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Outdoor parking lot vacancy detection systems have attracted a great deal of attention in the last decade
due the large number of practical applications. However, a common problem that researchers in this field
very often face is the lack of a representative dataset to perform their experiments. To mitigate this dif-
ficulty, in this paper we introduce a new parking lot dataset composed of 695,899 images captured from
two parking lots with three different camera views. The acquisition protocol allows obtaining static
images showing illumination variance related to sunny, overcast and rainy days. We believe that
researchers will find this dataset a very useful tool since it allows future benchmarking and evaluation.
The dataset is currently available for research purposes upon request. To gain a better insight into this
dataset we have evaluated two textural descriptors, Local Binary Patterns and Local Phase
Quantization, with a Support Vector Machine classifier to detect parking lot vacancy. In the experiments
where the same view was used for both training and testing, we have reached outstanding recognition
rates, greater than 99%. The main challenge, though, lies in building a general classifier that is able to
detect parking spaces from the parking lots that were not used for training. In this sense, the best result
achieved by the texture-based classifier was about 89%. The observed drop in terms of performance
shows that additional investigation is necessary to create classification schemes less dependent on the
training set. Other researchers can use these results as a baseline performance when testing their own
algorithms on this dataset.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Finding a vacant space in parking lots of large metropolitan
areas may frequently becomes exhausting. Apart from stressful,
this challenging task usually consumes considerable time and
money. In addition, it contributes to pollute the environment with
CO2 emissions. Trying to solve this problem, the industry offers
solutions based on different technologies that can be categorized
into counter-based, sensor-based, and image-based.

Counter-based systems count the number of vehicles entering
and exiting the parking area. To this end, it uses gate-arm counters
and inductive loop detectors located at the entrances and exits.
This kind of system can inform the total number of vacant lots in
a closed car park area, but does not help much in guiding the driver
to the exact location of the vacant lots. It is commonly employed in
great outdoor parking lots due to its relatively low cost. Sensor-
based systems (Chunhe & Jilin, 2004; Wolff et al., 2006), take into
account detection sensors such as ultrasonic sensors which are
installed at each parking space. This information is then relayed
to display panels at strategic locations in the parking lot. The dis-
play panels provide information, direction and guide the drivers
to vacant parking spaces. The main drawback of the sensor-based
approach is the cost for developing the system because the large
amount of sensors units required to cover the entire parking lot.

The third category is based on image or video processing. Those
who advocate against the use of image-based techniques say that
video cameras are remarkable expensive sensors which generate
large amount of data that may be difficult to transmit over a wire-
less network (Tang, Zheng, & Cao, 2006). On the other hand, the
literature shows that image-based parking space detection systems
can be deployed using existing surveillance cameras that are
already connected to a central monitoring system (Ichihashi,
Notsu, Honda, Katada, & Fujiyoshi, 2009). It turns out that image-
based systems are a good alternative for large and outdoor parking
lots where the installation of hundreds or even thousands of sen-
sors are unfeasible.
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Fig. 1. Example of a parking lot.

1 http://web.inf.ufpr.br/vri/parking-lot-database.
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Huang and Wang (2010) show that image-based systems can be
classified into two categories: car-driven and space-driven. In the
former, algorithms are developed to detect cars, which are the
objects of interest. In this vein, there are several object detection
algorithms that can be used (Schneiderman & Kanade, 2004;
Viola & Jones, 2004). Because of the perspective distortion,
observed in most images of parking lots (e.g. Fig. 1) a car far away
occupies a small area, hence, features few details which degrades
considerably the performance of the object detection algorithms.
In fact, it depends on the position of the camera. Therefore objects
far away from the camera are represented by less pixels than
objects that are close.

For the space-driven, the focus lies on detecting empty spaces
rather than vehicles (Funck, Mohler, & Oertel, 2004; Lee, Wen,
Han, & Kou, 2005). For static cameras, such as the surveillance
cameras, the most used strategy is the background subtraction
(Horprasert, Harwood, & Davis, 1999), which assumes that the
variation of the background is statistically stationary within a short
period. Since this hypothesis does not hold for outdoor scenes, this
strategy shows rapidly its limits. A more robust approach was pro-
posed by Sastre, Gil Jimenez, Acevedo, and Maldonado Bascon
(2007) where they used Gabor filters as feature extractor to train
a classifier with empty spaces under different light conditions.

A mix of both car- and space-driven approach has been proposed
by several authors by modeling both vehicles and empty spaces
using different sorts of features and classification algorithms.
Support Vector Machine (SVM) is certainly the most used machine
learning algorithm, while color is the most employed descriptor
(Bong, Ting, & Lai, 2008; Huang & Wang, 2010; Lin, Chen, & Liu,
2006; Wu, Huang, yu Wang, Chiu, & Chen, 2007). The performance
of color-based systems, however, may be considerably affected by
changes of lighting conditions. With this in mind, other families
of features have been investigated, such as Edges (Bin, Dalin,
Fang, & Tingting, 2009), Principal Component Analysis (PCA)
(Ichihashi et al., 2009), and Optical Flow (Yu & Chen, 2009).

Recently, Huang, Tai, and Wang (2013) presented an extended
version of their work presented in Huang and Wang (2010). The
main novelty is the processing of nighttime images by considering
a preprocessing to enhance the image quality. To this end, the
authors combine multiple images captured with different exposure
settings. The resulting preprocessed images are very similar to
those taken on the evening. They reported interesting results on
their own dataset. Similarly, in Jermsak, Umair, Abdulhamid,
Haiwei, and Nikolaos (2014), the authors trained two classifiers
one for daytime and other for nighttime images, both trained on
pixel based features related to light, color, edge and time (differ-
ence between adjacent frames). They reported robust results for
both classifiers in a one-day long evaluation based on 126 parking
spots.

