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a b s t r a c t 

Financial time series are notoriously difficult to analyze and predict, given their non-stationary, highly 

oscillatory nature. In this study, we evaluate the effectiveness of the Ensemble Empirical Mode Decom- 

position (EEMD), the ensemble version of Empirical Mode Decomposition (EMD), at generating a rep- 

resentation for market indexes that improves trend prediction. Our results suggest that the promising 

results reported using EEMD on financial time series were obtained by inadvertently adding look-ahead 

bias to the testing protocol via pre-processing the entire series with EMD, which affects predictive re- 

sults. In contrast to conclusions found in the literature, our results indicate that the application of EMD 

and EEMD with the objective of generating a better representation for financial time series is not suffi- 

cient to improve the accuracy or cumulative return obtained by the models used in this study. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Financial markets are notoriously difficult to analyze and pre-

ict. Prediction on the non-stationary, highly oscillatory time se-

ies generated by financial instruments such as stocks and market

ndexes ( Mikosch & St ̆aric ̆a, 2004 ) present one of the most popu-

ar ( Sapankevych & Sankar, 2009 ) and important problems in time

eries research. This is still considered an open research problem,

nd one that if solved accurately, would have obvious real-world

pplications. 

Prediction problems in these time series usually assume one

f the two forms: trend classification or value regression. Histor-

cally, the number of studies focusing on regression problems out-

eighs the number of studies with the focus on trend classifica-

ion ( Kumar & Thenmozhi, 2006 ). This is counter-intuitive as sys-

ems with small regression errors (e.g. root mean squared error

RMSE) and mean absolute error (MAE)) could still lead to incor-

ect decision making. Small errors would be especially damaging

hen working with prediction on more mature markets, where the

olatility and strength of stocks and market indexes movements

re less pronounced than in emerging markets. 

In an attempt to improve the accuracy and other metrics used

o benchmark prediction models in financial markets, such as the

rend Accuracy and Cumulative Return , many researchers focused
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heir effort s on benchmarking and selecting the best prediction

odels for the task, using a variety of different technical indi-

ators in addition to the raw lagged values as independent vari-

bles ( Hsu, Lessmann, Sung, Ma, & Johnson, 2016 ). These features

re used for the purpose of increasing the accuracy of price trend

lassification and regression of future values ( Kim, 2003 ). However,

iven the current state-of-the-art and the results obtained by re-

earchers without and with the use of technical indicators, there

s evidence against the informational value of financial technical

ndicators ( Hsu et al., 2016 ). 

The Ensemble Empirical Model Decomposition (EEMD) ( Wu &

uang, 2009 ), the ensemble version of Empirical Model Decompo-

ition (EMD) ( Huang et al., 1998 ), applied with the goal of feature

xtraction, aims at creating features by extracting quasi-periodic

omponents from signals. The components generated by this non-

arametric method can be used as inputs to classification models,

ffectively removing most of the human bias from feature gener-

tion. This decomposition technique has been applied successfully

n many fields and is especially useful for non-stationary series. A

ew studies have applied it to predictive tasks in the field of fi-

ance, reporting success in doing so. 

The objective of this study is to evaluate the effectiveness of the

EMD at generating a different representation for financial time se-

ies used to improve movement prediction, more specifically for

he market indexes in the Istanbul Market Index dataset ( Akbilgic,

ozdogan, & Balaban, 2014 ). To do so, we designed and used a test-

ng protocol that has no look-ahead bias, in contrast to other works

n the literature. The Accuracy and the Cumulative Return obtained

y the classifiers such as Linear SVM, RBF SVM, Random Forest,
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and Logistic Regression using the components from EEMD as input

were reported and compared against the results obtained by the

same models using lagged values. 

The remainder of this article is structured as follows.

Section 2 explains in details how EMD and its ensemble variant

(EEMD) work. Section 3 is dedicated to explaining what is look-

ahead bias, and how it can be inadvertently added to testing pro-

tocols. Sections 4 and 5 follow up with a brief literature review

with applications of EMD in the industry, and an explanation of

the dataset we used in our evaluations, respectively. Sections 6 and

7 present the experimental protocol we designed as well as the

experiments we have carried out. Finally, Section 8 concludes the

work. 

2. Empirical Mode Decomposition and Ensemble Empirical 

Mode Decomposition 

Empirical Mode Decomposition (EMD) is an adaptive method

created to separate the spectrum of non-linear and non-stationary

signals ( Wu & Huang, 2009 ). It decomposes a given time series, or

signal, in components with different frequencies and amplitudes,

called Intrinsic Mode Functions (IMFs). IMFs have two properties

that distinguish them from other signals: 

• The number of extrema and zero crossings must differ at most

by one. 
• The mean value between the upper and lower envelope is zero.

