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a b s t r a c t 

One popular approach employed to tackle classification problems in a static environment consists in us- 

ing a Dynamic Classifier Selection (DCS)-based method to select a custom classifier/ensemble for each 

test instance according to its neighborhood in a validation set, where the selection can be considered 

region-dependent. This idea can be extended to concept drift scenarios, where the distribution or the 

a posteriori probabilities may change over time. Nevertheless, in these scenarios, the classifier selection 

becomes not only region but also time-dependent. By adding a time dependency, in this work, we hy- 

pothesize that any DCS-based approach can be used to handle concept drift problems. Since some regions 

may not be affected by a concept drift, we introduce the idea of concept diversity, which shows that a 

pool containing classifiers trained under different concepts may be beneficial when dealing with concept 

drift problems through a DCS approach. The impacts of pruning mechanisms are discussed and seven 

well-known DCS methods are evaluated in the proposed framework, using a robust experimental protocol 

based on 12 common concept drift problems with different properties, and the PKLot dataset considering 

an experimental protocol specially designed in this work to test concept drift methods. The experimental 

results have shown that the DCS approach comes out ahead in terms of stability, i.e., it performs well in 

most cases requiring almost no parameter tuning. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Classical classification methods often rely on a static environ-

ent assumption, where a classifier may be trained using histor-

cal labeled data, and then be used in the classification of unla-

eled instances during an indefinite amount of time. Although this

ssumption may be valid in many applications, it can, however, be

nrealistic in some scenarios, such as those in which the distribu-

ions or the a posteriori probabilities change over time in a phe-

omenon known as concept drift. 

To illustrate the concept drift problem, we may consider social

edia networks. Since social media applications hold a vast col-

ection of user images, they could employ these images to rec-

gnize user faces in future images. Under this scenario, some

hallenges may arise as a result of the fact that users’ faces are

onstantly changing due to aging factors, use of makeup, beard

rowth/shaving, different haircuts, etc. This scenario may, there-
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ore, suffer from a concept drift, since images collected from the

ser in the past may not be suitable for recognizing him/her in

he present. As with many concept drift problems, two important

uestions arise, namely: Which learned information is useful in the

urrent scenario (concept)? How do we keep track of changes? 

Dynamic Classifier Selection (DCS) represents an alternative to

oncept drift, as we demonstrated in Almeida, Oliveira, Britto, and

abourin (2016) . A DCS method basically involves selecting the best

lassifier/ensemble based on a local region of the feature space,

sually defined as the neighborhood of the test instance in a val-

dation set (although in the literature DCS may refer to a single

lassifier selection, and Dynamic Ensemble Selection (DES) refers

o an ensemble selection, we will refer to both scenarios as DCS

or the sake of simplicity). The rationale behind this is the pos-

ibility that we may have a pool of classifiers specialist in differ-

nt regions of the feature space, and the classifiers are chosen ac-

ording to the test instance location. However, region dependency

lone is not sufficient for scenarios containing concept drifts, since

he problem evolves over time. With the framework introduced in

lmeida et al. (2016) , the Dynamic Selection Based Drift Handler

Dynse), we made DCS not only region-dependent, but also time-

ependent. 
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However, in our preliminary study, several important aspects

were left behind, such as the time dependence modeling for real

and virtual concept drifts, the neighborhood size, the impact of

the pruning, and the comparison of multiple DCS approaches un-

der concept drift scenarios. To fill this gap, in this work we ad-

dress all these issues and hypothesize that by associating the time

dependency to the nature of the concept drift, any neighborhood-

based DCS approach can represent a natural answer to the concept

drift problem, regardless of its properties, such as speed, severity,

and the possible presence of recurrences. To validate this hypothe-

sis, we tested seven well-known DCS methods by adding the time

dependency (through the Dynse framework) to deal with 12 pop-

ular concept drift problems, which include real world and artificial

scenarios. We also include a novel experimental protocol to use the

PKLot ( Almeida, Oliveira, Britto, Silva, & Koerich, 2015 ) real world

problem as a concept drift benchmark, which can be seen as a con-

cept drift scenario where new labeled data may arrive in batches. 

Our experimental results show that DCS is capable of adapting

to different concept drift scenarios by selecting the most promis-

ing classifier/ensemble for each test instance, regardless of the con-

cept used to train the selected classifiers. In addition, we show that

the DCS performs well in most cases, and requires almost no pa-

rameter tuning. We also developed the idea of concept diversity

by showing that the method can benefit from very large pools,

i.e., pools containing classifiers trained under different concepts.

Finally, our experiments on scenarios containing real and virtual

concept drifts indicated that the nature of the concept drift must

be considered when modeling the time dependency in the vali-

dation dataset. The Dynse framework was implemented using the

Massive Online Analysis (MOA) framework ( Bifet, Holmes, Kirkby,

& Pfahringer, 2010 ), and it is publicly available for download in

Almeida, Oliveira, Britto, and Sabourin (2018) . To the best of our

knowledge, few works address the concept drift problem by the

use of the DCS idea ( Pan, Wu, Zhang, & Li, 2010; Pan, Zhang, & Li,

2012; Tsymbal, Pechenizkiy, Cunningham, & Puuronen, 2008 ). This

study may serve as a basis for other researchers to adapt their DCS

methods for concept drift. 

The remainder of this work is structured as follows:

Section 2 gives a brief formalization of the concept drift phe-

nomenon, while Section 3 presents some important contributions

related to the concept drift problem. Section 4 discusses important

issues tackled in this work, such as the time dependency of

DCS-based methods under real and virtual concept drifts, the local

region size, and concept diversity when using a DCS-based ap-

proach in dealing with a concept drift. Still in Section 4 we modify

the Dynse framework in order to accommodate a pruning module.

Section 5 presents our experiments, including the experimental

protocol for the PKLot dataset. Finally, Section 6 presents some

perspectives for future developments and concludes this work. 

2. Concept drift background 

A concept drift may be fit into one of two main categories:

virtual or real concept drift. In a virtual concept drift, the a pri-

ori probabilities P ( y ) or the unconditional distribution P ( x ) may

change over time, although the best boundary that separates the

classes remain unaltered; that is, P t (y ) � = P t+1 (y ) or P t (x ) � = P t+1 (x ) ,

where the index t denotes a moment in time. A real concept drift,

on the other hand, is caused by a change in the a posteriori proba-

bilities, where P t (y | x ) � = P t+1 (y | x ) , followed or not by a virtual con-

cept drift ( Gama, Žliobait ̇e, Bifet, Pechenizkiy, & Bouchachia, 2014;

Hoens, Polikar, & Chawla, 2012; Kolter & Maloof, 2007; Krawczyk,

Minku, Gama, Stefanowski, & Wo ́zniak, 2017 ). 

Note that when the concept drift is only virtual, the known la-

beled instances at time t do not change their target classes at t + 1 .

Conversely, in a real concept drift scenario, the instances that were
nown at t may change their target classes at t + 1 , causing an a

osteriori probability change, and as a result, even if it was possible

o create the best boundary at t , this boundary would be incom-

atible with the concept present at t + 1 ( Gama et al., 2014; Hoens

t al., 2012; Kolter & Maloof, 2007; Krawczyk et al., 2017 ). Accord-

ng to Minku, White, and Yao (2010) , a real concept drift may be

onsidered Severe if all instances change their classes in the next

oncept, otherwise it may be considered Intersected . A similar def-

nition is used by Tsymbal et al. (2008) , where a change in a sub-

egion of the instance space is called a local concept drift . 

In some scenarios the concept may change gradually, thus re-

uiring several steps for the new concept take place completely;

his generates a period of uncertainty between two stable states

concepts). In other cases, the concept may change abruptly, when

he new concept completely replaces the old one in just one step.

ormally, the concept drift speed can be defined as the inverse

f the number of steps taken for a new concept to replace the

ld one, and if this number of steps is greater than one, the con-

ept drift will be considered gradual, otherwise, it will be consid-

red abrupt ( Gonçalves, de Carvalho Santos, Barros, & Vieira, 2014;

oens et al., 2012; Krawczyk et al., 2017; Minku et al., 2010 ). 

Under some scenarios, a previously seen concept may reoccur

n the future, characterizing a concept recurrence. Recurrent con-

epts are often related to seasonal changes. An example is an ap-

lication that must detect people in an outdoor environment, and

ust, therefore, adapt to a new concept due to snow in the winter

eason, and return to the old concept in the spring. When deal-

ng with recurrent concepts, keeping the information (i.e. trained

odels or training samples) acquired in older concepts may lead

o better results when these concepts reappear ( Gama et al., 2014;

oens et al., 2012; Krawczyk et al., 2017; Minku et al., 2010 ). 

To make the adaption to new concepts possible, methods cre-

ted to handle real concept drifts must often rely not only on the

eature distribution P ( x ) of the unlabeled incoming data but also

n some labeled data. This data must be fed to the system regu-

arly, and it represents the current concept. In some publications,

t is assumed that the labeled samples arrive in a stream fashion

e.g., test-then-train) ( Bifet, Holmes, Pfahringer, Kirkby, & Gavaldà,

009; Jian-guang, Xiao-feng, & Jie, 2010; Sun & Li, 2011 ), while in

ther publications, such as in this work, it is assumed that a few

abeled instances will be given to the system from time to time,

n batches containing N labeled samples ( Elwell & Polikar, 2011;

app, Sabourin, & Maupin, 2011; Kolter & Maloof, 2007; Siahroudi,

oodi, & Beigy, 2018 ). 

. Related work 

In this section, we review some important contributions that

ave been proposed to deal with the concept drift phenomenon,

here the methods were organized in six different categories. 

The methods in the window-based category constitute one of

he simplest approaches to deal with the concept drift problem,

here a window containing the M latest labeled samples is used to

rain/update the classifier. A window-based method will basically

forget” old training instances, which could represent a previous

oncept. Besides its simplicity, window-based methods raise the

uestion of how large M should be. A small window can generate

 system with a fast reaction to changes, but at a cost of a subop-

imal accuracy under stable regions; a large window, on the other

and, could create a well-trained classifier that slowly adapts when

he concept changes ( Kuncheva, 2004; Widmer & Kubat, 1996 ). Ex-

mples of methods based on this classical approach can be found

n Rakitianskaia and Engelbrecht (2012) , Widmer and Kubat (1996) .

ome authors have extended the original window idea in order

o maintain a variable window size, as in Jian-guang et al. (2010) ,
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uncheva and Žliobait ̇e (2009) , Sun and Li (2011) , Widmer and Ku-

at (1996) . 

The gradual forgetting-based methods represent another cat-

gory that follows basically the same approach as the Window-

ased one, in which old training data is “forgotten” over time,

ut instead of abruptly discarding training samples, these meth-

ds gradually decrease the importance of old instances by ap-

lying a certain aging factor ( Gama et al., 2014; Hoens et al.,

012 ). When a new training sample arrives, the gradual forget-

ing methods update the weights of all samples according to

heir ages, and the model is then retrained. Some examples of

radual forgetting-based methods can be found in Elwell and

olikar (2011) , Krawczyk and Won ́ziak (2014) , Schlimmer and

ranger (1986) . 

Unlike the window- or gradual forgetting-based methods,

hich are “always adapting” their models, trigger-based methods

dapt to the new concept by taking some action, such as discard-

ng the old data and updating the models, only when a change is

etected ( Gama et al., 2014; Gonçalves et al., 2014 ). These meth-

ds have the advantage that when the concept is stable, the clas-

ification system can remain unaltered, thus reducing the over-

ead; alternatively, every new information collected in this sta-

le region can be aggregated in the training set to improve the

odel accuracy. However, these methods can suffer from some

roblems, such as false alarms and delayed or undetected drifts. A

alse alarm case can cause an unnecessary discard of still relevant

nowledge. Delayed alarms or undetected drifts will cause a per-

ormance loss since the classification system will keep classifying

ncoming test instances based on a previous concept. A few exam-

les of trigger-based approaches can be found in Alippi, Boracchi,

nd Roveri (2013) ; Baena-Garcıa et al. (2006) ; Bifet and Gavaldà

20 07, 20 09) ; Chen, Koh, and Riddle (2016) ; Gama, Medas, Castillo,

nd Rodrigues (2004) ; Minku and Yao (2012) . 