Despite the importance of the aforementioned contributions, the
parking space classification is still an open problem. A major chal-
lenge to pursuing research involving parking space classification is
the lack of a consistent and reliable dataset. To the best of our knowl-
edge, the datasets reported in the literature usually suffer from at
least one of the following constraints: (a) it contains few samples;
(b) all image samples are related to the same parking lot; (c) the
image samples do not adequately cover the significant changes of
lighting conditions caused by sunny, overcast and rainy days.

To overcome this problem, the main contribution of this work is
to present the PKLot, a robust image dataset of parking lots which
is an extended version of the one introduced in Almeida, Oliveira,
Silva, Britto Jr, and Koerich (2013). It was extended from 105,837
to 695,899 images. In this new version, the parking spaces were
captured from different parking lots under varied weather condi-
tions. Each parking space image was manually checked and classi-
fied according to its situation (vacant or occupied) and to the
weather condition observed during the image acquisition (sunny,
overcast or rainy). The PKLot is available for research purposes
under request.1 In addition, through a set of comprehensive experi-
ments, we demonstrate that texture descriptors are a good alterna-
tive for the detection of empty or occupied parking spaces. The
experimental protocol created on the basis of the PKLot dataset,
allow us to assess the developed textural-based classifiers on images
captured from different parking lots and under significant changes in
lightning conditions.

The core of the proposed method is formed by two textural
descriptors, Local Binary Patterns (LBP) and Local Phase
Quantization (LPQ). These two descriptors have attracted a great
deal of attention in the last years because of their performance in a
number of applications (Costa, Oliveira, Koerich, Gouyon, &
Martins, 2012; Filho, Oliveira, Nisgoski, & Britto, 2014; Mansano,
Pavesi, Oliveira, Britto Jr, & Koerich, 2011; Rahtu, Heikkilä,
Ojansivu, & Ahonen, 2012; Zavaschi, Britto, Oliveira, & Koerich,
2013). The concept of the LBP was first proposed in Ojala,
Pietikäinen, and Harwood (1996) as a simple approach, robust in
terms of grayscale variations, which proved its ability to efficiently

http://web.inf.ufpr.br/vri/parking-lot-database
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discriminate among a wide range of rotated textures. Later, they
extended their work (Ojala, Pietikainen, & Maenpaa, 2002) to pro-
duce a grayscale and rotation invariant texture operator. The con-
cept of LPQ was originally proposed by Ojansivu and Heikkilä
(2008), and has been shown to be robust in terms of blur, and to out-
perform LBP in texture classification (Ojansivu, Rahtu, & Heikkila,
2008).

Besides the standard versions of the LBP and LPQ, we also have
evaluated some variations such as the LBP Rotation Invariant, LPQ
with Gaussian window and LPQ Gaussian derivative quadrature fil-
ter pair. The results reported in this study show that the Support
Vector Machine (SVM) classifiers trained with these textural-base
descriptors are able to achieve, when combined, a correct classifi-
cation rate of 99:64%. In addition, experiments on parking lots that
have not contributed with images for training the classifiers allow
us to show some loss in terms of accuracy (11:9 percentage points
in average). These experiments are used to introduce the PKLot
dataset, while the obtained results can be considered as a baseline
performance for further researches.

This paper is organized as follows. Section 2 introduces the
PKLot dataset presenting its main characteristics. Section 3
describes an evaluation protocol based on the PKLot dataset.
Section 4 describes the textural features used in the experiments
undertaken to construct and assess the proposed parking lot detec-
tion method. The experiments and corresponding results are
shown in Section 5. Finally, Section 6 presents our conclusions
and insights for future work.
2. The PKLot dataset

The PKLot dataset contains 12,417 images of parking lots and
695,899 images of parking spaces segmented from them, which
were manually checked and labeled. All images were acquired at
the parking lots of the Federal University of Parana (UFPR) and
the Pontifical Catholic University of Parana (PUCPR), both located
in Curitiba, Brazil. The protocol used to construct the PKLot dataset
is composed of three steps, as follows:
Fig. 2. Images captured under different weather conditions: (a) sunny (b) overcast, and
sunny (h) overcast, and (i) rainy from PUCPR.
� Image acquisition: this process was defined to be executed
with a 5-min time-lapse interval for a period of more than
30 days by means of a low cost full high definition camera
(Microsoft LifeCam, HD-5000) positioned at the top of a build-
ing to minimize the possible occlusion between adjacent vehi-
cles. The main goal was to obtain images under different
weather conditions (overcast, sunny, and rainy periods) by
registering at each 5 min the environment changes. Such a
setup, allows to capture sequences of images showing high vari-
ability in terms of illumination occasioned by weather changes.
For instance, in a short period it is possible to observe light rain,
heavy rain, and after rain conditions. Unfortunately, we do not
have night shots since the illumination available in the parking
lots was not sufficient to acquire good quality images. The
resulting images were stored in JPEG color format with lossless
compression (quality 100%) in a resolution of 1280 � 720 pix-
els. They were organized into three subsets named UFPR04,
UFPR05 and PUCPR. The first two contain images of different
views of the same parking lot captured from the 4th and 5th
floors of the UFPR building. The last dataset contains images
captured from the 10th floor of the administration building of
the PUCPR. Fig. 2 shows some image samples of the three park-
ing lots captured under the aforementioned weather conditions.
It is possible to observe some challenges posed by this dataset,
such as: sunny images (Fig. 2(a)) presenting overexposed cars
and shadows caused by the trees; or images acquired under
heavy rain (Fig. 2(c)) that look like night images due the lack
of natural light.
� Labeling: for each parking lot image was created an Extensible

Markup Language (XML) file containing the position and situa-
tion (vacant or occupied) of each parking space. An interactive
tool was developed to label the images. Such a tool allows the
visualization of each image and the definition of the limits of
each parking space (represented by points of a polygon), as well
as the situation (vacant or occupied). Different subfolders were
used to manually categorize the images according to the
observed weather condition (overcast, sunny, or rainy period).
(c) rainy from UFPR04; (d) sunny (e) overcast, and (f) rainy from UFPR05; and (g)
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� Segmentation: the individual parking spaces were extracted
from each parking lot image using the information available
in the corresponding XML file. In addition, the slope of the rec-
tangle containing the parking space image was modified
according to the scheme presented in Fig. 3. Those with less
than 45� were rotated to 0�, while those with more than 45�

were rotated to 90�. Fig. 4(a) shows an image where the 28
available spaces are marked in green. It is important to mention
that only valid parking spaces were labeled and segmented.
Valid parking spaces are those signed (delimited) with parallel
yellow or white lines on the floor. As one can notice, there are
some cars parked in an unauthorized manner, i.e., in the middle
of the street. Two samples of the segmented parking spaces are
depicted in Fig. 4(b) (occupied) and (c) (empty).