These conditions make the IMFs quasi-periodic, similar to har-

monic signals, with the biggest difference between them being

that there is no guarantee that the IMFs will have the same am-

plitude and frequency along the time axis. These IMFs, or simply

modes as they are also known for, are extracted from the origi-

nal time series through a process called sifting, where the order

of IMFs extraction is from high-frequency to low-frequency sig-

nals; as the component extraction process progress, the modes

look more and more periodic and have less noise embedded in

them. Algorithm 1 describes this process in details: 

Algorithm 1 Empirical Mode Decomposition. 

Require: x (t) 

Ensure: IMFs 

1: IMF s = [] 

2: x (t) ′ = x (t) 

3: while x(t)’ is not monotonic do 

4: Identify all the maxima and minima values of x (t) ′ 
5: Generate upper and lower envelopes, e min (t) and e max (t) ,

with cubic spline interpolation. 

6: Compute point-by-point average of upper and lower en-

velopes: m (t) = (e min (t) + e max (t)) / 2 

7: Compute the difference between x (t) ′ and m (t) : h (t) =
x (t) ′ − m (t) 

8: if Stopping Criterion is reached then 

9: IMFs.append( h (t) ) 

10: x (t) = x (t) − h (t) 

11: x (t) ′ = x (t) 

12: else 

13: x (t) ′ = h (t) 

14: end if 

15: end while 

16: return IMFs 

The Stopping Criterion for the extraction of each IMF consists

of verifying whether or not the component h can be defined as

an IMF, as well as optional criterion such as the component main-

taining its characteristics after S additional number of siftings (S-

number) and a maximum number of siftings. The sifting process
uns iteratively, extracting IMFs from the signal until the residue

ecomes a monotonic function, a constant value or a function with

nly one extremum from which no more IMFs can be extracted

 Huang et al., 2003 ). 

EEMD operates very similarly to EMD, but instead of decom-

osing the original signal once, it decomposes various copies of

he original signal with different white Gaussian noises added to

t, and averages all the IMFs generated by decomposing each of

hose copies. The addition of the noise helps the sifting process

o avoid mode mixing, which is one of the main problems of the

onventional EMD technique. 

Algorithm 2 describes succinctly how EEMD operates: 

lgorithm 2 Ensemble Empirical Mode Decomposition. 

equire: x (t) , N, Noise strength 

IMFs = [] 

2: Copy x (t) K times 

Add white noise to the copies of x (t) 

4: IMFs.append(EMD(composed signals)) 

return Mean(IMFs) 

Fig. 1 shows the IMFs extracted from a portion of the S&P500

ndex time series that is used in this study. The IMFs were plot-

ed from first to last component that is extracted from the series,

here the last plot contains the residue. 

In addition to the input signal, the result of the decomposi-

ion using EEMD is also affected by a few additional parameters

as show in Algorithm 2 ): 

• Ensemble size ( K ) : The number of replicas of the input signal

to be used in the ensemble 
• Noise strength : Standard deviation of the Gaussian random

noise added to the original signal before the sifting process

starts. 
• S-number (Stopping Criterion for EMD) : For S consecutive it-

erations, the number of zero crossings and extrema differ at

most by one, and these numbers stay the same. 
• Maximum number of siftings (Stopping Criterion for EMD) :

A maximum number of total iterations can be set. This is done

to increase the speed of the algorithm, prevent oversifting and

to prevent the sifting procedure from being in a never-ending

loop. 

The “S-number” and “Maximum number of siftings” parameters

lay an important role, affecting the number and form of the IMFs

roduced by the algorithm. No matter the combination of variables

hough, the upper bound for the total number of IMFs extracted

rom a signal will be close to log 2 ( nPoints ) ( Wu & Huang, 2009 ). 

. Look-ahead bias on financial time series analysis 

Look-ahead bias can be defined as the inadvertent use of in-

ormation that is not available until a later date; in other words,

orecasting the future using future data. Look-ahead bias might be

dded to research protocols or backtests in subtle ways; as ex-

lained by Mahfoud and Mani (1996) , commercially and publicly

vailable financial data might contain look-ahead bias from the

tart, with data associated to Governmental economic indicators

or example going through review processes that might modify

ast figures. 

