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Abstract
The transmission line is one of the most crucial electric power system components, demanding special attention since they

are subject to failures that can cause disruptions in energy supply. In this scenario, the fault location emerges as a

fundamental task, providing an approximate position where the failure occurred in the line. This paper presents a method

for fault location using a novel dynamic regressor selection (DRS) framework, in which we introduce embedded nor-

malization, incorporating the data scaling process inside the framework. The DRS aims to select the most accurate models

from a pool of regressors to predict the fault distance. Moreover, since there is a lack of a public dataset, this paper presents

and makes a new fault dataset available to the scientific community with several features extracted from current and

voltage signals of representative failure events. In our experiments, we demonstrate the importance of this embedded

normalization as well as the significance in the variation of critical hyperparameters of the DRS strategy, such as the

distance metric used to define the region of competence and the criterion to select the best regressors from the pool of

predictors. This work also presents the definition of the oracle concept in DRS, which represents the ideal predictor

selection scheme. The results demonstrate the effectiveness of the proposed method with a mean error of 0.7086 km ±

0.0068 km, representing 0.1712% ± 0.0016% of the transmission line extension (414 km).
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1 Introduction

Transmission lines are an essential part of the electric

power system, enabling the efficient transport of large

amounts of electricity over long distances. However,

transmission lines are subject to faults that can cause

disruptions in the flow of electricity and potentially damage

the equipment. A fault refers to a disruption or disturbance

in the normal flow of electricity in the components of a

power system, such as the increase in the current flow to

one or more phases [70]. Short-circuit faults can be divided

into asymmetrical and symmetrical. Asymmetrical failures

comprise line-to-ground (LG) and line-to-line faults, with

the involvement or not of the ground (LL and LLG), while

symmetrical ones include three-phase failures (LLL) [55].

Several factors can result in a transmission line fault, such

as insulation failures, short circuits caused by birds, trees,

or fire under the lines, in addition to weather conditions

like rain, snow, wind, and lightning [2, 21].

In this scenario, it is possible to use voltage and current

signals collected by equipment like digital fault recorders

or protective relays for failure diagnosis. In particular, fault

location is a critical aspect of transmission line mainte-

nance and repair, as it enables power companies to quickly

and accurately identify the location of a fault and dispatch

a repair staff to fix the issue. The purpose of the fault
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location is to estimate the approximate position on the

transmission line where the failure occurred.

The literature shows different strategies for fault anal-

ysis in transmission lines, which can be classified into three

groups [32, 45, 69]: traveling waves, impedance-based, and

Artificial Intelligence (AI). However, conventional

approaches (traveling waves and impedance-based)

demonstrate some notable disadvantages [32, 44, 69]. The

traveling wave technique is complex, requiring a high

sampling rate and high computational cost [27, 60, 63],

while the impedance-based approach can be affected by the

variation of the fault parameters, mainly for faults with

high resistances [27, 40].

In turn, AI-based methods require a significant amount

of data for training, representing its main drawback

[24, 55]. Consequently, a crucial problem in the literature

is the lack of public datasets for transmission line failures.

Generally, each author simulates their fault events to

evaluate their methods, but these data are not publicly

available. The UFPAFaults database provided by Morais

et al. [47] is an exception. However, this dataset does not

allow fault location, limiting only to the fault type

classification.

In this work, we make a new fault database available to

the scientific community with several features extracted

from voltage and current signals. This dataset contains a

total of 168,000 fault events, with voltage and current data

from a single terminal of the considered transmission line:

500 kV, 414 km, 60 Hz. Therefore, it enables researchers

to evaluate their approaches for fault classification and

location.

Nowadays, methods based on AI have gained more

attention, mainly due to their high performance and

adaptability to different fault conditions and parameters

[11, 24, 60]. Mishra and Ray [45] and Mukherjee et al. [51]

presented comprehensive reviews about fault location,

reporting that most related works use individual (mono-

lithic) algorithms, especially support vector regression

(SVR) and neural networks.