Table 1 summarizes the general characteristics of each subset.
As one may see, for instance, the images captured from the subset
UFPR04 allow us to monitor 28 individual spaces. This subset con-
tains 3791 images captured under different weather conditions.
After a semi-automatic segmentation process and a manual check-
ing and labeling, it sums up 105,845 images of individual lots,
43.48% occupied and 56.42% empty. Similar information is pro-
vided for the UFPR05 and PUCPR subsets.

Here is a short summary of what makes this dataset interesting
to computer vision research community:

(i) Images covering different climatic conditions (sunny, rainy
and overcast periods) were taken under uncontrolled
illumination.

(ii) Images were taken from different parking lots presenting
distinct features.

(iii) Cameras were positioned at different heights.
(iv) Images show a varied kind of problems, such as the presence

of shadows, over-exposition to sunlight, low light in rainy
days, difference in perspective, and so on.
Fig. 3. Skew ad

Fig. 4. Segmented image: (a) 28 delimited spaces, (b
(v) vehicle images are typical for a commercial surveillance sys-
tem, i.e., the camera is placed highly above the vehicles,
making the detection even more demanding.

(vi) a large number of potential uses.

Although the first and the most important potential use of this
dataset is to test the robustness of algorithms with the objective of
detecting vacant parking spaces in a real-world surveillance sce-
nario, its application is not restricted to it. Our cameras were
placed at different heights and the images were gathered at differ-
ent climatic conditions. This issue is the strongest point of this
dataset. It remains to be seen how will algorithms perform in such
variable conditions and how does the vehicle distance from camera
influence the results. There is also a potential to test various image
preprocessing algorithms, as some of parking spaces are far from
the camera mounting position and the perspective plays an impor-
tant role in such cases.

In addition, by including different pose images of vehicles and
parking spaces, we made it possible to use this dataset in modeling
parking spaces and vehicles. Other potential uses of this dataset
include but are not restricted to: evaluation of algorithms’ robust-
ness to different vehicle poses, evaluation of natural illumination
normalization algorithms, evaluation of new features for vehicle
(or space) description, and so on.

3. Proposed evaluation protocol

This section describes an evaluation protocol proposed on the
basis of the PKLot dataset, which is applied in the experiments pre-
sented in Section 5.

3.1. Definition of training/testing sets

The strategy used to select images to compose the training and
testing sets follows an important rule in the PKLot dataset. This
justment.

) occupied sub-image, and (c) empty sub-image.



Table 1
Summary of the PKLot characteristics.

Parking lot Weather condition # Of days # Of images # Of parking spaces

Occupied Empty Total

UFPR04 Sunny 20 2098 32,166 (54.98%) 26,334 (45.02%) 58,400
(28 parking spaces) Overcast 15 1408 11,608 (29.47%) 27,779 (70.53%) 39,387

Rainy 14 285 2351 (29.54%) 5607 (70.46%) 7958
Subtotal 3791 46,125 (43.58%) 59,720 (56.42%) 105,845

UFPR05 Sunny 25 2500 57,584 (57.65%) 42,306 (42.35%) 99,890
(45 parking spaces) Overcast 19 1426 33,764 (59.27%) 23,202 (40.73%) 56,966

Rainy 8 226 6078 (68.07%) 2851 (31.93%) 8929
Subtotal 4152 97,426 (58.77%) 68,359 (41.23%) 165,785

PUCPR Sunny 24 2315 96,762 (46.42%) 111,672 (53.58%) 208,433
(100 parking spaces) Overcast 11 1328 42,363 (31.90%) 90,417 (68.10%) 132,780

Rainy 8 831 55,104 (66.35%) 27,951 (33.65%) 83,056
Subtotal 4474 194,229 (45.78%) 230,040 (51.46%) 424,269

TOTAL 12,417 337,780 (48.54%) 358,119 (51.46%) 695,899
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rule determines that images of the same day can belong to just one
of these sets. This avoids that pictures related to the same car
parked in the same space for hours showing just light variations
can appear in the training and the testing sets simultaneously.
With this in mind, we suggest in this protocol to consider 50% of
the images available in the subsets UFPR04, UFPR05 and PUCPR
for training and 50% for testing. Table 2 shows the amount of sam-
ples available for training and testing, which follows this
proportion.
Fig. 5. 2� 2 confusion matrix.

3.2. Performance estimation

The performance of the created classifiers on the testing set can
be estimated based on the Overall Error Rate (OER) given by Eq. (1).

OER ¼ FP þ FN
TP þ TN þ FP þ FN

ð1Þ

where FP; FN; TP, and TN stand for False Positive, False Negative,
True Positive, and True Negative, respectively. These statistics can
be defined in the 2� 2 confusion matrix depicted in Fig. 5.

Another interesting tool for performance estimation is the
Receiver Operating Characteristics (ROC) curve. It is created by
plotting the TP rate (sensitivity) against the FP rate (specificity)
at various threshold settings. An interesting measure of the accu-
racy is the area under the ROC curve. A test is 100% accurate if both
the sensitivity and specificity are 1.0. It means that there are no
false positives and no false negatives.
Table 2
Training and testing sets.