Aside from look-ahead bias added to the data itself, the use of

ertain techniques as a pre-processing step might also be prob-

ematic. As an example, normalization techniques are very popu-

ar pre-processing steps in studies with financial time series. The

in-max and the z-score normalizations, arguably the two most

opular normalization techniques, make use of statistical variables
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Fig. 1. EEMD decomposition applied to 100 days of data from the S&P500 index. 
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hat might change as new information is added to time series, such

s the minimum and maximum values, as well as the standard

eviation. Normalizing the entire time series will add look-ahead

ias to the evaluating protocol as variables that might change over

ime (min, max and standard deviation) are known and fixed from

he start. For the min-max normalization in specific, note that us-

ng the percentage change, or Rate of Change (RoC), of the prices

nstead of the prices themselves as input minimizes the effect of

he look-ahead bias as the minimum and maximum values change

uch less overtime when compared to the prices, since trend com-

onent is eliminated from the time series. 

The general case is that extra care must be taken when us-

ng techniques that makes use of information only available at

ime t 1 to modify data points at time t 0 (where t 1 > t 0 ). An-

ther example of such method is Empirical Mode Decomposition

EMD), which adds look-ahead bias if used inappropriately. As part

f its algorithm, EMD performs successive searches for local min-

ma and maxima, with a subsequent spline interpolation between

hose points to generate an upper and lower envelopes of the sig-

al. Because EMD stores and subtracts the highest-frequency sig-

al from the original signal on each iteration to create the IMFs,

he higher-order components (lower frequency) will be generated

y interpolating points that are far away from each other in the

riginal series. Through these successive interpolations, future in-

ormation is embedded on the IMFs. 

Note that the existence of look-ahead bias might or might not

ffect the results obtained using a particular protocol, but the fact

hat its existence might heavily skew results should be enough for

triving to remove it. For this reason, it is crucial that experimental
 o  
rotocols using EMD or its ensemble variation EEMD, and other

re-processing techniques for that matter, be carefully crafted to

ccount for algorithmic peculiarities, in such a way that bias is not

ccidentally added. 

Fig. 2 depicts from a high level perspective the protocol used in

he literature ( Al-Hnaity & Abbod, 2015; Fenghua, Jihong, Zhifang,

 Xu, 2014; Xiong, Bao, Hu, Zhang, & Zhang, 2011; Yu, Wang, & Lai,

008 ): 

In Fig. 2 , normalization methods might or might not be used as

art of the protocol, and thus it was represented by a fading box.

he dataset split and the way the models are trained and tested

ary as well. However, using EMD as a pre-processing step seems

o be common practice. 

The addition of bias of such nature is unfortunately often over-

ooked in research works found in the literature, and protocols

hat contain look-ahead bias due to the usage of EMD seems to

e prevalent. 

. Brief literature review on non-parametric decomposition 

echniques 

Signal Decomposition techniques are used to deconstruct and

epresent signals as various components, each with different char-

cteristics and associated with the underlying cyclical nature of the

riginal signal. These methods can be used for a variety of tasks,

rom denoising the signal to making inferences about its periodic

ehavior and predictive tasks from the extraction of fetal heart sig-

als from maternal ECG ( Ghodsi, Hassani, & Sanei, 2010 ), analysis

f seismic signals ( Wang, Zhang, Yu, & Zhang, 2012 ) to prediction
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Fig. 2. Protocol with look-ahead bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Istanbul stock exchange dataset. 

Market Index Description 

ISE100_TL Istanbul Stock Market Index(TL) 

ISE100_USD Istanbul Stock Market Index(USD) 

S&P 500 Standard & Poor’s 500 

DAX German Stock Market Index 

FTSE London’s Stock Market Index 

NIKKEI Tokyo’s Stock Market Index 

BVSP Sao Paulo’s Stock Market Index 

EU MSCI European Index 

EM MSCI Emerging Markets Index 
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on financial time series ( Fenghua et al., 2014 ) being just a few ap-

plications. 

Decomposition techniques can be divided into two main cate-

gories: Parametric and Non-parametric. Parametric methods make

initial assumptions about the characteristics of the decomposed

components, such as modeling these signals as sinusoidal waves

of different amplitudes and frequencies (e.g. Fourier Transform).

Parametric techniques are over-represented in the works found in

the literature, where Fourier Transform and Wavelets are the most

popular representatives. 

Non-parametric techniques, on the other hand, make no a pri-

ori assumption for the generated components but are computa-

tionally more intensive than parametric models. These models are

particularly good at decomposing non-linear, non-stationary time

series due to their higher flexibility when compared to paramet-

ric models. The most well-known non-parametric techniques are

the EEMD and Singular Spectrum Analysis (SSA) ( Vautard, Yiou,

& Ghil, 1992 ), with the EEMD being the most under-represented

out of these two techniques. The main reason for this under-

representation can be attributed to EEMD’s very recent history: it

was developed in 2009 ( Wu & Huang, 2009 ) as an improvement

to Empirical Mode Decomposition (EMD) was introduced in 1998

( Huang et al., 1998 ), while SSA was proposed in 1992. 

