrey Voas, Marsha

Abramo, Loretta Arellano, Lon Chase, Pradeep Lall, Zhaojun (Steven)

Li, Shiuhpyng Shieh

http://rs.ieee.org

The IEEE Reliability Society (RS) is a technical society within the
IEEE, which is the world’s leading professional association for the
advancement of technology. The RS is engaged in the engineering
disciplines of hardware, software, and human factors. Its focus on the
broad aspects of reliability allows the RS to be seen as the IEEE Specialty
Engineering organization. The IEEE Reliability Society is concerned
with attaining and sustaining these design attributes throughout
the total life cycle. The Reliability Society has the management,
resources, and administrative and technical structures to develop
and to provide technical information via publications, training,
conferences, and technical library (IEEE Xplore) data to its
members and the Specialty Engineering community. The IEEE
Reliability Society has 28 chapters and members in 60 countries
worldwide.

The Reliability Society is the IEEE professional society for
Reliability Engineering, along with other Specialty Engineering
disciplines. These disciplines are design engineering fields that apply
scientific knowledge so that their specific attributes are designed
into the system / product / device / process to assure that it will
perform its intended function for the required duration within
a given environment, including the ability to test and support it
throughout its total life cycle. This is accomplished concurrently
with other design disciplines by contributing to the planning
and selection of the system architecture, design implementation,
materials, processes, and components; followed by verifying
the selections made by thorough analysis and test and then
sustainment.

Visit the IEEE Reliability Society website as it is the gateway
to the many resources that the RS makes available to its members
and others interested in the broad aspects of Reliability and Specialty
Engineering.