Training sets

Occupied Empty

UFPR04 Sunny 16,524 14,327
Overcast 6989 15,076
Rainy 1041 2553
Total 24,554 31,956

UFPR05 Sunny 28,822 21,657
Overcast 15,421 12,985
Rainy 2751 1633
Total 46,994 36,275

PUCPR Sunny 47,490 59,731
Overcast 26,774 42,933
Rainy 19,540 16,025
Total 93,804 118,689

Total of samples 165,352 186,920
3.3. Research directions

Different research directions can be followed on the basis of the
PKLot dataset, as follows:

� Single parking lot training and testing: This experiment is
devoted to evaluate the suitability of feature sets to represent
the presence or absence of a vehicle in a parking space as well
as to compare the performance of classifiers trained on descrip-
tors extracted from images that belong to a single parking lot. It
means that each classifier is trained on images from one of the
training subsets (UFPR04, UFPR05 or PUCPR) and assessed using
the respective testing set. For instance, considering UFPR04 as
training set, the accuracies and confusion matrices related to
the each classifier are computed only for the UFPR04 testing set.
Testing sets

Total Occupied Empty Total

30,851 15,642 12,007 27,649
22,065 4619 12,703 17,322

3594 1310 3054 4364
56,510 21,571 27,764 49,335

50,479 28,762 20,649 49,411
28,406 18,343 10,217 28,560

4384 3327 1218 4545
83,269 50,432 32,084 82,516

107,221 49,271 51,941 101,212
69,707 15,589 47,484 63,073
35,565 35,565 11,926 47,491

212,493 100,425 111,351 211,776

352,272 172,428 171,199 343,627



Fig. 6. LBP uniform pattern (Ojala et al., 2002). (a) the two transitions showed
identifies the pattern as uniform. (b) with four transitions, it is not considered a
uniform pattern.
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� Single parking lot training and multiple parking lot testing: This
experiment allows to measure the generalization power of fea-
tures and classifiers. For such an aim, classifiers trained on
images of a specific parking lot are used to classify images from
other parking lots. It means that each classifier is trained on
images from one of the training subsets (UFPR04, UFPR05 or
PUCPR), however they are assessed using a different testing
set. Thus, considering UFPR04 as training set, the accuracies
and confusion matrices related to the each classifier are com-
puted for the testing sets available in UFPR05 and PUCPR.
� Multiple parking lot training: here, the classifiers are trained on

images of multiple parking lots. Thus, the objective is to mea-
sure the ability of the trained classifiers in absorbing the wide
variability related to the images captured using different angles
of view and camera height mounting as well as presenting var-
ied surface patterns. It means that each classifier is trained on
images from two or more of the training subsets (UFPR04,
UFPR05 and PUCPR), however they are assessed using a single
testing set. Thus, considering the fusion of UFPR04 and
UFPR05 as training set, the accuracies and confusion matrices
related are computed for the testing set available in PUCPR. In
order to produce a balanced training set, we recommend to
selected randomly from the UFPR05 and PUCPR training subsets
the same amount of images available on UFPR04, which pre-
sents the smallest number of training samples.

The list of proposed research directions is not exhaustive. For
instance, another direction using the PKLot could be to investigate
throughout an error analysis the real impact on the system perfor-
mance caused by images from different climatic conditions (sunny,
rainy and overcast). With such analysis, it is possible to define new
features and parameters to make a system fine tuning.
4. Features

As stated before, in this paper we have used two recently devel-
oped texture descriptors that have been successfully applied into
different application domains. To make this paper self-contained,
in this section we briefly describe both descriptors assessed in
our experiments, the Local Binary Patterns and Local Phase
Quantization.

4.1. Local Binary Patterns

Ojala et al. (2002) present a model to describe texture, called
Local Binary Patterns (LBP). In this model, each pixel C contains a
set of neighbors P, equally spaced at a distance R from C. A his-
togram h is defined by the texture intensity differences between
C and its neighbors, P. When the neighbors do not correspond to
an image pixel integer value, that value is obtained by inter-
polation. An important characteristic of this descriptor is its invari-
ance to changes in the value of the average intensity of the central
pixels, when comparing it with its neighbors.

Considering the resulting sign of the difference between C and
each neighbor P, by definition, we assign a result of 1 to a positive
sign, and 0 otherwise. This makes it possible to obtain the invari-
ance of the intensity value of pixels in gray scale format. With this
information, the LBP value can be obtained by multiplying the bin-
ary elements for a binomial coefficient. So, a value 0 6 C0 6 2P is
generated, which is the value of the feature vector.

Observing the non uniformity of the vector obtained, Ojala et al.
(2002) introduced a concept based on the transition between 0s
and 1s in the LBP image. They explained that a binary LBP code
is considered uniform if the number of transitions is less than or
equal to 2, also considering that the code is seen as a circular list.
That is, the code 00100100 is not considered uniform, because it
contains four transitions, while the code 00100000 is characterized
as uniform, because it only has two transitions. Fig. 6 illustrates
this idea.

Accumulating the patterns that have more than two transitions
into a single bin yields an LBP operator, denoted LBPu2

P;R, with fewer

than 2P bins. For example, the number of labels for a neighborhood
of 8 pixels is 256 for the standard LBP but 59 for LBPu2. Then, a his-
togram of the frequency of the different labels produced by the LBP
operator can be built (Ojala et al., 1996).

LBP variants were proposed in Ojala et al. (2002). LBPri and
LBPriu2 have the same LBPP;R definition, but they have only 36
and 10 patterns, respectively. LBPri accumulates, in only one bin
(Eq. (2)), all binary patterns which keep the same minimum value

LBPri
P;R when their P bits are rotated (ROR). LBPriu2 combines LBPu2

and LBPri definition. Thus, it uses only the uniform binary patterns
and accumulates, in only one bin, those that keep the same mini-

mum decimal value LBPri
P;R when their P bits are rotated.