Works in different domains have reported promising results

with the use of non-parametric decomposition techniques. EEMD

and SSA have been used for Stock Price Prediction ( Fenghua et al.,

2014 ), where the authors reported a trend prediction accuracy of

approximately 68% with a combination of SSA and SVM and 63%

using a combination of EEMD and SVM, both superior to accuracy

obtained by SVM with raw data. In their review work ( Lei, Lin, He,

& Zuo, 2013 ), the authors explain that EMD has been widely ap-

plied and studied in fault diagnosis of rotating machinery. Tang,

Wang, and Yu (2011) have used EEMD and Least Squares Support

Vector Regression (LSSVR) to predict Nuclear Energy Consumption,

with results reporting a reduction of 40% in the RMSE in com-

parison to LSSVR using raw data. These results show how these

techniques can be used effectively in the analysis and prediction

of time series, specially for noisy and non-stationary signals. 
. Dataset 

The dataset used for the experiments is the “Istanbul Stock Ex-

hange”, created and used by Akbilgic et al. (2014) in their work,

nd made available on the UCI repository ( Lichman, 2013 ). The

ataset contains 536 data points, each representing a day and com-

osed of nine floating point numbers indicating daily returns be-

ween January 5, 2009, to February 22, 2011, for the market in-

exes in Table 1 . 

The data was processed by the authors just so the days on

hich the Turkish stock exchange was closed were removed. Miss-

ng values on the time series indexes were replaced by their

mmediate valid past value. Akbilgic et al. (2014) reported the

ccuracy and the cumulative return obtained by trading ISE100

ased on the predictions of their model, a Hybrid RBF Neural Net-

ork. ISE100_TL and ISE100_USD represent the same market index

ISE100), but one of them computed with respect to US Dollars and

he other one with respect to the Turkish Lira. ISE100_TL was used

n this work exclusively to generate results that could be compared

o the accuracy and cumulative return reported in Akbilgic et al.

2014) . As an abstraction, in this work, we assume the existence of

 portfolio that tracks the market indexes and can be rebalanced

t will, as to effectively function as a single financial instrument,

ince Market Indexes cannot be traded. 

. Experimental protocol 

Our protocol was designed to compare the trend accuracy and

he theoretical cumulative return obtained by trading based on the

lassification from 4 different classifiers, using 1-day lagged val-

es of the raw time series in one case and the 1-day lagged val-

es of the components obtained with EEMD. Training and testing

he models consisted of an interactive process that simulates daily

rading. The initial training set consisted of the first 250 days, and

he test set a single data point, the 251th day. After each iteration,

he day used as the test set gets added to the training set, and the

ext day with respect to the last test day is used as the new test

et, up until the 450th day is used as the test set. The initial train-

ng size, 250 days, and final testing day, 450, were chosen just so

he results of this work could be compared to the results published

y the authors of the dataset. 

Each data pre-processing step must be done within the train-

ng and testing iterations as to not add look-ahead bias; as ex-

lained previously, decomposing the time series with EEMD as a

re-processing step would add a flaw to the protocol. After the de-

omposition, each component is normalized. 

From a high level perspective, our protocol is described on

ig. 3 . Algorithms 3 and 4 contain a detailed description of the pro-

ocol used for this work: 

On Algorithm 4 , despite the training set and the testing set be-

ng concatenated before the decomposition, this does not add look-

head bias to the protocol. The only information we do not possess

t the end of each day is the class associated to the most current
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Fig. 3. Protocol without look-ahead bias. 

Algorithm 3 High level protocol. 

Require: data_set, nFeats, nIMFs 

Ensure: results 

1: results = [] 

2: for each combination of parameters do 

3: Get all feature combinations with nFeats features 

4: for Each feature combination do 

5: models = LinearSVM, RBF-SVM, RF and LogRegress 

6: lag_dataset = CreateLaggedDataset(dataset) 

7: results.append(RunTrainTest(0, 250, 450, lag_dataset, 

nIMFs, models)) 

8: end for 

9: end for 

10: return results 

Algorithm 4 RunTrainTest. 