Many methods can be fitted in the ensemble-based category,

here most of them basically maintain a pool of weighted clas-

ifiers, and the weights are calculated with respect to the current

oncept. Ensemble-based techniques can facilitate the use of non-

ncremental learners in the classification task since, for instance,

very new labeled batch received can be used to train a new clas-

ifier that will be added to a pool. Another advantage is that recur-

ing concepts can be handled by reactivating relevant previously

rained classifiers ( Hoens et al., 2012 ). A popular strategy when us-

ng an ensemble-based approach is to weight the available classi-

ers and then classify new instances by means of the Weighted

ajority method, where the weight of each classifier may refer

o its performance in the latest labeled instances received ( Gama

t al., 2014; Kuncheva, 2004 ). Some important contributions that

an be fitted in the ensemble-based methods category can be

ound in Bifet, Holmes, and Pfahringer (2010) ; Bifet et al. (2009) ;

rzezi ́nski and Stefanowski (2011) ; Gomes et al. (2017) ; Jaber, Cor-

uéjols, and Tarroux (2013) ; Siahroudi et al. (2018) ; Street and

im (2001) ; Wang, Fan, Yu, and Han (2003) . 

The local region-based methods use an estimation of the local

ompetence of the available classifiers to tackle the concept drift

roblem. When classifying a test instance x , these methods basi-

ally find the local region of x and use the most promising classi-

er(s) with respect to this region. Some methods in this category

ry to define the region of competence of the classifiers in advance

y, for instance, defining it as the feature region of their training

atasets as in Chan, Zhang, Ng, and Yeung (2011) ; Polikar, Krause,

nd Burd (2003) ; Zhu, Wu, and Yang (2004) , while other methods

ay use some DCS-based technique in order to define the com-

etence of the classifiers in the pool with respect to x dynami-

ally. In the former scenario, the local region of x may be defined

y the neighborhood of x in a validation dataset Q . The neighbor-
ood of x can then be employed to estimate the classifiers’ com-

etence before classifying x itself. Variations of this idea can be

ound in Almeida et al. (2016) ; Pan et al. (2010 , 2012) ; Sethi, Kan-

ardzic, and Hu (2016) ; Tsymbal, Pechenizkiy, Cunningham, and Pu-

ronen (2006) . One fundamental problem with this strategy is how

o update the validation set Q in order to keep track of the current

oncept. A possible approach is to keep Q with the M latest la-

eled instances received; however, the strategy used to define the

ize of M should vary depending on the concept drift properties of

he problem, as discussed in Section 4 . 

Finally, the distribution analysis-based methods rely solely

n the P ( x ) and/or P ( y ) analysis in order to detect and adapt

o possible concept drifts. Distribution analysis-based approaches

ften deal with virtual concept drifts, since changes in the

 posteriori probabilities P ( y | x ) are not necessarily reflected in

 change in P ( x ) or in P ( y ), making these methods blind to

ome real concept drifts ( Kuncheva, 2004; Markou & Singh,

003 ). Some examples of distribution analysis-based category can

e found in Cavalcante, Minku, and Oliveira (2016) ; González-

astro, Alaiz-Rodríguez, and Alegre (2013) ; Pérez-Gállego, Quevedo,

nd del Coz (2017) ; Radtke, Granger, Sabourin, and Gorod-

ichy (2014) ; Raza, Cecotti, and Prasad (2016) , where the works

n González-Castro et al. (2013) ; Pérez-Gállego et al. (2017) ;

adtke et al. (2014) were designed to deal specifically with con-

ept drifts in P ( y ). 

. DCS under concept drift scenarios 

Under static environments, a DCS method works by selecting

he best ensemble for the test instance x based on its local region

n a validation dataset Q . Considering N x being the neighborhood

f x in the validation dataset Q ( N x ⊆Q ), the DCS can be seen as a

unction E x = DS(N x , P ) , where P is a pool of classifiers, from which

ach classifier will be tested using N x , and E x is a custom selected

nsemble for the test instance x with respect to its local region

 x ( Britto, Sabourin, & Oliveira, 2014; Cruz, Sabourin, & Cavalcanti,

018; Didaci, Giacinto, Roli, & Marcialis, 2005 ). 

Hence, under a static environment, the ensemble E x is region-

ependent only. Nevertheless, under a concept drift scenario, a

ime dependency must be incorporated since the region depen-

ency alone may not suffice. To ensure that this work is self-

ontained, Section 4.1 briefly describes the Dynse framework

hich has been updated to accommodate a pruning module. In

ection 4.2 , we discuss some issues that must be considered when

dapting a DCS-based method for concept drift scenarios, includ-

ng the time dependency of a DCS-based method under real and

irtual concept drifts scenarios. Also in Section 4.2 we present the

enefits derived from estimating the classifiers competence in a lo-

al region, as well as the impact of varying its size, and the pool

iversity problem under a concept drift scenario. 

.1. The Dynse framework 

In our previous work ( Almeida et al., 2016 ) we proposed the

ynamic Selection Based Drift Handler (Dynse) framework as a

odular tool to cope with concept drift scenarios using Dynamic

lassifier Selection (DCS). The framework basically trains new clas-

ifiers over time with the available labeled data and estimates the

lassifiers’ competence for a test instance x based on the local re-

ion of x in a validation dataset, which contains the latest labeled

ata. In Almeida et al. (2016) , we assumed that the pool of classi-

ers could increase indefinitely, nevertheless, due to resources con-

traints (e.g., available memory), it can be impossible to maintain

ll trained classifiers in the pool. In the light of this, we introduce
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a pruning module for the Dynse framework, and make the updated

version of the framework fully available in Almeida et al. (2018) . 

The updated version of the Dynse framework is presented in

Algorithm 1 , where a stream of batches is required as its input.

Algorithm 1: The Dynse framework algorithm. Underlined 

items refers to the main interchangeable components of the 

framework. 

Input : Stream of batches { B 1 , B 2 , . . . , B t } , 
Maximum pool Size (D ) , 

Accuracy Estimation Window Size (M) , 

Neighborhood Size (K) , 

Classification Engine (CE) , 

Pruning Engine (P E) , 

Base Classifier (BC) 

1 W ← ∅ 

2 P ← ∅ foreach Batch B ∈ Stream do 

3 if B is a Labeled Batch then 

4 W ← W ∪ B 

5 if | W | > M then 

6 remov eOldest Bat ch (W ) 

7 end 

8 C ← trainNewClassi f ier(BC, B ) 

9 P ← P E(P, W, C, D ) 

10 end 

11 else 

12 foreach test instance x ∈ B do 

13 N x ← KN earestN eighbors (x , k, W ) 

14 E x ← CE(N x , P ) 

15 x class ← classi f y (x , E x ) 

16 makeA v ail abl e (x class ) // The result of the 
classification is available to the user 

17 end 

18 end 

19 end 

In the beginning, both the accuracy estimation window W and the

pool P are set to empty (steps 1 and 2). For each batch available

in the stream, if the next batch is labeled, the following steps are

performed: 

• In steps 5 to 8, the accuracy estimation window W is updated

to accommodate only the M latest labeled batches received

( | W | = M). This window can be seen as the validation dataset

Q in a DCS method, and its size should be adjusted according

to the type of the concept drift to correctly estimate the classi-

fiers’ competence, as discussed in Sections 4.2.1 and 4.2.2 . 
• In step 9, a new classifier C is trained using the labeled batch.

In this step any Base Classifier ( BC ) may be used for building a

new classifier (e.g. SVM, MLP, KNN, ...). 
• Finally, in step 10, the current Pool P , the accuracy estimation

window W , the newly created classifier C and the Maximum

pool size D are handed to the pruning engine PE , which must

make a decision to maintain or to prune classifiers in P (or add

C in the P ), keeping the pool from increasing in size beyond

the threshold D . The Pruning Engine can be seen as a function

P E(P, W, C, D ) = P p , where P p is the pruned pool, and | P p | ≤ D .

Since PE is a parameter in Algorithm 1 , any pruning strategy

can be implemented in the framework. 

On the other hand, if the batch being processed is not labeled,

the steps 13 to 18 are executed, where for each test instance x in

the current batch, the following steps are performed: 

• In step 14, the k nearest instances in the accuracy estima-

tion window W are selected to represent the local region of
x , where the neighborhood is defined as N x = { x 1 , x 2 , . . . , x k } ,
N x ⊆W . 

• In step 15, the Classification Engine CE uses the set of neighbors

N x to select a custom classifier/ensemble E x to x using the clas-

sifiers in P . The classification engine CE is a parameter in the

Dynse framework that can be seen as a function E x = CE(N x , P ) ,

and thus any DCS method based on the neighborhood of the

test instance can be used. 
• In step 16, the custom classifier/ensemble E x is used to classify

x and, finally, in step 17, the result of the classification is made

available to the user. 

As discussed earlier, we consider that the stream is composed

f batches, each batch containing a number of instances. This sce-

ario is considered in many works ( Brzezi ́nski & Stefanowski, 2011;

lwell & Polikar, 2011; Kolter & Maloof, 2007; Pan et al., 2012 )

nd can be illustrated by, for instance, an anti-malware system,

hich may receive new labeled batches regularly in order to adapt

o possible changing threats ( viruses ) ( Jordaney et al., 2017 ), or

y the parking spaces recognition problem, further discussed in

ection 5.6 , where we may receive small labeled image batches

rom previous days to adapt the classification system. For test-

hen-train scenarios, where we may receive one instance at a time,

nd commonly the true label of the test instance is given right af-

er its classification, the Dynse framework can be adapted by keep-

ng the latest S instances received in W , and by training a new clas-

ifier for every L instances accumulated (however, the test-then-

rain scenario where we receive one instance at a time is not in

he scope of this work). 

We reinforce that the framework is meant to be general

nd our implementation of the framework is public available in

lmeida et al. (2018) . Nevertheless, in order to give a concrete im-

lementation example that is simple to reproduce, consider the

ain interchangeable components of the Dynse framework, which

re underlined in Algorithm 1 . The Hoeffding Tree ( Domingos &

ulten, 20 0 0 ) can be implemented as the Base Classifier , which is

sed to train new classifiers as new labeled batches arrive in line 9.

n age-based pruning approach can be implemented in the Pruning

ngine module. Thus, in line 10 of Algorithm 1 , we can simply re-

ove the oldest classifier if the pool reaches its limit. The KNORA-

liminate ( Ko, Sabourin, & Britto, 2008 ) can be used as the Classi-

cation Engine in line 15, thus all classifiers that correctly classify

he entire neighborhood ( N x ) will be part of the final ensemble.

his concrete implementation refers to the default Dynse configu-

ation, further discussed in Section 5.5 . 

The Dynse framework obviously can be fit in the local region-

ased methods discussed in Section 3 , although it could also be fit

n the ensemble or in the window-based (due to the use of a win-

ow to keep W up to date) categories. The ability to adapt any

eighborhood-based DCS approach for concept drift scenarios by

he addition of a time dependency (i.e. the update of W and the

rain/pruning of classifiers over time), is the main difference when

omparing the Dynse to the other local region-based methods pre-

ented in Section 3 , since these methods often define a fixed DCS

ethod to deal with concept drift scenarios, instead of a general

ramework. 