LBPri
P;R ¼ minfRORðLBPP;R; iÞ i ¼ 0; . . . ; P � 1g: ð2Þ

Therefore we have a 59-dimensional feature vector for the standard
LBP, a 36-dimensional feature vector for LBPri and a 10-dimensional
feature vector for the LBPriu2.

4.2. Local Phase Quantization

The Local Phase Quantization (LPQ) (Ojansivu & Heikkilä, 2008)
is based on the blur invariance property of the Fourier phase spec-
trum. The local phase information of an N � N image f ðxÞ is
extracted by the 2D DFT (short-term Fourier transform (STFT))

f̂ ui
ðxÞ ¼ ð f �Uui

Þx ð3Þ

The filter Uui
is a complex valued m�m mask, defined in the dis-

crete domain by

Uui
¼ fe�j2puT

i
yjy 2 Z2; jjyjj1 6 rg; ð4Þ

where r ¼ ðm� 1Þ=2, and ui is a 2D frequency vector. In LPQ only
four complex coefficients are considered, corresponding to 2D

frequencies u1 ¼ ½a;0�T ;u2 ¼ ½0; a�T ;u3 ¼ ½a; a�T , and u4 ¼ ½a;�a�T ,
where a ¼ 1=m. For the sake of convenience, the STFT presented
in Eq. (3) is expressed using the vector notation presented in Eq. (5)

f̂ ui
ðxÞ ¼ wT

ui
fðxÞ ð5Þ

where wu is the basis vector of the STFT at frequency u and fðxÞ is a
vector of length m2 containing the image pixel values from the
m�m neighborhood of x.
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Let

F ¼ ½fðx1Þ; fðx2Þ; . . . ; fðxN2 Þ� ð6Þ

denote an m2 � N2 matrix that comprises the neighborhoods for all
the pixels in the image and let

w ¼ ½wR;wIÞ�T ð7Þ
Table 3
Experimental results by training on UFPR04. Accuracy and confusion matrices of the
best single classifier and best fusion scheme for the testing sets (a) UFPR04, (b)
UFPR05 and (c) PUCPR.

(a) Testing on UFPR04
LPQu Mean rule

Occupied Empty Occupied Empty
Occupied 21,491 80 Occupied 21,477 94
Empty 140 27,624 Empty 84 27,680
Accuracy 99.55% Accuracy 99.64%

(b)Testing on UFPR05
LPQg Max Rule

Occupied Empty Occupied Empty
Occupied 41,919 8,513 Occupied 43,077 7,355
Empty 3,928 28,156 Empty 2,273 29,811
Accuracy 84.92% Accuracy 88.33%

(c) Testing on PUCPR
LPQg Max Rule

Occupied Empty Occupied Empty
Occupied 72,898 27,527 Occupied 81,067 19,358
Empty 5,819 105,532 Empty 5,204 106,147
Accuracy 84.25% Accuracy 88.40%

Fig. 7. ROC curve of the best classifier of each textural descriptor (LBP and LPQ), and the b
UFPR05; and (c) PUCPR.
where wR ¼ Re½wu1 ;wu2 ;wu3 ;wu4 � and wI ¼ Im½wu1 ;wu2 ;wu3 ;wu4 �.
In this case, Ref�g and Imf�g return the real and imaginary parts of
a complex number, respectively.

The corresponding 8� N2 transformation matrix is given by

F̂ ¼ wF ð8Þ

In Ojansivu and Heikkilä (2008), the authors assume that the image
function f ðxÞ is a result of a first order Markov process, where the
correlation coefficient between two pixels xi and xj is exponentially

related to their L2 distance. Without a loss of generality, they define
each pixel to have unit variance. For the vector f, this leads to a
m2 �m2 covariance matrix C with elements given by

ci;j ¼ rjjxi�xj jj ð9Þ

where jj � jj stands for the L2 norm. The covariance matrix of the
Fourier coefficients can be obtained from

D ¼ wCwT ð10Þ

Since D is not a diagonal matrix, i.e., the coefficients are correlated,
they can be decorrelated by using the whitening transformation

E ¼ VT F̂ where V is an orthogonal matrix derived from the singular
value decomposition (SVD) of the matrix D that is

D0 ¼ VT DV ð11Þ

The whitened coefficients are then quantized using

qi;j ¼
1 if ei;j P 0
0 otherwise

�
ð12Þ
est fusion scheme using UFPR04 as training set and the testing sets: (a) UFPR04; (b)



Table 5
Experimental results by training on UFPR05. Accuracy and confusion matrices of the
best single classifier and best fusion scheme for the testing sets (a) UFPR04, (b)
UFPR05 and (c) PUCPR.

(a) Testing on UFPR04
LPQgd Mean Rule

Occupied Empty Occupied Empty
Occupied 19,251 2,320 Occupied 20,685 886
Empty 4,703 23,061 Empty 6,255 21,509
Accuracy 85.76% Accuracy 85.53%

(b)Testing on UFPR05
LPQu Mean Rule

Occupied Empty Occupied Empty
Occupied 49,847 585 Occupied 50,041 391
Empty 320 31,764 Empty 188 31,896
Accuracy 98.90% Accuracy 99.30%

(c) Testing on PUCPR
LPQu Mean Rule

Occupied Empty Occupied Empty
Occupied 92,365 8,060 Occupied 97,011 3,414
Empty 17,912 93,439 Empty 18,133 93,218
Accuracy 87.74% Accuracy 89.83%
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where ei;j are the components of E. The quantized coefficients are
represented as integer values from 0 to 255 using binary coding

bj ¼
X7

i¼0

qi;j2
i ð13Þ

Finally, a histogram of these integer values from all the image posi-
tions is composed and used as a 256-dimensional feature vector in
classification.

5. Experiments and results

This section presents the experimental results related to the
evaluation protocol proposed in Section 3. As mentioned before,
the idea is to introduce the PKLot dataset, providing a baseline per-
formance for researchers and practitioners who plan to use it. The
classifier used for the experiments was the Support Vector
Machine (SVM) introduced by Vapnik (1998). Normalisation was
performed by linearly scaling each attribute to the range [�1,
+1]. The free parameters of the system and for SVM training were
chosen using 5-fold cross validation. Different kernels were evalu-
ated, and the best results were achieved using a Gaussian kernel.
Parameters C and c were determined through a grid search.