Require: start_train, end_train, FINAL_DAY, dataset, nIMFs, models 

Ensure: results 

1: results = [] 

2: while end _ train < F INAL _ DAY do 

3: train_set = dataset[start_train:end_train - 1] 

4: test_set = dataset[end_train] 

5: imfs = EEMD(train_set + test_set, nIMFs) 

6: norm_Imfs = Normalize(imfs) 

7: imfs_train_set = norm_Imfs[start_train:end_train - 1] 

8: imfs_test_set = norm_Imfs[end_train] 

9: for each model in models do 

10: Train model 4-fold cross validation on imfs_train_set 

11: Test model on imfs_test_set 

12: end for 

13: end_train += 1 

14: end while 

15: for each model in models do 

16: results.append(model.results) 

17: end for 

18: return results 
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bservation, which is defined by whether the price will go up or

own by the end of the day tomorrow. We also need to consider

hat the test set is always composed of a single data point, which

s computed with yesterday’s and today’s closing price; this is all

ata we possess. This protocol maps to a real situation where the

raining set is composed of all the historical observations we have

ut the last data point of the time series, which is the percent

hange value computed between yesterday’s closing price and to-

ay’s closing price. The predictive models are trained and tested

fter the markets close, so we can predict, at the end of each day,

hat will happen tomorrow. 

In order to evaluate the effectiveness of EEMD alone, we do an

xhaustive search over all the possible combinations of market in-

exes by training and testing the models with each combination

nd storing the results for later comparison. The 1-day lagged val-

es of the target index was also part of the feature pool. 

The parameters S _number and number of siftings of EEMD were

et to 4 and 50 respectively, the default value in the library used

or the tests ( Luukko, Helske, & Räsänen, 2016 ). These parameters

ere not changed during the tests because preliminary simulations

ave shown that the impact they had on the IMFs generated pro-

uce were negligible. The values of noise strength and the size of

he ensemble were set in accordance to the guidelines presented

n EEMD’s seminal paper ( Wu & Huang, 2009 ): The noise strength

mplitude was set to be 0.2 of the standard deviation of the input

ignal, and the size of the ensemble, K , was set at 250. Despite be-

ng parameters that do affect the decomposition accuracy, results

n the literature indicate that increasing noise amplitudes and en-

emble size do not alter the decomposition considerably as long as

he added noise has moderate amplitude and the ensemble is large

nough ( Wu & Huang, 2009 ). For the reader’s reference, it should

e noted that recent studies proposing techniques to improve the

election of these parameters exist and shown to be effective for

ther signals, such as a vibration signal from machinery ( Du, Liu,

uang, & Li, 2016 ). 

A total of 324 possible combinations of classifiers and features

ere used to build the pool of models using raw values and EEMD

omponents as input. For each pool, four different classifiers were

rained (Linear SVM, RBF-SVM, Logistic Regression and Random

orests) with all the possible combinations of 4 or more indexes in

he feature vector. For the cases where EEMD was used to extract

he components, the number of features is multiplied by eight

ince this is the number of components extracted from the in-

exes, which matches the theoretical number of components ex-

racted from time series of size n, log 2 n ( Wu & Huang, 2009 ). 

The metrics used to compare the results among the different

odels were the Trend accuracy and the Cumulative Return, the

ater being a popular metric to compare the performance of differ-

nt financial instruments. The Trend accuracy is given by Eq. (1) :

rendAcc = 

T P + T N 

T P + T N + F P + F N 

(1) 

here the True Positive (TP) and True Negative (TN) are the num-

er of correct predictions for up trends and down trends, respec-

ively. The denominator sums up to the total number of predictions

erformed by the model. 

The standard formula for cumulative return (Rc) between days

 and b is given by Eq. (2) 

c = 

b ∏ 

i = a 
(1 + 

P i +1 − P i 
P i 

) (2) 

here P i is the closing price of the financial instrument at the i th

ay. However, to compute the cumulative return taking in consid-

ration the accuracy of the predictions, Eq. (2) needs to be slightly
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Table 2 

Comparing study results to the one in the literature. 

ISE_TL 

Raw EEMD EEMD ∗

Accuracy R c (%) Accuracy R c (%) Accuracy R c (%) 

Lin SVM 0.660 246.65 0.600 256.70 0.660 331.25 

RBF SVM 0.655 271.53 0.620 246.61 0.675 343.58 

Log. Reg. 0.650 233.18 0.600 228.85 0.685 360.44 

RF 0.615 207.17 0.560 162.47 0.615 217.25 

HRBF-NN 0.68 202 – – –

( Akbilgic et al., 2014 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Best accuracy per market index. 

Fig. 5. Best Cumulative Returns ( R c ) per market index. 
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different: 

Rc = 

b ∏ 

i = a 

{
1 + abs ( P i + t −P i 

P i 
) �→ T P and T N 

1 − abs ( P i + t −P i 
P i 

) �→ F P and F N 

(3)

In this scenario, we consider a hypothetical situation where we

are able to short or long any one of these market indexes for a

day, with the profit from this transaction being the full percentage

change from today’s to tomorrow’s closing price. 