.2. Important issues to be considered 

In this Section some issues that must be considered when

dapting a DCS method to a concept drift scenario are presented.

he expected behavior and necessary adaptations for DCS-based

ethods under real and virtual concept drift scenarios are pre-

ented in Sections 4.2.1 and 4.2.2 , respectively. A discussion about

he local region of competence is presented in Section 4.2.3 and
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l  
he possible benefits of maintaining a pool diverse in terms of the

raining region and time are given in Section 4.2.4 . 

.2.1. Dynamic classifier selection under real concept drifts 

Under a real concept drift, the a posteriori probabilities of the

nstances may change over time (i.e., P t (y | x ) � = P t+1 (y | x ) ). As dis-

ussed earlier, under a static environment a DCS-based method

elects a classifier/ensemble based on the classifiers’ competence

ith respect to the neighborhood N x of the test instance x in a

alidation dataset Q . Since the classifiers’ competence is estimated

sing a subset of Q ( N x ⊆Q ), it is necessary to keep Q up to date

ith the current a posteriori probabilities. 

To illustrate this problem, we should consider the two discrimi-

ant features f 1 ∈ [0, 10] and f 2 ∈ [0, 10] of the SEA Concepts bench-

ark ( Street & Kim, 2001 ). We should also consider that between

he times t and t + 1 there is a (real) concept drift from Con-

ept 1, where θ = 8 , to Concept 2, where θ = 9 (in this problem,

f f 1 + f 2 ≤ θ the instance belongs to the positive class, or to the

egative class otherwise). Fig. 1 a shows a validation dataset (i.e.,

ne containing labeled samples) Q t containing instances collected

t time t , while in Fig. 1 b, the validation dataset Q t+1 contains

nstances collected at t + 1 only. Circles are used to denote the

 = 5 nearest neighbors of a test instance x in Fig. 1 a (time t ) and

quares are used to identify the neighbors of x in Fig. 1 b (time

 + 1 ). 

Considering t + 1 as the current time, and a pool P containing

lassifiers trained under Concept 1 ( t ) and classifiers trained under

oncept 2 ( t + 1 ), the neighbors N x of x in Q t+1 may lead to a good

ompetence estimation of the classifiers in P , since N x represents

he local region of x , and N x is a subset of Q t+1 , which represents

he current a posteriori probabilities (see Fig. 1 b). To better un-

erstand the time dependency of the validation dataset, consider

ig. 1 c, which contains a merge of the validation samples collected

t both t and t + 1 . Under a static environment, this bigger vali-

ation dataset could improve the DCS performance, since it would

ossibly have a better coverage of the feature space. Nevertheless,

ince the boundary changed between t and t + 1 , this dataset may

ave some conflicting information. 

As can be seen in Fig. 1 c, only two neighbors of the test in-

tance x come from the current concept t + 1 , while 3 neigh-

ors come from the old concept t . Thus, the neighbors depicted

n Fig. 1 c may lead to a poor estimation of the classifiers’ com-

etence. This time dependence of the validation dataset Q raises

he question of how to keep Q always up to date with the current

oncept or, as formulated at the beginning of this work, we may

sk “How do we keep track of changes?”. A possible solution for

his problem is to keep only the latest M labeled samples/batches

eceived in Q , as implemented in the Dynse framework as the ac-

uracy estimation window W , where | W | = M. 

This approach can be seen as a windowing strategy in the val-

dation dataset, where a bigger value for M could lead to a better

ompetence estimation of the classifiers under regions where the

oncept is stable (better coverage of the feature space). Neverthe-

ess, the instances belonging to an old concept would take more

ime to be pruned in the presence of a concept change, and thus,

 bigger window could lead to a poor estimation of the classifiers’

ompetence under concept changing regions (i.e., some neighbors

ay belong to the old concept). 

.2.2. Dynamic classifier selection under virtual concept drifts 

Let us analyze how the DCS deals with changes in P ( x ) only

changes in P ( y ) are not within the scope of this work). Under a

irtual concept drift scenario, the a posteriori probabilities do not

hange over time. Thus, if we accumulate data acquired under pre-

ious concepts in the validation dataset Q , the classifiers’ compe-

ence estimation will not be negatively affected if we consider only
he neighborhood of the test instance x in Q . Instead, keeping as

uch data as possible in the validation set Q may be beneficial

ue to the better coverage of the feature space this will provide.

o better understand this, let us consider an artificial two-feature

 1 ∈ [0, 1] and d 2 ∈ [0, 1] binary problem, where the instances be-

ong to the positive class if sin (πd 1 ) × ( 7 9 ) > d 2 , or to the negative

lass otherwise. 

Let us consider that at the beginning of the system runtime, at

ime t , only labeled samples located in a region B 1 are available,

nd so the pool P contains only classifiers trained using instances

ocated in B 1 . If we consider a validation dataset Q t at time t , com-

osed of some samples from B 1 , and a test instance x 1 , the neigh-

orhood of x 1 in Q t may be considered as the “closest known local

egion” of x 1 . Thus, these instances can be used to estimate the

lassifiers’ competence. This scenario is depicted in Fig. 2 a, where

he k = 5 nearest neighbors of x 1 in Q t are considered. 

If new data belonging to a region B 2 become available at t + 1 ,

his new labeled data can be used to train new classifiers and to

stimate the classifiers’ competence. Since the concept drift here

s only virtual, the labeled samples collected in t are still relevant

or estimating the classifiers’ competence in t + 1 if we consider a

CS-based approach. This idea is presented in Fig. 2 b, where in-

tances collected at both t and t + 1 are used in the validation

ataset Q t+1 . As can be observed in Fig. 2 b, the k = 5 validation

amples collected at t + 1 (i.e., in the B 2 region) are the closest to

 1 , and thus, these instances may be used to estimate the classi-

ers’ competence with respect to x 1 . Still in Fig. 2 b, a test instance

 2 is introduced, and as we can see, the neighborhood of x 2 is di-

ided between the instances received at t ( B 1 ) and t + 1 ( B 2 ), indi-

ating that instances in both regions B 1 and B 2 may contribute to

stimating the classifiers’ competence with respect to x 2 . Note that

nder a scenario where the test instances have drifted to another

egion in the feature space before new training data arrived with

espect to this feature region, a DCS-based approach is still able to

stimate the classifiers competence based on the closest “known”

egions of the feature space. 

In summary, considering M as the number of the latest labeled

atches/instances accumulated in the validation dataset Q (e.g., the

ccuracy estimation window W in the Dynse framework), we may

ay that a good policy would be to set M to be as big as possible in

rder to deal with a virtual concept drift, whilst a small value of M

hould be used in a real concept drift scenario in order to procure

 faster adaptation to changes, as discussed in Section 4.2.1 . These

onclusions are empirically demonstrated in Section 5.2 , where the

ests showed that larger values for M generated a slower adapta-

ion under a real concept drift scenario, while in a virtual concept

rift scenario larger values for M leaded to better results. 

.2.3. The local region of competence 

By taking into account the neighborhood of the test instance

 under the current validation set Q by means of a DCS method,

e are assuming that some information can be shared between

oncepts (i.e., “which information learned is still useful?”), and a

lassifier trained with an old concept may be still suitable under

he current concept in some regions of the feature space ( Tsymbal

t al., 20 06; 20 08 ). To illustrate the rationale behind this think-

ng, see the example in Fig. 3 a that shows the changed region be-

ween Concepts 1 and 2 in the SEA Concepts problem ( Street &

im, 2001 ). Consider the instances x 1 and x 2 in Fig. 3 a, as well

s Concept 2 ( θ = 9 ) as the current one, and that Q only contains

nstances labeled according to the current concept. 

If we use the entire current validation dataset Q to estimate the

lassifiers’ competence for both instances, as in Brzezi ́nski and Ste-

anowski (2011) ; Karnick, Ahiskali, Muhlbaier, and Polikar (2008) ;

ang et al. (2003) , then the very same set of classifiers will be se-

ected to classify both x and x . However, if we take into account
1 2 
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Fig. 1. Neighborhood N x of a test instance x in a validation dataset collected at t ( 1 a) and t + 1 ( 1 b). In ( 1 c) N x was computed using a merged validation dataset containing 

both t and t + 1 instances. 

Fig. 2. Virtual concept drift caused by a change in P ( x ). Neighbors of a test instance 

x 1 in the validation dataset at t ( 1 a), where only region B 1 is known. Neighbors of 

the instances x 1 and x 2 at t + 1 ( 1 b), where both regions B 1 and B 2 are known. 
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only the local region of the test instances (see the neighbors of x 1 
and x 2 in Fig. 3 a), it becomes clear that classifiers trained under

Concept 1 or 2 can classify x 2 , since the a posteriori probabilities

did not change in the region where x 2 was placed. On the other

hand, it will be possible to verify that only the classifiers trained

under the presence of Concept 2 will be able to classify x 1 , since

it is expected that at least part of the neighborhood of x 1 changed
Fig. 3. Neighbors of test instances in a validation dataset Q that contains only instances 

the region that has a change between Concepts 1 ( θ = 8 ) and 2 ( θ = 9 ). 
ts a posteriori probabilities when the Concept changed (i.e., some

nstances are in the changed area). 

As we estimate the classifiers’ competence using the k nearest

eighbors of the test instance, we may wonder how big k should

e to define the local region. This is a fundamental problem with

ny DCS-based approach, regardless of whether or not the environ-

ent is static. Under a concept drift scenario, we may relate the

eighborhood size to the DCS plasticity of the method, especially

hen the concept drift affects only part of the feature space (as in

he SEA Concepts problem). 

To demonstrate this, consider the neighborhood of x 1 in Fig. 3 a

nd b. As we increase the neighborhood size, as in Fig. 3 b, there

s a greater probability for some validation samples to be taken

rom regions that did not change; consequently, classifiers that are

blivious to this change may be wrongly selected to classify the

est instance, depending on the DCS strategy implemented (e.g., a

lassifier trained in the old concept may be selected, since it would

ave a high accuracy as most neighbors are outside the changed

egion). On the other hand, a smaller neighborhood ( Fig. 3 a) could

etter represent the local region of the test instance in the current

oncept, thus giving a better competence estimation for the classi-

ers with respect to the test instance. 

It is important to note, though, that even a smaller neighbor-

ood may contain validation instances from areas where the con-
with respect to the concept 2 in the SEA Concepts problem. The gray area depicts 
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Fig. 4. Classifiers C 1 and C 2 are specialized in the region R with respect to Con- 

cept 1, while classifier C 3 is specialized in the same region under the presence of 

Concept 2. 

Fig. 5. The k = 5 nearest neighbors of a test instance x in a validation dataset Q 

(gray instances). The closest instance to x (dashed lighter gray) is noise. 
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ept did not change, especially when the test instance is close

o the boundary that changed between concepts. Estimating the

ptimal local region size may be a challenging task ( Gomes, Bard-

al, Enembreck, & Bifet, 2017 ), but as discussed in this sec-

ion, some DCS-based methods may decrease their performances

hen using larger local regions. Based on the fact that un-

er static environments, DCS methods often provide good results

ith small neighborhoods (e.g., k = 5 for the DCS-LA methods

 Woods, Bowyer, & Kegelmeyer, 1996 )), we thought that using the

ame values that produced good results in the static environment

ould be a good start. This conclusion was taken into account in

ection 5 , where a neighborhood of size 5 was used in all tests. 