One of the limitations of SVMs is that they do not work in a
probabilistic framework. However, there are several situations
where it would be very useful to have a classifier which produces
a posterior probability PðclassjinputÞ. In our case, we are interested
in estimating probabilities because we want to evaluate different
fusion strategies, like Sum, Max, Min, Mean, and Median. Due to
the benefits of having classifiers estimating probabilities, many
researchers have been working on the problem of estimating
probabilities with SVM classifiers (Platt, 1999; Sollich, 2002). In
this work, we have adopted the strategy proposed by Platt (1999).

5.1. Training on a single parking lot

The experiments here are related to the two first research direc-
tions suggested in the evaluation protocol presented in Section 3.
Table 4
Summary of the classification results on the testing sets considering UFPR04 for training.

UFPR04 UFPR05

AUC FPR FNR AUC

LPQg 0.9997 0.0062 0.0060 0.9461
LPQgd 0.9999 0.0040 0.0048 0.9368
LPQu 0.9998 0.0037 0.0050 0.9393
LBPu 0.9990 0.0164 0.0086 0.9329
LBPri 0.9685 0.1242 0.0707 0.9393
LBPriu2 0.9380 0.1834 0.0915 0.8954
Mean Rule 0.9997 0.0044 0.0030 0.9582
Max Rule 0.9994 0.0050 0.0040 0.9595

Bold values are the best values for the measures.

Fig. 8. Misclassified samples observed
They are devoted to compare the performance of classifiers trained
on images that belong to a single parking lot. It means that each
classifier is trained on images from one of the training subsets
(UFPR04, UFPR05 or PUCPR) and assessed using each of the three
available testing sets.

As described before, for the textural descriptors we have used
the standard LBP and LPQ. For the LBPu2 we have evaluated eight
neighbors and different distances, but distance one presented the
best results. LPQ was also evaluated for different window sizes
and the best results were achieved using a 3� 3-sized window.
The success of LBP and LPQ in several different applications insti-
gate other researchers to further improve those descriptors. As a
result of these efforts, the literature shows that some variations
of LBP and LPQ achieve yet better results than the standard
descriptors. With this in mind, we have assessed the LBP
Rotation Invariant (LBPri) (Ojala et al., 2002), LPQ STFT with
PUCPR

FPR FNR AUC FPR FNR

0.1688 0.1224 0.9423 0.2741 0.0523
0.2094 0.1031 0.9498 0.5468 0.0050
0.2090 0.1004 0.9519 0.5198 0.0077
0.1701 0.1368 0.9149 0.1345 0.2015
0.2662 0.0549 0.8953 0.3630 0.1144
0.2972 0.0721 0.8324 0.3315 0.1097
0.1765 0.0625 0.9713 0.2630 0.0052
0.1458 0.0708 0.9522 0.1928 0.0467

in experiment UFPR04/UFPR04.



Fig. 9. ROC curve of the best classifier of each textural descriptor (LBP and LPQ), and the best fusion scheme using UFPR05 as training set and the testing sets: (a) UFPR04; (b)
UFPR05; and (c) PUCPR.

Table 6
Summary of the classification results on the testing sets considering UFPR05 for training.

UFPR04 UFPR05 PUCPR

AUC FPR FNR AUC FPR FNR AUC FPR FNR

LPQg 0.9091 0.0848 0.2475 0.9992 0.0140 0.0115 0.9310 0.0637 0.2416
LPQgd 0.9313 0.1076 0.1694 0.9994 0.0120 0.0106 0.9384 0.1032 0.1495
LPQu 0.9307 0.1128 0.1669 0.9994 0.0116 0.0100 0.9436 0.0803 0.1609
LBPu 0.8689 0.1763 0.2458 0.9991 0.0164 0.0090 0.9343 0.0441 0.3212
LBPri 0.8835 0.0617 0.4052 0.9801 0.0707 0.0705 0.9082 0.0920 0.2366
LBPriu2 0.8047 0.0638 0.4600 0.9546 0.1004 0.0944 0.8842 0.1089 0.2190
Mean rule 0.9533 0.0411 0.2253 0.9995 0.0078 0.0059 0.9761 0.0340 0.1628
Max rule 0.9298 0.0449 0.2920 0.9991 0.0083 0.0061 0.9520 0.0339 0.1826

Bold values are the best values for the measures.

Fig. 10. Misclassified samples observed in experiment UFPR05/UFPR05.
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Gaussian Windows and LPQ Gaussian derivative quadrature filter
pair (Rahtu et al., 2012).

Considering UFPR04 as training set, we can see in Table 3 (a, b
and c), the accuracies and confusion matrices related to the best
classifier and best fusion schemes observed for the testing sets
available in UFPR04, UFPR05 and PUCPR subsets, respectively. As
can be seen, LPQu and the mean rule have shown the best results
for the UFPR04 testing set, while LPQ g and the max rule provided



Table 7
Experimental results by training on PUCPR. Accuracy and confusion matrices of the
best single classifier and best fusion scheme for the testing sets (a) UFPR04, (b)
UFPR05 and (c) PUCPR.