The Cumulative Return is a specially important metric. Despite

having a high accuracy, a specific model can present a lower cu-

mulative return if it is doesn’t perform well in detecting strong

up or down movements. These two metrics were also used in the

study that introduced the dataset used in this study ( Akbilgic et al.,

2014 ), which allows us to use the reported results as another data

point. 

7. Results 

As the benchmarks for Accuracy and Cumulative Return, we use

the coin flip probability of predicting accurately the trend and a

buy-and-hold strategy, respectively. The buy-and-hold (BH) return

for a financial instrument after t days is simply defined by Eq. (4) :

BH i = 1 + 

P i + t − P i 
P i 

, (4)

where P i is the closing price of the financial instrument at the i th

day. A return larger than 1 implies earning with respect to the ini-

tial capital, and a loss when the value is smaller. 

The best results were reported with respect to the model, ac-

curacy, cumulative return and input representation in Tables 3 and

4 , and in Figs. 4 and 5 . The bar charts show the best results across

all models, and on the tables we report the best results per model.

The results obtained with EEMD used as a pre-processing step

(with look-ahead bias) are referenced by the label EEMD 

∗. We also

present a comparison between the results obtained by the Akbilgic

et al. using a model of their authorship (HRBF-NN) and our algo-

rithm using EEMD on Table 2 . The values in bold represent the

best accuracy and cumulative return obtained by each model us-

ing the best combination of features found via exhaustive search,

as explained previously. 

For the sake of brevity, the list of features per model was not

reported, but worth noting is the fact that the best number of mar-

ket indexes for the models using the raw values were, on the large

majority of the cases, larger than for the models using EEMD com-

ponents. A single index added to the list of feature actually adds

8 components to the feature vector due to the decomposition, so

this difference might be explained by the curse of dimensionality.

For the results reported under EEMD 

∗, there is a strong tendency

of the best results being obtained with all the features, which indi-

cates the look-ahead bias embedded useful information about fu-

ture behavior in every market index decomposed. 
The models, whether using the raw values or the EEMD com-

onents, were able to consistently beat the buy and hold strategy

or the marked indexes used in this study, as shown on Table 4 . 

The results however show the difference that exists between

he performance of the models when using a proper protocol for

he tests and one with look-ahead bias added to it. In the large

ajority of the tests the models using the components extracted

rom the entire time series with EEMD as a pre-processing (tests

ith look-ahead bias) beat all the other models. 

In contrast to these results, a protocol created to eliminate

he look-ahead bias from the application of EEMD tells a differ-

nt story. Despite the models using the EEMD components achiev-

ng a considerable difference in the cumulative return with respect

o the original study, the best performing models when predict-

ng the trend direction and also with respect to the cumulative re-

urn were, in their majority, models using the raw percent change

alues instead of the components generated with EEMD. For the

SE_USD, DAX, FTSE, NIKKEI, BOVESPA, EU and EM indexes, the best

odels were the models using the raw percent change values in-

tead of the values extracted with EEMD. For the S&P500 market

ndex, the models trained with the EEMD components performed

onsistently better than the models trained with the raw values. 
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Table 3 

Best accuracy results per predictive model (with best parameters & best feature combination). 

ISE_USD SP500 DAX FTSE 

Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗

Lin. SVM 0.710 0.660 0.700 0.545 0.600 0.725 0.600 0.610 0.710 0.665 0.575 0.705 

RBF SVM 0.705 0.640 0.710 0.550 0.595 0.715 0.590 0.595 0.715 0.635 0.560 0.635 

Log. Reg. 0.700 0.625 0.700 0.535 0.590 0.715 0.600 0.610 0.715 0.665 0.570 0.685 

RF 0.635 0.620 0.640 0.580 0.580 0.640 0.610 0.600 0.605 0.68 0.580 0.565 

NIKKEI BOVESPA EU EM 

Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗

Lin. SVM 0.715 0.675 0.675 0.500 0.510 0.600 0.630 0.590 0.705 0.705 0.675 0.715 

RBF SVM 0.705 0.660 0.675 0.505 0.520 0.620 0.595 0.590 0.700 0.695 0.650 0.735 

Log Reg 0.710 0.660 0.685 0.505 0.515 0.600 0.630 0.590 0.720 0.705 0.655 0.715 

RF 0.680 0.635 0.600 0.610 0.570 0.580 0.645 0.600 0.615 0.695 0.650 0.645 

Table 4 

Best Cumulative Return results per predictive model (with best parameters & best feature combination). 