.2.4. Concept diversity 

When dealing with classification problems in a static environ-

ent using a DCS strategy, we must rely on a diverse pool of clas-

ifiers P , where P is often considered constant (e.g., the classifiers

n P are trained before the system is deployed, and then P is kept

nchanged during the entire system runtime) ( Britto et al., 2014;

idaci et al., 2005 ). However, under a concept drift where uncon-

itional and/or the a posteriori distributions may change over time,

t is necessary to train and add new classifiers in P as new labeled

nformation arrives, in order to guarantee that the pool contains at

east one classifier trained with the latest information received (as

one in the Dynse framework). 

Since new classifiers are added to P over time, a classifier prun-

ng approach may be necessary in order to keep P from increas-

ng in size indefinitely. This pruning mechanism must be imple-

ented in the pruning engine module in the Dynse framework,

here we should keep a diverse pool. The diversity is important

or the Dynse due to the use of a DCS based approach to select

he most promising ensemble for the test instances. Under a static

nvironment, a DCS based method may benefit from a pool that

ontains classifiers specialized in different regions of the feature

pace, thus the diversity is region dependent. The region depen-

ency alone may also suffice in scenarios that suffer from virtual

oncept drifts only. Nevertheless, the region dependency may be

ot sufficient in a real concept drift scenario, where it is also nec-

ssary to consider a time dependency in order to keep classifiers

rained under different concepts (here, a different concept refers to

 different a posteriori probability). 

A DCS-based method may benefit from a pool containing clas-

ifiers trained under past concepts since some regions of the fea-

ure space may not be affected by the concept drift. Also, the pres-

nce of classifiers trained under previous concepts in the pool may

ead to a seamless reaction under the presence of a recurrent con-

ept ( Tsymbal et al., 20 06; 20 08 ). In this work, a pool that contains

lassifiers specialized in different regions of the feature space (i.e.

egion diversity), and trained under different concepts (i.e. time

iversity) is defined as a Concept Diverse pool. Thus, a pruning

ethod may take into consideration the Concept Diversity when

eciding to prune some classifier from P , or at least we should

aintain as many past classifiers as possible ( Almeida et al., 2016 ).

s an example, consider Fig. 4 , where the classifiers C 1 and C 2 are

pecialized in the region R with respect to Concept 1, while the

lassifier C 3 is specialized in the same region R , but with respect

o Concept 2. In this example, a good candidate to be pruned from

he pool should be the classifier C 1 or C 2 , since both are specialists

n the same region and in the same concept. 

This idea is empirically demonstrated in Section 5.4 , where it

an be observed that a pool of “infinite size” generated the best

esults in the majority of the benchmarks. The infinite size pool

an be considered Concept Diverse, since the classifiers trained at

ifferent times, and possibly covering different regions of the fea-

ure space, are kept in the pool. 
. Experiments 

In this section, we present the experiments that were con-

ucted to validate the discussions presented in the preceding sec-

ions of this work. We used the Dynse framework as a DCS-

ased approach to tackle concept drifts, and some classical DCS

ethods were used as the Classification Engines of the framework.

able 1 describes the tested Classification Engines , where the Ora-

le method refers to a hypothetical perfect DSC method, which al-

ays selects the first classifier able to correctly classify the test

nstance when the pool contains such a classifier. We will con-

ider the Oracle as an upper bound, although it is important to

ote that the Oracle may be an overly optimistic accuracy limit

 Didaci et al., 2005 ). 

A modified version of the K-E ( Ko et al., 2008 ) method is con-

idered. In the modified version, given a set of neighbors N x , where

 N x | = k, it will select all classifiers that correctly classify at least

 − l neighbors in N x , where l is defined as the slack variable

 Almeida et al., 2016 ). If no classifier is able to correctly clas-

ify at least k − l neighbors, the value of l is increased by one. In

he original version of the K-E, the selected classifiers must cor-

ectly classify the entire neighborhood and, when no classifier is

ble to classify all k neighbors, the value of k is reduced, which

ay lead to noise related problems. To illustrate this, consider

ig. 5 , where a noisy instance is the closest one to the test in-

tance x . In this scenario, the original version of the K-E would

robably decrease the neighborhood size k until only the noise is

resent (presumably no classifier would be able to classify the en-

ire neighborhood according to its labels due to the noisy instance),

hus the classifiers would be tested using a single wrongly labeled

ample. 

To assess the pruning engine module in the Dynse framework

e implemented two classical methods: Age —Remove the oldest

lassifier ( Kapp et al., 2011; Pan et al., 2012 ) and Accuracy —Remove

he worst performing classifier with respect to the current Accu-
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Table 1 

Relation between the acronyms and the DCS methods implemented as classification engines. 

Acronym Description 

OLA DCS-LA overall local accuracy ( Woods et al., 1996 ) 

LCA DCS-LA local class accuracy ( Woods et al., 1996 ) 

Priori A P riori ( Giacinto & Roli, 1999 ) 

Posteriori A P osteriori ( Giacinto & Roli, 1999 ) 

K-U KNORA- U nion ( Ko et al., 2008 ) 

K-UW KNORA-Union-W ( Ko et al., 2008 ) 

K-E KNORA- E liminate ( Ko et al., 2008 ) modified as in Almeida et al. (2016) 

Oracle The Oracle theoretical perfect DCS method ( Giacinto & Roli, 1999; Woods et al., 1996 ) 

Table 2 

State-of-the-art methods used in the experiments. 

Acronym Method Category 

AUE The Accuracy U pdated E nsemble ( Brzezi ́nski & Stefanowski, 2011 ) Ensemble 

AWE The Accuracy- W eighted E nsembles method Wang et al. (2003) . Ensemble 

ADACC The Anticipative D ynamic A daptation to C oncept C hange method ( Jaber et al., 2013 ) Ensemble 

DDM The D rift D etection M ethod (DDM) ( Gama et al., 2004 ) Trigger 

EDDM The E arly D rift D etection method ( Baena-Garcıa et al., 2006 ) Trigger 

HAT The Hoeffding A daptive T ree ( Bifet & Gavaldà, 2007 ) Trigger 

LevBag The L everaging B agging method ( Bifet et al., 2010 ) Trigger/ensemble 

OzaAD The method proposed in Bifet et al. (2009) using the ADWIN Bifet and Gavaldà (2007) trigger. Trigger/ensemble 

OzaAS The method proposed in Bifet et al. (2009) using Adaptive-Size Hoeff. Trees. Trigger/ensemble 

ARF The A daptive R andom F orests method ( Gomes et al., 2017 ). Trigger/ensemble 

NaiveComb A naive combination of all created classifiers –
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racy Estimation Window ( Kuncheva, 2004; Tsymbal et al., 2006;

Wang et al., 2003 ). To have a better insight into the pruning im-

pacts, we also consider an “infinite pool size” ( Infinite ). 

For comparison purposes, we also present the results obtained

by some state-of-the-art concept drift methods. We used the de-

fault implementations and parameters of these methods available

in the MOA framework ( Bifet et al., 2010 ). The acronyms of the

tested state-of-the-art methods are available in Table 2 . In some

tests, we also show the result achieved by a method called Naive

Combination , which just trains and adds classifiers to its pool for

every new labeled batch received, and then combine all classifiers

by the majority voting rule to classify the test instances. It can be

considered as a lower bound, since it is a method that takes no ac-

tion to adapt to the drift, in spite of the arrival of new information.

All implemented approaches use Hoeffding Trees ( Domingos &

Hulten, 20 0 0 ) as base learners (the HAT method uses a variation

of the Hoeffding tree as defined in the original paper ( Bifet &

Gavaldà, 2007 )), which is a common choice for concept drift sce-

narios ( Gomes et al., 2017 ). For uniformity, the DDM and EDDM

triggers use a pool of Hoeffding Trees as the learner, where ev-

ery new labeled batch received is used to train a new classifier,

and all classifiers are combined using the majority voting. Depend-

ing on the benchmark used in the tests, a holdout or a test-then-

train approach is used. In the holdout strategy, for each time step,

a train set is given, followed by an independent test set. In the

test-then-train approach, at each time step the system must clas-

sify the received batch and, after the classification, the true labels

of the batch are given and used for training ( Ditzler, Roveri, Alippi,

& Polikar, 2015; Krawczyk et al., 2017 ). The acronyms and a brief

discussion about the datasets used in the tests are follow given. 

STAGGER: The STAGGER Concepts problem was introduced in

Schlimmer and Granger (1986) . This synthetic dataset contains

abrupt real concept drifts, and its instances are represented by

three discrete features: color ∈ { r, g, b }, shape ∈ { c, t, r } and size ∈ { s,

m, l }. The problem is binary and a holdout evaluation is used.

During the tests, there is an abrupt concept change for every 10

time steps. At each time step 20 labeled samples are given for

training, and then 200 unlabeled samples are given for testing.

The positive class is defined by color = r ∧ size = s in the steps 0–
, color = g ∨ shape = c in the steps 10–19, and size = m ∨ size =
in the steps 20–29. In the steps 30–39 the first concept is

epeated. 

SEA: The SEA Concepts problem ( Street & Kim, 2001 ) contains

hree randomly generated real features f 1 , f 2 and f 3 in the range

0, 10], and two possible classes y ∈ { pos, neg }, where the boundary

hat separates the classes is given by f 1 + f 2 ≤ θ . Noise is intro-

uced by changing the class of 10% of the instances, and concept

rifts are introduced by changing the θ value. During the test, at

ach time step, a labeled batch containing 250 samples is given

or training, and another batch containing 250 samples from the

ame concept is generated for testing (holdout test). The concept

s changed abruptly for each 50 steps, and the concepts are pre-

ented in the order θ = 8 , θ = 9 , θ = 7 and θ = 9 . 5 ( Elwell & Po-

ikar, 2011 ). Note that in this problem much of the information is

hared between concepts (i.e. local concept drift). 

SEARec: This benchmark follows a similar specification of the

EA benchmark. Nevertheless, in this configuration there is a con-

ept change for every 25 steps. As in the SEA benchmark, there

s a total of 200 steps in the problem, thus all concepts are

epeated once in the order θ = 8 , θ = 9 , θ = 7 , θ = 9 . 5 , θ = 8 , θ =
 , θ = 7 , θ = 9 . 5 . 

CkrC, CkrP, CkrS and CkrE: These benchmarks refer to the Ro-

ating Checkerboard problem considering constant, Gaussian pulse,

inusoidal and exponential changes, respectively ( Elwell & Po-

ikar, 2011 ). The datasets present real concept drift problems,

here the boundaries are always changing gradually. Noise is

dded in 10% of the instances, and there is a total of 400-time

teps in each benchmark. At each time step, 25 samples are given

or training, and 1024 are given for testing (holdout test). This ver-

ion of the benchmark and experimental protocol is proposed in

lwell and Polikar (2011) , where the authors also provide a link to

ownload the datasets. 

Gauss: The Gauss dataset with class Addition/Removal used in

lwell and Polikar (2011) . The concept drift is real, and the prob-

em contains 300-time steps, where at each time step 20 samples

re given for training, and 1024 samples are used for testing in a

oldout fashion. All classes are constantly and gradually drifting.

t the time step 120 a new class is introduced, and at time 240
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Table 3 

Main properties of each benchmark used. The train/test sizes refer to the batch size given for training/testing at each time step. 