(a) Testing on UFPR04
LPQg Mean Rule

Occupied Empty Occupied Empty
Occupied 20,310 1,261 Occupied 20,650 921
Empty 5,077 22,687 Empty 4,563 23,201
Accuracy 87.15% Accuracy 88.88%

(b)Testing on UFPR05
LBPri Mean Rule

Occupied Empty Occupied Empty
Occupied 42,088 8,344 Occupied 42,496 7,936
Empty 5,862 26,222 Empty 5,102 26,982
Accuracy 82.78% Accuracy 84.20%

(c) Testing on PUCPR
LPQu Mean Rule

Occupied Empty Occupied Empty
Occupied 99,911 514 Occupied 99,944 481
Empty 374 110,977 Empty 351 111,000
Accuracy 99.58% Accuracy 99.61%
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the best results for UFPR05 and PUCPR testing sets. It is also possi-
ble to observe the impact of testing on images from different data-
sets. The accuracy of the single classifier dropped from 99.55% to
84.25% in the worst case, while a minor loss was observed for
the ensemble-based solutions, from 99.64% to 88.33% in the worst
scenario. It is worth noting that the improvement on accuracy pro-
vided by the fusion schemes, confirms the existence of certain
Fig. 11. ROC curve of the best classifier of each textural descriptor (LBP and LPQ), and the
UFPR05; and (c) PUCPR.
complementarity among the textural-classifiers in the constructed
ensembles.

Fig. 7 shows the ROC curves related to the best LBP and LPQ
classifiers, and also to the best combination scheme, for each test-
ing set. All best AUCs are related to variants of the LPQ. We can also
see the impact on the AUC when the testing images come from a
different parking lot than that used for training the classifiers.
Table 4 summarizes the results for each testing set when UFPR04
was used for training, while Fig. 8 presents some samples of mis-
classified parking spaces.

Similar experiments were done considering UFPR05 as training
set. We can see in Table 5 (a, b and c), the accuracies and confusion
matrices related to the best classifier and best fusion schemes
observed for all the testing sets. As one may see the best results
among the single classifiers were provided by those trained on

LPQu and LPQ gd features, while the Mean rule was always the best
fusion scheme. Similar behavior was observed when a different
testing set is used, i.e., a loss in terms of accuracy.

In addition the ROC curves of the best LBP, LPQ and fusion
scheme, are shown in Fig. 9 for each testing set. Table 6 sum-
marizes the results for each testing set when UFPR05 was used
for training, while Fig. 10 presents some samples of misclassified
parking spaces.

Finally, we have evaluated PUCPR as training set. We can see in
Table 7 (a, b and c), the accuracies and confusion matrices related
to the best classifier and best fusion scheme observed for each test-
ing set. Here LPQu, LPQri and LPQ g were the best single classifiers,
while Mean rule was always the best fusion scheme. In addition,
the loss in terms of accuracy related to the use of a different testing
best fusion scheme using PUCPR as training set and the testing sets: (a) UFPR04; (b)



Table 8
Summary of the classification results on the testing sets considering PUCPR for training.

UFPR04 UFPR05 PUCPR

AUC FPR FNR AUC FPR FNR AUC FPR FNR

LPQg 0.9483 0.0585 0.1829 0.8916 0.1335 0.2904 0.9998 0.0068 0.0043
LPQgd 0.9479 0.0502 0.2545 0.8792 0.1313 0.3072 0.9998 0.0052 0.0034
LPQu 0.7777 0.9090 0.0006 0.7675 0.9243 0.0006 0.9999 0.0051 0.0034

LBPu 0.9225 0.1131 0.2055 0.8697 0.1611 0.2890 0.9994 0.0127 0.0063
LBPri 0.9006 0.0563 0.3879 0.9152 0.1655 0.1827 0.9912 0.0559 0.0377
LBPriu2 0.8577 0.0804 0.3410 0.891 0.2009 0.1435 0.9794 0.0726 0.0415

Mean rule 0.9589 0.0427 0.1643 0.9194 0.1574 0.1590 0.9998 0.0048 0.0032

Max rule 0.8826 0.0537 0.2065 0.8363 0.2186 0.1114 0.9997 0.0053 0.0037

Bold values are the best values for the measures.

Fig. 12. Misclassified samples observed in experiment PUCPR/PUCPR.

Table 9
Experimental results considering a training process based on multiple parking lots.
The classifiers trained on multiple parking lots (ALL) are compared to that trained on
UFPR04 subset.

UFPR04/UFPR04 ALL/UFPR04

AUC FPR FNR AUC FPR FNR

LPQg 0.9997 0.0062 0.0060 0.9995 0.0088 0.0087
LPQgd 0.9999 0.0040 0.0048 0.9997 0.0045 0.0069
LPQu 0.9998 0.0037 0.0050 0.9997 0.0051 0.0075

LBPu 0.9990 0.0164 0.0086 0.9986 0.0167 0.0138
LBPri 0.9685 0.1242 0.0707 0.9596 0.0945 0.1175
LBPriu2 0.9380 0.1834 0.0915 0.9525 0.1094 0.1761

Mean rule 0.9997 0.0044 0.0030 0.9996 0.0046 0.0057

Max rule 0.9994 0.0050 0.0040 0.9993 0.0039 0.0062

Bold values are the best values for the measures.
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set is more significant, about 17 and 15 percentage points for the
single and the ensemble-based classifiers, respectively. The reason
is that the PUCPR subset differs significantly from the other two
subsets in terms of ground patterns, angle of view and camera
mounting height. The ROC curves of the best LBP and LPQ classi-
fiers, and the best fusion scheme are plotted in Fig. 11, considering
each testing set. Table 8 summarizes the results for each testing set
Table 10
Experimental results considering a training process based on multiple parking lots.
The classifiers trained on multiple parking lots (ALL) are compared to that trained on
UFPR05 subset.

UFPR05/UFPR05 ALL/UFPR05

AUC FPR FNR AUC FPR FNR

LPQg 0.9992 0.0140 0.0115 0.9982 0.0152 0.0209
LPQgd 0.9994 0.0120 0.0106 0.9984 0.0132 0.0208
LPQu 0.9994 0.0116 0.0100 0.9986 0.0138 0.0189

LBPu 0.9991 0.0164 0.0090 0.9979 0.0200 0.0194
LBPri 0.9801 0.0707 0.0705 0.9745 0.1030 0.0618
LBPriu2 0.9546 0.1004 0.0944 0.9467 0.1485 0.0780

Mean rule 0.9995 0.0078 0.0059 0.9988 0.0116 0.0118

Max rule 0.9991 0.0083 0.0061 0.9980 0.0102 0.0125

Bold values are the best values for the measures.
when PUCPR was used for training, while Fig. 12 presents some
samples of misclassified parking spaces.