ISE_USD SP500 DAX FTSE 

Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗

Lin. SVM 481.9 317.6 541.0 108.9 120.1 319.6 203.3 154.2 332.2 224.7 147.0 290.8 

RBF SVM 492.1 314.0 570.0 116.2 124.7 306.6 190.3 136.7 295.8 196.4 145.8 262.9 

Log. Reg. 497.6 311.4 553.7 104.6 133.5 297.4 202.7 168.7 316.4 214.8 146.4 277.1 

RF 276.5 279.9 309.8 128.2 146.0 230.5 177.5 157.2 204.3 179.4 154.9 196.2 

BH 132.7 132.7 132.7 103.0 103.0 103.0 106.1 106.1 106.1 103.0 103.0 103.0 

NIKKEI BOVESPA EU EM 

Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗ Raw EEMD EEMD ∗

Lin. SVM 408.3 294.9 376.9 106.7 100.1 240.6 210.3 150.6 322.8 193.5 180.3 207.2 

RBF SVM 391.7 311.3 369.2 116.0 104.1 270.0 201.5 141.0 290.1 185.0 176.5 216.7 

Log. Reg. 390.0 299.7 373.1 107.1 100.7 246.7 202.4 144.8 335.8 189.9 169.6 208.7 

RF 297.7 217.0 223.3 155.6 142.1 180.7 174.2 144.1 206.9 189.8 157.4 180.6 

BH 87.5 87.5 87.5 100.7 100.7 100.7 99.2 99.2 99.2 106.5 106.52 106.5 
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In terms of the results obtained by each individual model with

he raw values and the EEMD components without look-ahead

ias, it is interesting to note that the Linear SVM was the best per-

orming model when predicting the trend of 5 out of 8 market in-

exes contained in the dataset. Random Forests, despite achieving

ood accuracy results, are the worst performing model in general

egarding cumulative returns, with less accurate predictions when

etecting large movements. 

. Conclusion 

The objective of this study was to evaluate the effectiveness of

nsemble Empirical Mode Decomposition at generating features to

e used as trend predictors in the Istanbul Market Index dataset

 Akbilgic et al., 2014 ). Our testing protocol, in contrast to protocols

efined in other studies found in the literature, does not add look-

head bias through the use of EEMD. 

The results obtained with the use of our protocol indicate, dif-

erently to the results presented in the literature, that the models

rained with the EEMD components do not outperform, in terms of

ccuracy and Cumulative Return, the models trained with the raw

ercent values for the majority of the market indexes contained in

he dataset used for the study. The exception to this was S&P500,

hich was an isolated case. 

On the other hand, the models trained with the EEMD compo-

ents extracted as a pre-processing step from the entire time series

utperformed all the other models, indicating that the look-ahead

ias heavily affects the accuracy, and ultimately the cumulative re-

urn, of the models by generating components that encode infor-

ation about the future on past data points. These results rein-

orce the need to be extremely careful when using techniques that
ight make use of values that are not contained in the training

et. 

These results, however, do not necessarily mean that these

omponents are not useful as predictors. They might not be bet-

er predictors on their own when compared to the raw percentage

alues, but these components might be useful if used in conjunc-

ion with the raw values. Additionally, the models did perform bet-

er when predicting the trend of S&P500, indicating they may be

seful for prediction tasks on specific time series. 

Finally, as future work, the authors intend to look further into

he impact caused by the rough decomposition at the end of the

ime series when using EMD/EEMD. The impossibility of extrapo-

ating the very last value of the series to subsequent points gener-

te a crude decomposition at the end, which might actually be one

f the main culprits for the drastic reduction in accuracy obtained

y the classification models. 

eferences 

kbilgic, O. , Bozdogan, H. , & Balaban, M. E. (2014). A novel hybrid RBF neural net-

works model as a forecaster. Statistics and Computing, 24 (3), 365–375 . 

l-Hnaity, B. , & Abbod, M. (2015). A novel hybrid ensemble model to predict
FTSE100 index by combining neural network and EEMD. In Control conference

(ECC), 2015 European (pp. 3021–3028). IEEE . 
u, S.-C. , Liu, T. , Huang, D.-L. , & Li, G.-L. (2016). An optimal Ensemble Empirical

Mode Decomposition method for vibration signal decomposition. Journal of Vi-
bration and Acoustics . 

enghua, W. , Jihong, X. , Zhifang, H. , & Xu, G. (2014). Stock price prediction based on
SSA and SVM. Procedia Computer Science, 31 , 625–631 . 

hodsi, M. , Hassani, H. , & Sanei, S. (2010). Extracting fetal heart signal from noisy

maternal ECG by singular spectrum analysis. Journal of Statistics and its Interface,
Special Issue on the Application of SSA, 3 (3), 399–411 . 

su, M.-W. , Lessmann, S. , Sung, M.-C. , Ma, T. , & Johnson, J. E. (2016). Bridging the di-
vide in financial market forecasting: machine learners vs. financial economists.