Benchmark Drift type Test type Featur. Classes Num. steps Train size Test size 

Real concept drift benchmarks 

STAGGER ( Schlimmer & Granger, 1986 ) Abrupt real Holdout 3 2 40 20 200 

SEA ( Elwell & Polikar, 2011; Street & Kim, 2001 ) Abrupt real Holdout 3 2 200 250 250 

SEARec a ( Street & Kim, 2001 ) Abrupt real Holdout 3 2 200 250 250 

Ckr b ( Elwell & Polikar, 2011 ) Gradual real Holdout 2 2 400 25 1024 

Gauss ( Elwell & Polikar, 2011 ) Gradual real Holdout 4 2 300 20 1024 

Real world benchmarks 

Nebr ( Elwell & Polikar, 2011; Escovedo et al., 2013 ) – Test-train 8 2 604 30 30 

For ( Lichman, 2013 ) – Holdout 54 7 264 200 20 0 0 

Virtual concept drift benchmarks 

Dig ( Lichman, 2013 ) Virtual Holdout 64 10 56 50 50 

Let ( Lichman, 2013 ) Virtual Holdout 16 26 200 50 50 

a The SEARec is a variation of the original SEA benchmark containing recurrences. 
b Configuration valid for all checkerboard benchmark variants (CkrC, CkrP, CkrS and CkrE). 
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ne of the classes is removed. A more detailed description of the

enchmark and download instructions are available in Elwell and

olikar (2011) . 

Nebr: The real world Nebraska Weather dataset using the

ame configuration employed in Elwell and Polikar (2011) ;

scovedo, Da Cruz, Vellasco, and Koshiyama (2013) , where only the

ight features with a missing feature rate less or equal than 15%

ere used, and the remaining missing values are replaced by the

ean of the features in the preceding and following samples. The

ataset is ordered in a chronological order and a test-then-train

pproach is used. At each time step, 30 samples are used for train-

ng, and the next 30 samples are given for testing. In the next time

tep, the testing samples are used as a training batch (the real la-

els are given), and the subsequent 30 samples are given for test-

ng. This procedure is repeated until all samples are used, generat-

ng a test procedure containing 604-time steps. 

For: The Forest Cover Type problem available at the Univer-

ity of California, Irvine (UCI) repository ( Lichman, 2013 ). Besides

ts popularity as a test-then-train dataset ( Bifet et al., 2010; Bifet

t al., 2009; Chen et al., 2016; Krawczyk & Won ́ziak, 2014 ), in

ifet (2017) it is argued that this dataset may present a high cor-

elation between its data, making it a trivial problem. Thus, in or-

er to increase the problem difficulty, the instances are presented

n the same order of the original dataset, and at each time step,

 batch containing 200 samples is given for training, and a batch

ontaining the next 20 0 0 samples is given for testing. The dataset

s used in a holdout form, thus, the testing samples are never used

or training and, conversely, the training samples are never used

or testing. This process is repeated until all samples are used, gen-

rating a test with 264-time steps. 

Dig and Let: The Digit ( Alpaydin & Kaynak, 1998 ) and Letters

 Frey & Slate, 1991 ) problems available at the UCI ( Lichman, 2013 )

epository with artificially introduced virtual concept drifts. To ar-

ificially introduce a virtual concept drift in the datasets, the fol-

owing strategy is employed: at each time step, a random sam-

le and its 49 nearest neighbors are taken from the dataset to be

sed in the training phase (i.e., 50 training samples). The training

amples are removed from the dataset, and then 50 samples are

andomly taken for the testing phase (differently from the train-

ng phase, all 50 samples are taken randomly during the testing

hase). The testing samples are also removed from the dataset, and

 new step begins (holdout test). This process continues until the

ataset is empty. This procedure results in highly biased training

ets with data concentrated in a single region of the feature space.

The main properties of each benchmark are shown in Table 3 .

he experiments are further organized as follows. In Section 5.1 we

alidate the DCS approach under local changes. Different accu-

acy estimation window sizes are put to test under real and vir-
ual concept drift problems in Section 5.2 . In Section 5.3 the re-

ults achieved using several DCS methods as classification en-

ines are presented. In Section 5.4 some classical pruning strate-

ies are tested and compared with a pool of “infinite size”. Finally,

n Section 5.5 , the results achieved by a default configuration of

he Dynse framework are compared with some state-of-the-art-

ethods. All results reported are the average of 10 replications. 

.1. The DCS approach under local changes 

So far we have argued that a DCS-based method should be able

o select a good set of classifiers for the test instance according

o the current concept, regardless of the training concept of the

elected classifiers. To validate this, first we use a configuration of

he Dynse framework adopting the K-E as the classification engine

ithout any pruning strategy and considering k = 5 ; l = 0 ; M = 4 ,

o check its behavior in the SEA Concepts problem without noise 1 

able 4 presents the average accuracy of the Dynse framework in

ach concept of the SEA Concepts problem, as well as the average

roportion of classifiers trained in each concept selected to classify

he instances under the presence of the individual concepts of this

ataset. For instance, in the presence of Concept 2, 46.5% of the

lassifiers selected to classify the test instances were trained under

he presence of Concept 1. The numbers in parentheses show the

erfect proportion (i.e., considering perfect classifiers and a perfect

lassification Engine ) that should be selected in each concept. 

As can be observed, the proportions presented in Table 4 are

lose to the theoretical perfect values, indicating that with the

ynse framework, it is possible to create a DCS capable of cor-

ectly select classifiers trained under the current concept and also

apable of reusing classifiers trained under old concepts in regions

here they are still useful. Note that we repeated the first concept

s the last one, where it can be observed an increase in the ac-

uracy of the recurrent concept compared when it first appeared

97.9% versus 97.2%, respectively). This higher accuracy and the

roportion of selected classifiers close to the theoretical ones in

he recurrent concept show that a DCS-based method can handle

 recurrent concept scenario without any further modification. 

.2. The impact of the accuracy estimation window size 

In this Section, we evaluate the behavior of the Dynse frame-

ork for different accuracy estimation window sizes ( M ) under

eal and virtual concept drift scenarios. To verify the impact of M

n a real concept drift scenario, the original configuration of the
The noise was removed in order to better visualize the behavior of the method. 
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Table 4 

Average accuracy and proportion of classifiers trained in each concept selected to classify the instances in 

the SEA Concepts problem without noise. The number in parenthesis indicate the perfect proportion that 

should be selected. 

Test concept 

Concept 1 Concept 2 Concept 3 Concept 4 Concept 1 

Train concept 1 100% (100%) 46.5% (47.8%) 34.5% (33.5%) 23.3% (24.0%) 26.3% (27%) 

2 0.0% (0.0%) 53.5% (52.2%) 30.8% (30.4%) 26.7% (26.4%) 25.9% (24.7%) 

3 0.0% (0.0%) 0.0% (0.0%) 34.7% (36.2%) 21.3% (21.9%) 23.8% (24.9%) 

4 0.0% (0.0%) 0.0% (0.0%) 0.0% (0.0%) 28.7% (27.7%) 23.9% (23.4%) 

Accuracy 97.2% 97.6% 97.7% 97.4% 97.9% 

Table 5 

Average accuracy of the Dynse framework in the original SEA Concepts Benchmark (in- 

cluding noise), considering different accuracy estimation window sizes. 

Classification eng. Accuracy estimation window size ( M ) 

M = 1 M = 4 M = 8 M = 16 M = 32 M = ∞ 

K-E k = 5 ; l = 0 87.07% 87.48 % 87.38% 86.98% 85.95% 84.22% 

K-U k = 5 85.48% 86.09% 86.46% 86.33% 85.54% 84.09% 

NaiveComb 83.71% 

Oracle 93.90% 

0 20 40 60 80 100 120 140 160 180 200

0.75
0.8

0.85
0.9

batch

ac
cu

ra
cy

M=1 M=4 M=16

Fig. 6. Accuracy over time plots in the SEA Concepts problem for different M values, considering the K-E as the classification engine and K = 5 ; l = 0 . 

Table 6 

Average accuracy of the Dynse framework in a virtual concept drift scenario in the 

Digit dataset, considering different accuracy estimation window sizes. 

Classification eng. Accuracy estimation window size ( M ) 

M = 1 M = 4 M = 8 M = 16 M = 32 M = ∞ 

K-E k = 5 ; l = 0 13.78% 36.02% 53.46% 68.56% 76.79% 77.17 % 

K-U k = 5 15.02% 38.90% 54.00% 68.70% 74.90% 75.80% 

NaiveComb 12.89% 

Oracle 86.15% 
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SEA Concepts benchmark (including noise) is used. The average ac-

curacy achieved for different M sizes considering the K-E and K-U

as classification engines, and for the Naive Combination and the

Oracle methods, are presented in Table 5 . The complete plot con-

taining the accuracy over time for some of the M sizes consider-

ing the K-E classification engine is presented in Fig. 6 . No pruning

strategy was used in any scenario. 

Table 5 and Fig. 6 show that bigger M values cause a slower

adaptation under concept changes. Notwithstanding, when the

value of M is increased from 1 to 4 (and also from 4 to 8 for

the K-U), a better average accuracy is achieved. By analyzing the

plot in Fig. 6 , it becomes clear that, besides the larger value of M

generated a slower recover under concept changes, the average ac-

curacy was improved by a more accurate classification when the

concept is stable (See the discussion in Section 4.2.1 ). Since a value

of M = 4 presented a good trade-off between a fast reaction and a

good performance in stable regions, it will be considered as the

default value for M in the Dynse framework (i.e. a good starting

point when configuring the Dynse for a given real concept drift

scenario). 

To test the M size impact in a virtual concept drift scenario, the

Digit recognition problem (i.e. the Dig problem) is used. Table 6
ontains the results achieved by varying the M size for the Dynse

ramework using the K-E and K-U as classification engines, without

onsidering any pruning strategy. In Table 6 the results achieved

y the Naive Combination and the Oracle are also showed. We can

bserve from Table 6 and Fig. 7 that bigger values for M lead to

etter results in the virtual concept drift problem. These results

orroborate the discussion we presented in Section 4.2.2 . Since the

ataset used this test is relatively small, it was possible to keep

ll labeled instances received in the Accuracy Estimation Window

 M = ∞ ). Of course, this is impossible in most real-world problems,

nd thus, an interesting challenge for future works could be how

o maintain this window with a fixed size and covering the biggest

ossible feature space to better adapt to a virtual concept drift. 

Note that in the beginning of the test, the Dynse framework

onfigured with larger values for M generated results close to the

racle upper bound, however after about 10 time steps the Oracle

ecame the leading method, indicating that there is room for im-

rovement. Due to its good results, an accuracy estimation window

f size 32 ( M = 32 ) will be defined as the default value for virtual

oncept drift problems, although it is clear that bigger values could

ead to better results (however a window that is too wide may be

mpractical in a real environment). A final observation regarding
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Fig. 7. Accuracy over time plots for the Digit problem using the K-E ( k = 5 ; l = 0 ) as classification engine and different M values. 

Table 7 

Artificial and real world benchmarks average accuracies (%), using different classification engines. Best results (not considering the Oracle) 

are in bold. Standard deviation between test batches are shown in parenthesis. 