Through this first set of experiments, we have demonstrated
that texture descriptors are a good alternative for parking space
detection. Both LBP and LPQ are able to achieve very low error rates
with the classifier trained with LPQ and its variants being slightly
superior. Our experimental results also show that the combination
of all classifiers brings some gain of performance.

With respect to the experiments on testing images captured
from a parking lot that has not contributed with images for the
training process of the created classifiers, we have observed a sig-
nificant loss in terms of accuracy and AUC. The classifiers still pro-
viding satisfactory performances, but not superior than 90%. An
error analysis have shown misclassification related to spaces par-
tially occluded by the car parked on adjacent spaces, occluded by
trees, or with significant changes in the surface motivated by sha-
dow or rain.

5.2. Training on multiple parking lots

Here we have considered as suggested in the third research
direction pointed out in Section 3, training the classifiers using
images from multiples parking lots. For this purpose, the classifiers
are created using all training samples available in UFPR04, UFPR05
Table 11
Experimental results considering a training process based on multiple parking lots.
The classifiers trained on multiple parking lots (ALL) are compared to that trained on
PUCPR subset.

PUCPR/PUCPR ALL/PUCPR

AUC FPR FNR AUC FPR FNR

LPQg 0.9998 0.0068 0.0043 0.9994 0.0080 0.0097
LPQgd 0.9998 0.0052 0.0034 0.9997 0.0058 0.0063
LPQu 0.9999 0.0051 0.0034 0.9996 0.0072 0.0073

LBPu 0.9994 0.0127 0.0063 0.9989 0.0107 0.0159
LBPri 0.9912 0.0559 0.0377 0.9755 0.0827 0.0577
LBPriu2 0.9794 0.0726 0.0415 0.9643 0.0942 0.0552

Mean rule 0.9998 0.0048 0.0032 0.9997 0.0048 0.0048
Max rule 0.9997 0.0053 0.0037 0.9993 0.0046 0.0060

Bold values are the best values for the measures.



Fig. 13. ROC curves of the classifiers trained on multiple parking lots considering as testing sets: (a) UFPR04; (b) UFPR05; and (c) PUCPR.

Table 12
Comparison to related works reported in the literature.

Reference Features Number of parking
spaces

Error rate
(%)

Wu et al. (2007) Color 1100 6.5
Sastre et al. (2007) Gabor

filters
12,150 2.2

Bong et al. (2008) Color 80 7.0
Huang et al. (2008) Color 2600 2.5
Ichihashi et al. (2009) PCA 54,000 2.0
Huang and Wang

(2010)
Color 6912 1.2

Proposed method Texture (UFPR04) 49,335 0.4
(UFPR05) 82,516 0.7
(PUCPR) 211,776 0.4
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and PUCPR subsets. In order to produce a balanced training set, we
have randomly selected from UFPR05 and PUCPR the same amount
of images available on UFPR04, which presents the smallest num-
ber of training samples.

Tables 9–11 present the results of the classifiers trained on mul-
tiple subsets compared with those trained on the subsets UFPR04,
UFPR05 and PUCPR, respectively. The ROC curves of these classi-
fiers are shown in Fig. 13. The experiments have shown that in gen-
eral the trained classifiers may provide similar results than those
trained on a specific parking lot.
6. Conclusion

In this paper we introduced a new parking lot dataset composed
of 695,899 images captured from two parking lots with three
different camera views. The available images show a wide lumi-
nance variation since they were captured under different climatic
conditions (sunny, rainy and overcast periods) without any control
on the illumination. With the obtained images one is able to evalu-
ate different classification techniques considering the main chal-
lenges usually present in a real scenario, such as the presence of
shadows, over-exposition to sunlight, low light in rainy days, dif-
ference in perspective, and so on. In addition, with a set of compre-
hensive experiments, we demonstrated that texture-based
descriptors are a good alternative to distinguish between empty
and occupied parking spaces.

The main contribution of this work is to make available a robust
dataset for the scientific community. The PKLot is an important
alternative to researchers and practitioners dedicated to create
outdoor parking lot vacancy detection systems. It overcomes the
problem regarding the lack of a common dataset, allowing future
benchmarking and evaluation.

Beyond gaining better insight into the dataset, the experiments
on textural descriptors allowed some important observations. The
experimental protocol created on the basis of the PKLot dataset,
allow us to assess textural-based classifiers on images captured
from different parking lots and under significant changes in light-
ning conditions. Different from the related works in the literature,
here only textural-based descriptors were used for classification of
parking spaces. The results confirm that such a kind of information
is an interesting alternative to distinguish between vacant and
occupied parking spaces, well absorbing the large variance on the
illumination observed in the images of the PKLot dataset. In the
experiments where the same view was used for training and test-
ing, we have reached outstanding recognition rates, greater than
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99%. This result compares favorably to the related works in the
literature, as shown in Table 12. Finally, different from the usual
experimental protocols found in the literature, we have tried to
build a general classifier that is able to classify correctly images
from the parking lots that were not used for training. The best
result achieved by the texture-based classifier was about 89%.
This drop in terms of classification performance was expected,
however, it shows that additional investigation is necessary. We
believe the proposed dataset could be very useful to help design
a robust classifier less dependent on the training set.

As future work, with the proposed dataset is possible to evalu-
ate different techniques to create pools of classifiers by varying the
parameters of base classifiers, or by playing with the datasets used
for training. In such direction, we can also evaluate the use of static
and dynamic selection of classifiers from the initial pools. Another
direction using the PKLot could be to investigate throughout an
error analysis the real impact on the system performance caused
by images from different climatic conditions (sunny, rainy and
overcast). With such analysis, it is possible to define new features
and parameters to make a system fine tuning.
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