Expert Systems with Applications, 61 , 215–234 . 

http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0006


26 D. Carnelossi Furlaneto et al. / Expert Systems With Applications 82 (2017) 19–26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M  

 

S  

T  

 

 

 

W  

 

W  

 

X  

 

 

 

Huang, N. E. , Shen, Z. , Long, S. R. , Wu, M. C. , Shih, H. H. , Zheng, Q. , . . .
Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spec-

trum for nonlinear and non-stationary time series analysis. In Proceedings of
the royal society of london a: Mathematical, physical and engineering sciences: 454

(pp. 903–995). The Royal Society . 
Huang, N. E. , Wu, M.-L. C. , Long, S. R. , Shen, S. S. , Qu, W. , Gloersen, P. , &

Fan, K. L. (2003). A confidence limit for the empirical mode decomposition and
Hilbert spectral analysis. In Proceedings of the royal society of london a: Mathe-

matical, physical and engineering sciences: 459 (pp. 2317–2345). The Royal Soci-

ety . 
Kim, K.-j. (2003). Financial time series forecasting using support vector machines.

Neurocomputing, 55 (1), 307–319 . 
Kumar, M. , & Thenmozhi, M. (2006). Forecasting stock index movement: A compar-

ison of support vector machines and random forest. Indian institute of capital
markets 9th capital markets conference paper . 

Lei, Y. , Lin, J. , He, Z. , & Zuo, M. J. (2013). A review on empirical mode decomposition

in fault diagnosis of rotating machinery. Mechanical Systems and Signal Process-
ing, 35 (1), 108–126 . 

Lichman, M. (2013). UCI machine learning repository. http://archive.ics.uci.edu/ml . 
Luukko, P. , Helske, J. , & Räsänen, E. (2016). Introducing libeemd: A program pack-

age for performing the Ensemble Empirical Mode Decomposition. Computational
Statistics, 31 (2), 545–557 . 

Mahfoud, S. , & Mani, G. (1996). Financial forecasting using genetic algorithms. Ap-

plied Artificial Intelligence, 10 (6), 543–566 . 
ikosch, T. , & St ̆aric ̆a, C. (2004). Nonstationarities in financial time series, the
long-range dependence, and the IGARCH effects. Review of Economics and Statis-

tics, 86 (1), 378–390 . 
apankevych, N. I. , & Sankar, R. (2009). Time series prediction using support vector

machines: a survey. IEEE Computational Intelligence Magazine, 4 (2), 24–38 . 
ang, L. , Wang, S. , & Yu, L. (2011). EEMD-LSSVR-based decomposition-and-ensem-

ble methodology with application to nuclear energy consumption forecasting.
In Computational sciences and optimization (CSO), 2011 fourth international joint

conference on (pp. 589–593). IEEE . 

Vautard, R. , Yiou, P. , & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for
short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58 (1), 95–126 . 

ang, T. , Zhang, M. , Yu, Q. , & Zhang, H. (2012). Comparing the applications of EMD
and EEMD on time–frequency analysis of seismic signal. Journal of Applied Geo-

physics, 83 , 29–34 . 
u, Z. , & Huang, N. E. (2009). Ensemble Empirical Mode Decomposition: A

noise-assisted data analysis method. Advances in adaptive data analysis, 1 (01),

1–41 . 
iong, T. , Bao, Y. , Hu, Z. , Zhang, R. , & Zhang, J. (2011). Hybrid decomposition and

ensemble framework for stock price forecasting: A comparative study. Advances
in Adaptive Data Analysis, 3 (04), 447–482 . 

Yu, L. , Wang, S. , & Lai, K. K. (2008). Forecasting crude oil price with an
EMD-based neural network ensemble learning paradigm. Energy Economics,

30 (5), 2623–2635 . 

http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0011
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30208-7/sbref0021

	Bias effect on predicting market trends with EMD
	1 Introduction
	2 Empirical Mode Decomposition and Ensemble Empirical Mode Decomposition
	3 Look-ahead bias on financial time series analysis
	4 Brief literature review on non-parametric decomposition techniques
	5 Dataset
	6 Experimental protocol
	7 Results
	8 Conclusion
	 References