Benchmark OLA LCA Priori Posteriori K-U K-UW K-E Oracle NaiveComb 

Real concept drift benchmarks 

Stagger 91.9(17.7) 75.2(13.9) 93.6(12.0) 93.9 (12.3) 86.1(17.9) 91.8(14.3) 92.0(16.6) 99.7(1.2) 66.3(17.6) 

SEA 87.4(1.3) 83.5(3.1) 86.5(1.4) 86.9(1.5) 86.1(1.9) 86.3(1.9) 87.5 (1.4) 93.9(1.4) 83.7(3.0) 

SEARec 87.1 (1.8) 83.5(3.0) 86.3(1.6) 86.6(1.7) 86.3(2.0) 86.3(1.9) 87.1 (1.8) 94.1(1.4) 83.8(3.2) 

CkrC 85.6 (3.1) 68.7 (7.4) 86.4 (2.7) 83.9 (2.9) 83.7 (3.5) 86.1 (3.0) 85.6 (3.1) 99.9 (2.5) 51.1 (8.6) 

CkrP 86.5(4.9) 68.4(6.9) 86.8 (4.8) 85.2(5.0) 85.1(5.1) 86.7(4.7) 86.5(4.9) 99.8(2.8) 49.2(8.8) 

CkrS 86.2(5.1) 70.4(9.8) 86.7 (4.6) 84.2(4.7) 84.0(5.3) 86.3(5.0) 86.2(5.1) 99.6(3.6) 63.7(18.9) 

CkrE 85.3(3.3) 64.0(6.1) 86.1 (3.5) 83.9(3.4) 83.2(3.5) 85.8(3.5) 85.3(3.3) 99.6(3.8) 51.7(10.2) 

Gauss a 89.5(5.7) 85.9(8.1) 90.1 (5.4) 89.9(6.6) 89.4(7.1) 89.5(7.0) 89.5(5.7) - 78.4(13.3) 

Real world benchmarks 

Nebr 74.5(1.0) 70.0(1.1) 73.7(1.0) 71.9(1.1) 74.4(1.1) 74.7 (1.0) 74.5(1.0) 97.2(4.3) 70.4(1.1) 

For 78.3 (10.6) 50.2(19.8) 77.5(10.5) 76.3(11.0) 77.5(11.1) 77.8(11.0) 78.3 (10.6) 98.6(7.4) 68.8(11.9) 

Virtual concept drift benchmarks 

Dig 74.9(20.6) 11.2(2.4) 75.4(20.1) 72.6(19.8) 74.9(22.1) 74.5(21.3) 76.8 (20.5) 86.2(24.4) 12.9(3.7) 

Let 66.2(14.9) 23.1(8.4) 64.6(14.3) 58.5(11.6) 67.1(15.7) 70.0 (16.1) 66.5(14.0) 93.2(18.7) 41.9(16.0) 

Avg. Rank 3.1 7.5 2.6 4.4 5.2 3.1 2.5 - 7.5 

a Only the class priors of the test batches are available in Elwell and Polikar (2011) , thus it was not possible to compute the Oracle 

accuracy. 
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he results in Table 6 and Fig. 7 , is that even if the concept drift is

nly virtual, some classifiers may be highly specialized in a specific

egion, and thus, it may be suboptimal to use them to classify test

nstances that are not in the regions where the classifiers are spe-

ialized, as shown by the poor performance achieved by the Naive

ombination method. 

.3. Classification engines tests using common benchmarks 

In this Section the DCS methods listed in Table 1 are used as

lassification engines for the Dynse framework. During the tests no

runing approach was implemented. As estimated in Section 5.2 ,

he accuracy estimation window size will be set to 4 ( M = 4 ) for

eal concept drift problems, and to 32 for virtual concept drift

roblems ( M = 32 ). Since the authors of the DCS methods imple-

ented as classification engines often defined a small neighbor-

ood to be a good starting point (usually a value between 5 and

0) ( Hung-Ren Ko, Sabourin, & de Souza Britto, 2007; Ko et al.,

008; Woods et al., 1996 ), a neighborhood of size 5 ( k = 5 ) was

efined in the tests for all DCS methods (also l = 0 for the K-E

ethod). 

The results of the experiments can be seen in Table 7 , where

he average accuracy achieved in each dataset and the accuracy

tandard deviation between test batches are shown. As can be ob-

erved, the LCA classification engine presented the worst results

hen considering the datasets in Table 7 , indicating that using

he a posteriori information of the classifiers in order to select the

eighbors may lead to a poor estimation of the classifiers’ compe-

ences under a concept drift scenario. This conclusion is reinforced
y the results of the A Posteriori method, which also considers the

 posteriori information of the classifiers’, and was only the 5th

est performing classification engine in the test. 

On average, the weighted version of the Knora-Union method

K-UW) achieved better results than the unweighted (K-U) version.

his result indicates that DCS methods that take into consideration

he distance between the neighbors and the test instance when es-

imating the pool competence are more suitable for concept drift

cenarios. This result is reinforced by the good performance of the

 Priori method, which also uses weights. The weighted DCS used

n Tsymbal et al. (2008) , corroborate these findings. Note that the

 Priori method is “less permissive” than the K-UW approach since

nly the best classifier is selected. This behavior seems to be ben-

ficial in some scenarios, such as in a gradual always changing real

oncept drift environments (see the Checkerboard benchmark vari-

nts results). 

The results in Table 7 also demonstrate that, in general, the

CS approach adapted using the Dynse framework, is able to han-

le the concept drifts with almost no parameter tuning (only M is

djusted according to the concept drift nature). This can be con-

luded by the good results achieved by the different DCS meth-

ds used as classification engines when compared with the Naive

ombination method since the former does not implement any

pproach to explicitly adapt to a concept drift. When comparing

lassification engines that select a single classifier versus an en-

emble of classifiers, the results do not indicate a clear best ap-

roach. However, when considering the best average rank, the K-E

pproach, which selects an ensemble of classifiers for each test in-

tance, comes ahead. 
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Fig. 8. Bonferroni-Dunn test at a α = 0 . 05 showing the methods that are not significantly different from the K-E Classification Engine. 

Table 8 

Pairwise comparisons of the top 5 Classification Engines. (a) Com- 

parison with the adjusted p -values using the Bergmann–Hommel 

procedure. (b) Comparison using the Wilcoxon Signed-Ranks test. 

No hypothesis were rejected for α = { 0 . 1 , 0 . 05 , 0 . 01 } . 
(a) (b) 

Hypothesis p Berg Hypothesis p Wilcoxon 

K-E vs Posteriori 0.1182 K-E vs Posteriori 0.0117 

Priori vs Posteriori 0.1182 Priori vs Posteriori 0.0146 

OLA vs Posteriori 0.3254 OLA vs Posteriori 0.0156 

K-UW vs Posteriori 0.3254 K-UW vs Posteriori 0.0532 

Priori vs K-UW 1.0 0 0 0 K-E vs OLA 0.1250 

OLA vs Priori 1.0 0 0 0 Priori vs K-UW 0.4639 

K-E vs K-UW 1.0 0 0 0 K-E vs Priori 0.4653 

K-E vs OLA 1.0 0 0 0 OLA vs Priori 0.8389 

K-E vs Priori 1.0 0 0 0 K-E vs K-UW 0.8340 

OLA vs K-UW 1.0 0 0 0 OLA vs K-UW 0.9775 
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In Fig. 8 a Bonferroni–Dunn test ( Demšar, 2006 ) with α = 0 . 05

shows the classification engines that are not significantly better

than the K-E, where it is possible to verify that most classifica-

tion engines have no significant difference to the K-E. The five

best-ranked classification engines deemed as equivalent by the

Bonferroni–Dunn test are further analyzed using pairwise compar-

isons, considering the hypothesis of equality between each pair of

algorithms, using the Bergman–Hommel procedure 2 Bergmann and

Hommel (1988) ; Cruz et al. (2018) ; Garcia and Herrera (2008) ,

and the Wilcoxon Signed-Ranks test ( Demšar, 2006 ), as suggested

in Benavoli, Corani, and Mangili (2016) . The comparison results

are presented in Table 8 , where no hypothesis was rejected at a

α = { 0 . 1 , 0 . 05 , 0 . 01 } for the tests. 

Some accuracy over time plots with the K-E as the classification

engine for the Dynse framework, the Oracle and Naive Combina-

tion methods can be seen in Fig. 9 . Note that when the change is

abrupt, as in the STAGGER and SEA benchmarks ( Figs. 9 a and 9 b,

respectively), the K-E can quickly recover from the concept drift.

When the change is gradual ( Fig. 9 c) the K-E classification engine

was able to keep a good accuracy over all time steps, and it was

also able to adapt in the real world scenario presented ( Fig. 9 d).

Besides the good results achieved, the plots in Fig. 9 indicate that

some improvement can still be made due to the results of the Or-

acle method. 

5.4. The pruning impact 

In Sections 5.1, 5.2 and 5.3 it is showed that the DCS-based ap-

proach can adapt to concept drifts using a pool of “infinite size”.

Nevertheless, an infinite pool size is unfeasible under a real-world

scenario, thus, in this section, the classical Age (remove the oldest

classifier), Accuracy (remove the less accurate classifier considering

the current accuracy estimation window) are used as pruning en-

gines in the Dynse framework. The pruning strategies were config-

ured to keep at most 25 classifiers in the pool during the tests. The

tests results are compared with the “infinite pool” of classifiers. 
2 Implementation made by Garcia and Herrera (2008) available at http://sci2s.ugr. 

es/keel/multipleTest.zip . 

a  

t  

f  
Note that the infinite pool can be related to our previous

ork ( Almeida et al., 2016 ), where the pruning module was not

resent, and it can be considered the most Concept Diverse (see

ection 4.2.4 ) technique in the tested scenarios since classifiers

rained under all past concepts are kept. In the tests the Dynse

ramework configured with the K-E considering k = 5 and l = 0 as

lassification engine is used. The accuracy estimation window size

s set to 4 for the real concept drift scenarios ( M = 4 ) and to 32 for

he virtual concept drift tests ( M = 32 ). 

Table 9 contains the average accuracies achieved and the max-

mum memory consumed by the method (i.e. the peak of mem-

ry consumed considering all the steps) considering the discussed

runing strategies. As it can be observed in Table 9 , the infi-

ite pool generated the best accuracies in the majority of the

onsidered scenarios. In Table 10 the accuracies of the prun-

ng approaches are compared pairwise, considering the hypothe-

is of equality between each pair of pruning strategies, using the

ergman–Hommel and the Wilcoxon Signed-Ranks test ( Bergmann

 Hommel, 1988; Demšar, 2006; Garcia & Herrera, 2008 ). As one

an observe, according to both the Bergman–Hommel procedure

 Table 10 a) and the Wilcoxon Signed-Ranks test ( Table 10 a), the

nfinite pool size is significantly better than the age pruned one at

 α = 0 . 1 . 

Besides the pool of infinite size being able to generate better

esults than the accuracy based pruning in most scenarios, the sta-

istical tests in Table 10 did not encounter a significant difference.

s an example of the impact of the pruning, consider the plot in

ig. 10 a, where the accuracy over time plots for the infinite pool

ize, the accuracy and the age based prunings achieved the Digit

irtual concept drift benchmark problem are showed. In Fig. 10 a, it

s demonstrated that the pruning strategies may remove some rel-

vant information (especially the Accuracy Based pruning engine

n the presented example), which can lead to a poor performance

hen the pruning starts. 

Besides the good accuracy achieved, the infinite pool can ob-

iously lead to an unpractical amount of resources consumption

ver time. This can be seen in Fig. 10 b, which shows the amount

f memory consumed at each time step in the SEA benchmark

onsidering the infinite size pool and the age pruned pool (the

ccuracy-based pruning generated results close to the age-based

runing and it is not showed in the plot). As one can observe

n Fig. 10 b, when the pool reaches its maximum and the prun-

ng starts, the amount of memory required stabilizes when using

he age-based pruning. The infinite pool, on the other hand, con-

inues to increase the number of classifiers in the pool over time,

inearly increasing the amount of memory necessary at each time

tep, which would lead to an impractical amount of memory con-

umption in an infinite data stream. 

In Table 9 it is possible to observe that, as expected, the

mount of memory consumed by the pruned pools configura-

ions are in general much smaller than the infinite pool (note

hat all benchmarks used are finite, thus it was possible to use

he infinite size pool configuration without requiring an unfeasible

mount of memory). The pruning approaches memory consump-

ion in Table 9 are similar and, since no significant accuracies dif-

erence between the Age- and Accuracy-based pruning strategies

http://sci2s.ugr.es/keel/multipleTest.zip
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Table 9 

Average accuracy achieved and maximum memory requested for different pruning strategies. The 

numbers in parenthesis indicate the standard deviation between testing batches. Best accuracies in 

bold. 

Benchmark Pruning engine 

Infinite Age prune Acc. prune 

Accuracy Memory Accuracy Memory Accuracy Memory 

STAGGER 92.0% (16.6) 0.24 MB 91.4% (17.4) 0.18 MB 91.7% (17.2) 0.18 MB 

SEA 87.5% (1.4) 16.23 MB 87.6% (1.5) 2.77 MB 87.8% (1.6) 2.80 MB 

SEARec 87.1% (1.8) 16.17 MB 87.2% (2.2) 2.77 MB 87.1% (2.2) 2.77 MB 

CkrC 85.6% (3.1) 2.22 MB 83.9% (3.0) 0.29 MB 83.8% (3.1) 0.31 MB 

CkrP 86.5% (4.9) 3.23 MB 84.6% (4.8) 0.29 MB 84.9% (5.0) 0.31 MB 

CkrS 86.2% (5.1) 3.20 MB 84.3% (4.7) 0.29 MB 84.3% (4.8) 0.30 MB 

CkrE 85.3% (3.3) 3.24 MB 83.4% (3.5) 0.30 MB 83.5% (3.6) 0.31 MB 

Gauss 89.5% (5.7) 1.77 MB 89.6% (5.8) 0.34 MB 89.7% (5.7) 0.35 MB 

Nebr 74.5% (1.0) 8.19 MB 74.1% (1.1) 0.53 MB 74.7% (0.9) 0.55 MB 

For 78.3% (10.6) 20.67 MB 78.2% (10.8) 4.89 MB 78.2% (10.8) 4.96 MB 

Dig 76.8% (20.5) 10.18 MB 74.3% (20.7) 8.21 MB 68.0% (17.3) 8.23 MB 

Let 66.5% (14.0) 15.85 MB 60.3% (13.5) 4.62 MB 62.0% (12.7) 5.24 MB 
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Fig. 9. Accuracy over time plots considering the K-E classification engine, the Oracle and the Naive Combination Methods. 
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(a) Accuracy over time plot in the Digit
benchmark considering the infinite size pool
and the pruning strategies.
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(b) Memory usage over time in the SEA
benchmark. The Accuracy Pruning is not
showed since it lead to similar results com-
pared to the Age Pruning.

Fig. 10. The impact of pruning in the accuracy (a) and memory (b). 
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Table 10 

Pairwise comparisons of the prunings methods. (a) Comparison with 

the adjusted p -values using the Bergmann–Hommel procedure. (b) 

Comparison using the Wilcoxon Signed-Ranks test. Hypotheses that 

are rejected at an α = { 0 . 1 , 0 . 05 , 0 . 01 } are marked with a •, ••, and 
•••, respectively . 

Hypothesis p Berg Hypothesis p Wilcoxon 

Infinite vs Age •0.0963 Infinite vs Age •0.0107 

Infinite vs Accuracy 0.2207 Infinite vs Accuracy 0.0332 

Age vs Accuracy 0.3583 Age vs Accuracy 0.2168 
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were found in Table 10 , in this work, the Age-based pruning with

a pool containing at most 25 classifiers ( D = 25 ) will be considered

as the default pruning, due to its simplicity and ability to keep the

Dynse framework from indefinitely increasing the amount of mem-

ory needed. 

5.5. Tests comparing to the state-of-the-art results 

In this Section the Dynse framework is compared with some

important state-of-the-art contributions, listed in Table 2 . As spec-

ified in the beginning of this Section, the default configuration of

the methods available in the MOA framework ( Bifet et al., 2010 )

was used. A default configuration for the Dynse framework, built

considering the results presented in Sections 5.2, 5.3 and 5.4 , is

given in Table 11 . 

In the tests, the SEA Concepts and the Digit problems were not

considered, since these benchmarks were used to validate accu-

racy estimation window size in Section 5.2 . Note that all bench-

marks were used in the pruning engines test ( Section 5.4 ), where

the Age-based pruning was defined as the default method. We do

not consider the tests in Section 5.4 a fine-tuning, since as we dis-

cussed, an “infinite pool size” may lead to better results, and the

pruning is made only to save computational resources. 

Table 12 summarizes the results of the experiments, where it

can be observed the default configuration of the Dynse framework

generated the best results in the majority of the tested scenar-

ios. It is worth remembering, though, that the accuracy estimation

window size was set to 32 in the virtual concept drift scenario,

while the parameters in the state-of-the-art methods were kept

the same. Albeit it can be considered a tuning, a wider accuracy

estimation window size is a specification for the Dynse framework

when facing a virtual concept drift problem (see Section 4.2.2 ),

and the tested methods in the state-of-the-art does not specify any

modification for this specific scenario. 

In Table 12 it is also possible to verify that some state-of-the-art

methods perform worse than the Naive Combination ( NaiveComb )

baseline method, which does not take any action to adapt to a con-

cept drift. This may indicate that these methods require a careful

tuning to achieve a good performance in some of the tested sce-

narios. The results in Table 12 indicate that methods that explic-

itly maintain an ensemble may be more suitable for the presented

concept drift scenarios (the DDM and EDDM also used a pool of

classifiers as the base learner, nevertheless these methods do not

apply any rule in the pool in order to weight the classifiers or to

selectively remove them when a concept drift is signaled). The re-

sults in Table 12 also indicate that in spite of some state-of-the-
Table 11 

The proposed default configuraion of the Dynse framework. 

Description Var. Proposed configuratio

The accuracy estimation window size. M M = 4 for real concep

The classification engine CE The K-E method cons

The pool maximum size D D = 25 . 

The pruning engine. PE The Age Pruning engi
rt methods surpassed the Dynse framework in some benchmarks,

hese methods may be more sensitive to the tuning of parame-

ers or to the concept drift properties featured in the datasets. This

onclusion becomes clear when the average rank is considered in

able 12 since the Dynse framework is the best-ranked method. 

In Fig. 11 it is showed a Bonferroni–Dunn test with α = 0 . 05 ,

here it can be observed that the default configuration of the

ynse framework performs significantly better than seven of the

tate-of-the-art methods tested (and also better than the Naive

ombination). One may argue that the classification engine (K-E)

as chosen specifically to get the best results in the tests pre-

ented in Table 12 since the same datasets are present in the tests

f Section 5.3 . Nevertheless, as showed in Section 5.3 , no signifi-

ant difference between most classification engines was fount and,

y switching the K-E by the K-U classification engine (which is sig-

ificantly worse than the K-E), the Dynse would still be the best

anked method in Table 12 , tied with the Leveraging Bagging with

n average rank of 2.8. 

The four best ranked methods, deemed as equivalent by the

onferroni–Dunn test ( Fig. 11 ), are further analyzed using pair-

ise comparisons using the Bergman–Hommel procedure and the

ilcoxon Signed-Ranks test ( Benavoli et al., 2016; Bergmann &

ommel, 1988; Demšar, 2006; Garcia & Herrera, 2008 ) in Table 13 ,

onsidering the hypothesis of equality between each pair of algo-

ithms. As in the previous tests, hypotheses that are rejected at a

= { 0 . 1 , 0 . 05 , 0 . 01 } are marked with a •, ••, and 

•••, respectively.

s one can observe, according to the Bergman–Hommel procedure

 Table 13 a) the Dynse generated accuracies significantly better than

he AUE and ARF methods for α = 0 . 05 . No hypothesis was rejected

or α = 0 . 01 and the Wilcoxon Signed-Ranks test ( Table 13 b) did

ot found any significant difference for all confidence levels tested.

Since in most real-world scenarios it may be difficult to know a

riori the exact properties of the concept drift, or to collect a rele-

ant amount of data in order to fine-tune the methods, the results

n Table 12 and the statistical tests in Fig. 11 and Table 13 , indi-

ate that a DCS-based approach can be considered in these sce-

arios due to its good performance without the need of a fine-

uning. The method does need to know, however, if the concept

rift is real or virtual in order to define a big or small accuracy

stimation window, as discussed in this work. To better visualize

he behavior of the methods under the benchmarks presented in

his Section, the accuracy over time plots for some of them are

hown in Fig. 12 . Only the default configuration of Dynse frame-

ork (the best performing approach), the Leveraging Bagging (the

est performing state-of-the-art method) and the Naive Combina-

ion (baseline) methods are present in the plots of the Fig. 12 . 

As one can observe in Fig. 12 a, the Dynse framework was able

o recover faster than the Leveraging Bagging method under most

f the concept drift regions of the SEA Concepts problem, al-

hough the Leveraging Bagging method achieved better results un-

er some of the stable regions. In the Checkerboard Constant prob-

em ( Fig. 12 b), which represents an “always drifting” scenario, the

ynse framework was able to keep its accuracy during the en-

ire test, while the Leveraging Bagging presented several accuracy

rops. Similar results were achieved in the Exponential version

f the Checkerboard benchmark ( Fig. 12 c). The Nebraska Weather

roblem ( Fig. 12 d), on the other hand, represents a scenario where
n/values 

t drift scenarios and M = 32 for virtual concept drift scenarios. 

idering k = 5 ; l = 0 . 

ne (remove the oldest). 
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Table 12 

Artificial and real world benchmarks average accuracies (%), the default configuration of the Dynse framework and some state-of-the-art methods. Best results are in bold. 

Standard deviation between test batches are shown in parenthesis. 

Bench. Dynse AUE AWE ADACC DDM EDDM HAT LevBag OzaAD OzaAS ARFF NaiveComb 

Real concept drift benchmarks 

Stagger 91.4 (17.4) 93.7 (10.3) 97.0 (3.0) 97.7 (5.2) 93.4 (7.1) 88.7 (16.3) 66.3 (20.1) 85.4 (20.3) 79.8 (20.8) 67.2 (19.1) 91.0 (16.5) 66.3 (17.6) 

SEARec 87.2 (2.2) 86.3 (1.5) 86.7 (1.8) 85.0 (1.7) 84.4 (3.6) 82.5 (4.5) 84.9 (2.6) 87.1 (2.4) 85.7 (2.2) 85.1 (2.2) 86.2 (2.8) 83.8 (3.2) 

CkrC 83.9 (3.0) 58.8 (7.5) 57.3 (7.2) 60.1 (7.9) 51.0 (9.4) 57.3 (8.6) 55.4 (9.4) 75.2 (6.4) 57.3 (7.6) 57.0 (13.1) 69.2 (6.2) 51.1 (8.6) 

CkrP 84.6 (4.8) 54.3 (7.2) 54.2 (7.9) 56.8 (7.7) 51.4 (8.8) 55.0 (6.8) 56.4 (9.4) 82.4 (11.8) 59.5 (12.4) 63.7 (13.6) 79.2 (13.8) 49.2 (8.8) 

CkrS 84.3 (4.7) 59.2 (9.4) 56.2 (7.6) 55.3 (6.7) 46.2 (9.5) 55.7 (7.1) 58.4 (11.6) 79.4 (10.6) 50.7 (8.6) 57.1 (10.9) 75.7 (9.9) 63.7 (18.9) 

CkrE 83.4 (3.5) 58.6 (7.8) 57.8 (7.6) 56.4 (6.9) 57.9 (8.9) 58.5 (7.8) 59.0 (8.7) 77.0 (7.9) 59.0 (7.8) 58.4 (10.4) 75.3 (7.6) 51.7 (10.2) 

Gauss 89.61 (5.8) 90.5 (5.2) 90.4 (5.5) 89.2 (6.3) 91.2 (7.3) 91.0 (7.0) 61.3 (23.6) 90.8 (5.5) 90.2 (5.3) 86.8 (9.0) 88.9 (7.3) 78.4 (13.3) 

Real world benchmarks 

Nebr 74.1 (1.1) 73.7 (0.6) 73.8 (0.8) 71.7 (1.1) 71.1 (1.0) 67.7 (2.1) 72.3 (2.2) 77.0 (1.3) 73.4 (1.5) 73.5 (1.6) 77.6 (2.2) 70.4 (1.1) 

For 78.2 (10.8) 73.7 (11.9) 66.4 (15.8) 64.1 (19.3) 51.9 (24.9) 46.2 (21.9) 67.2 (12.5) 75.1 (13.6) 49.7 (19.8) 74.2 (11.5) 72.1 (13.3) 68.8 (11.9) 

Virtual concept drift benchmarks 

Let 60.3 (13.5) 58.4 (12.1) 23.2 (10.1) 31.4 (12.6) 42.9 (17.4) 42.3 (15.2) 56.7 (11.3) 56.8 (12.2) 58.3 (11.5) 57.2 (11.1) 42.5 (9.8) 41.9 (16.0) 

Avg. rank 2.2 4.7 7.0 7.7 8.6 8.4 8.1 3.0 7.0 6.8 4.6 10.0 

Fig. 11. Bonferroni-Dunn test with at a α = 0 . 05 showing the methods that are not significantly different from the default configuration of the Dynse framework (i.e., the 

connected methods). 
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Fig. 12. The accuracy over time plots considering the default Dynse framework configuration, the Leveraging Bagging and Naive Combination methods under some bench- 

marks. 
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he Leveraging Bagging was the best performing method. Never-

heless, in the Nebraska Weather problem, the Naive Combina-

ion method did not suffer any sudden accuracy drop after the

rst steps, and its accuracy dropped relatively slowly over time.

his behavior may indicate that this benchmark suffers from mi-

or changes over time since even a method that is not able to deal

ith concept drifts can keep a reasonable accuracy over all time

teps. 

The amount of memory spent by the default Dynse config-

ration and by the Leveraging Bagging method is showed in
able 14 (the memory was measured as the maximum amount

f memory required by the method considering all time steps),

here it can be observed that, often, the Leveraging Bagging uses

ess memory than the Dynse framework. The Dynse framework re-

uires more memory in some scenarios mainly due to the accuracy

stimation window ( W ), since besides the pool, the Dynse must

aintain some labeled batches in W . However, in the worst case

cenario, the Dynse framework consumed only 4.96MB of mem-

ry (Forest Cover Type problem), which is a feasible amount of

emory for most systems. Finally, we would like to stress that the
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Table 13 

Pairwise comparisons of the Dynse, LevBag, ARF and AUE meth- 

ods. (a) Comparison using the Bergmann–Hommel procedure. (b) 

Comparison using the Wilcoxon Signed-Ranks test. Hypotheses 

that are rejected at a α = { 0 . 1 , 0 . 05 , 0 . 01 } are marked with a •, 
••, and •••, respectively. 

Hypothesis p Berg Hypothesis p Wilcoxon 

Dynse vs AUE ••0.0194 Dynse vs AUE 0.0371 

Dynse vs ARF ••0.0194 Dynse vs ARF 0.0137 

LevBag vs ARF 0.2498 LevBag vs ARF 0.0645 

LevBag vs AUE 0.2498 LevBag vs AUE 0.0840 

Dynse vs LevBag 0.4507 Dynse vs LevBag 0.0273 

ARF vs AUE 0.8625 ARF vs AUE 0.3086 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15 

Average accuracies in the 

PKLot benchmark. Parenthesis 

indicate the standard deviation 

between test batches. 

Method Avg. acc. 

Dynse 92.2% (8.7) 

LevBag 89.7% (13.1) 

OzaAD 88.6% (11.1) 

OzaAS 88.3% (10.9) 

AUE 87.1% (14.9) 

ARFF 86.7% (16.2) 

DDM 85.5% (10.2) 

EDDM 85.4% (10.3) 

HAT 84.5% (10.4) 

AWE 84.0% (18.2) 

NaiveComb 81.4% (11.7) 

ADACC 73.9% (27.2) 
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default version of all methods was used in these experiments. This

means that it is possible to increase the performance of all of the

presented approaches, by fine-tuning the components when rele-

vant data is available. Nevertheless, our focus was to demonstrate

that the DCS-based approach can be designed to deal with a range

of concept drift scenarios using a set of default parameters. 

5.6. Tests in the PKLot dataset 

In this section we present the tests in the PKLot real world

dataset ( Almeida et al., 2015 ), which can be modeled as a concept

drift scenario where new supervised information arrive in batches.

The PKLot dataset contains 695,899 individual parking space im-

ages collected at different weather/light conditions in two differ-

ent parking lots (UFPR and PUCPR). The dataset also contemplates

a camera position change in a single parking lot (UFPR04 and

UFPR05). In Almeida et al. (2015) it is demonstrated that even a

“strong” classifier, trained using 50% of the instances of a given

parking lot, may decrease significantly its accuracy when faced

with a parking lot change. Other issues that may arise in this prob-

lem include luminosity and weather changes, camera movement

and sporadic occlusions of individual parking spaces. Thus, in this

work, we propose the following experimental protocol to use the

PKLot dataset as a concept drift benchmark: 

• The problem is defined as classifying each individual parking

space as vacant or occupied. 
• The LBP uniform ( Ojala, Pietikainen, & Maenpaa, 2002 ) is de-

fined as the feature set. 
• Days containing less than 50 samples for each class (vacant or

occupied) are not considered. 
• The parking lots are presented in the following order: UFPR04,

UFPR05 and PUCPR. The images collected in each parking

lot are sorted in the chronological order and each day rep-

resent a time step. Thus, the time steps are: Day1_UFPR04,

..., Last_UFPR04, Day1_UFPR05, ..., Last_UFPR05, Day1_PUCPR,

..., Last_PUCPR. This configuration generates a camera position

change (UFPR04 to UFPR05) and then a parking lot change

(UFPR05 to PUCPR). 
• At each time step, all instances of the current day must be clas-

sified. Also, at each time step (day) 50 samples from each class

from the previous day are randomly selected for training. This

configuration simulates a scenario where a human supervisor
may label a small batch to update the classification system. p  

Table 14 

Amount of memory (MB) used by the Dynse framewor

STAGGER SEARec CkrC CkrP C

Dynse 0.18 2.77 0.29 0.31 0

LevBag 0.15 0.90 0.30 0.40 0
Table 15 shows the average accuracy of the Dynse framework

nd the state-of-the-art methods in the PKLot benchmark consider-

ng the proposed protocol. As in Section 5.5 , we considered the de-

ault configuration for all methods, including the Dynse framework

we considered the real concept drift configuration, thus M = 4 ).

s one can observe, the Dynse framework achieved the best results

hen considering the average accuracy, followed by the Leveraging

agging state-of-the-art method. 

Fig. 16 shows the accuracy over time plots for the Dynse frame-

ork (the most accurate method), the Leverage Bagging (the best

tate-of-the-art method) and the Naive Combination (baseline)

ethods, where it can be observed that both the Dynse and the

everaging Bagging approaches were able to maintain a relatively

table accuracy over the time steps, and even increase its accu-

acies after parking lot changes. In Almeida et al. (2015) , it was

iscussed that one of the major challenges in the PKLot dataset is

he change between different parking lots. By using methods capa-

le to deal with concept drift scenarios, we showed that this chal-

enge can be overcome. The complete protocol for using the PKLot

s a concept drift benchmark, including the files with the LBP fea-

ures already extracted and correctly ordered, is fully available in

lmeida et al. (2018) . 

. Conclusion and future work 

In this work, we demonstrate that through some modifications,

he DCS approach can be a powerful tool to deal with the con-

ept drift phenomenon, especially under scenarios where some ar-

as do not change between concepts (local changes). Although un-

er a static environment, a DCS approach may be only local-region

ependent, we showed that under a concept drift scenario this de-

endency alone is not sufficient, thus a time dependency must also

e incorporated. We modeled this time dependency as a time win-

ow that keeps the latest labeled data received in the validation

ataset, which is our answer to the question “How do we keep

rack of changes” when using a DCS-based approach. The size of

his window must be defined according to the nature of the con-

ept drift, where a small window should be used in a real concept

rift scenario, and a window containing as much labeled data as

ossible should be defined in a concept drift that affects only P ( x ).
k and the LevBag methods. 

krS CkrE Gauss Nebr For Let 

.30 0.31 0.35 0.53 4.96 5.24 

.42 0.42 0.22 1.40 1.44 0.42 
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Table 16 

PKLot benchmark accuracy over time plots. Only the two most accurate methods and the 

Naive Combination approach are shown. 
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A discussion about the neighborhood size is also presented in

his work, where we argue that bigger sets of neighbors may im-

act the classifier competence estimation under a real concept drift

egatively. We also discuss that, differently from most approaches

sed to deal with concept drifts, a DCS-based method may benefit

rom a pool containing classifiers trained under different concepts,

ince the neighborhood can help us answer the question “Which

earned information (classifiers) is useful in the current scenario?”.

The Dynse framework presented in Almeida et al. (2016) was

xtended in this work in order to accommodate a module re-

ponsible for keeping the pool from increasing in size indefinitely,

hich we called the Pruning Engine . Furthermore, we showed that

he Dynse framework can take into consideration both the time

nd local dependency of instances in order to dynamically select

he custom ensemble for test instances. We also proposed a novel

xperimental protocol to use the PKLot dataset as a real world con-

ept drift benchmark, and made both the Dynse framework and

he PKLot required files (including the extracted features and or-

ered according to the proposed protocol) publicly available, which

ay serve as a basis for researchers who intend to explore the

CS-approach for concept drift environments. Through an exten-

ive range of experiments we validated the discussions presented

n this work and also demonstrated that a DCS-based approach

the Dynse framework) is able to maintain a good performance

n a range of problems without much tuning of its parameters (it

s only necessary to know if the concept drift is real or virtual),

hich is advantageous in many concept drift scenarios since it may

e impossible to know a priori all the drift properties present in

he environment or to collect relevant data in order to fine tune

he method before deploying it. 

The results presented in this work indicate that taking into con-

ideration the distance of each neighbor when selecting the cus-

om ensemble for the test instance may lead to better results in

ome scenarios, as we observed in the results achieved by the A

riori and K-UW methods. As expected, most DCS methods used

s classification engines in the Dynse framework were capable to

eal with the concept drifts present in the benchmark problems

sed in this work. Nevertheless, the LCA method achieved a poor

erformance when compared to the other DCS methods, indicat-

ng that taking into consideration the a posteriori information of

he classifiers in order to select the neighbors may be a subopti-

al solution for dealing with the concept drift problem through

 DCS-based approach. When compared with the state-of-the-art

ethods, the default configuration of the Dynse framework was

he best-ranked method, and also the most stable, achieving good

esults in all tested benchmarks. 

In the experiments, we assessed an Age and Accuracy-based

runing strategies. When compared to the pruned pools, the pool
f “infinite size” generated the best results for most tested bench-

arks, indicating that by maintaining classifiers specialized under

ifferent f eature regions and trained at different concepts may lead

o a better result, although no significant difference was found be-

ween the infinite size pool and the accuracy-based pruning. This

esult reinforces the discussion about the concept diversity we pre-

ented in this work, and as a future work, we intend to develop

runing strategies that take the concept diversity idea into consid-

ration. 

Also as a future work, we intend to develop and test meth-

ds of maintaining the accuracy estimation window with a fixed

ize, covering the biggest and most relevant area of the feature

pace possible, to deal with virtual concept drifts. Finally, we also

lan to explore alternatives to maintaining the accuracy estimation

indow up to date with the current concept under a real concept

rift scenario, such as replacing the sliding window approach by

 trigger-based one, which could even remove the need to know

he type of concept drift (real or virtual) a priori , in order to define

his window size. 
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