However, several studies have demonstrated the

advantages and performance superiority of ensemble

models over individual ones for classification and regres-

sion tasks for different areas [15, 42]. The use of different

regressors, for example, can result in different predictions

due to the specific properties of each predictor and, when

considered together, can result in more accurate and pre-

cise performances [38, 65].

Ensemble learning typically has three phases [15, 42]:

Generation phase—responsible for training a pool of base

models. The ensemble is homogeneous when the same

induction algorithm is used for all models. Otherwise, it is

named heterogeneous; Selection phase—responsible for

selecting the best predictors in the ensemble, which can be

static or dynamic. In the former, the same subset of models

is used to predict the label for all test samples. In the latter,

a single model or a subset of predictors from the pool is

selected on the fly for each unknown example; Combi-

nation phase—responsible for combining the predictions

when the last phase returns more than one model.

In this scenario, a growing topic in the ensemble

approach is dynamic regressor selection (DRS) [48, 57], in

which a subset of base models is selected from the pool

based on a particular rule for each new test pattern to be

predicted. In dynamic selection techniques, it is expected

that different models are experts in a specific region of the

feature space, a.k.a. Region of Competence (RoC) [16].

The literature has already demonstrated that DRS

algorithms can benefit from different competence measures

to assess the performances of the regressors [49]. However,

other aspects should be explored as well since they can

contribute to a performance gain. In this context, we

assume that DRS algorithms can also be benefited from the

use of distinct distance measures and criteria to select the

best models based on their performance in the RoC. This

hypothesis is supported by some works which have already

shown for the classification problem that the RoC refine-

ment reverberates in the improvement of the prediction

system [13, 14, 67].

In response, we propose in this work a new method for

fault location based on a novel DRS framework with three

main characteristics: variation of the distance metric used

to define the RoC; variation of the criterion to select the

best regressors from the ensemble; and the incorporation of

the data scaling process inside the DRS technique (em-

bedded normalization). An important process included in

our DRS framework and must be highlighted is the

embedded normalization, which scales1 the test pattern and

the validation set together individually for each new

example to define the RoC. The intuition for this online

process is related to the fact that distance-based algorithms

predominantly used to determine the RoC, such as the

k-Nearest Neighbors (kNN), are sensitive to the scale of the

data, which can affect the examples returned to compose

this region. In other words, features with discrepant scales

will dominate the others and may lead to an imperfect RoC.

At least at this moment, tuning hyperparameters and

evaluating multiple configurations automatically by the

DRS framework itself is not part of the method and should

be performed manually by the researchers.

Thus, before executing the normalization process, we

added the test pattern inside the original validation set and

then conducted the normalization of this set, being

removed from the validation set right after the data scaling.

1 In this paper, we assume the terms scaling and normalization as

equivalents.
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This process is carried out individually for each new

example and allows us to obtain a RoC with samples more

similar to the test pattern and, consequently, achieve better

results of the DRS to estimate the fault position. To the best

of our knowledge, this is the first work that applies the DRS

strategy for fault location.

It is crucial to emphasize that the normalization process

plays an essential role in adequate data such that every

feature varies within the same range. Amorim et al. [3]

presented a comprehensive set of experiments demon-

strating the importance of normalization for classification

performance considering several algorithms. In the present

study, we also carried out some experiments demonstrating

its impact on the performance regarding the regression task

(fault location), specifically assessing the normalization in

our DRS technique for different scenarios.

In order to determine a reference to how good can be the

performance of a DRS method, we introduce the concept of

oracle in DRS, widely used for the classification task [15].

The oracle is an abstract strategy that always selects the

model that predicts the correct label for the given query

sample if such a model exists [15, 39]. In other words, it

represents the best possible performance that the ensemble

can attain, representing the ideal predictor selection

scheme. In addition to the oracle of the whole ensemble,

we also assessed the oracle only among the selected models

by our DRS scheme.

The contributions of this paper are: (1) the development

and the availability of a new dataset with several features

of fault events for a transmission line; (2) a fault location

method using a novel DRS framework, which introduces

an embedded normalization; (3) the evaluation of the

performance of our technique compared to different

ensembles algorithms, including a recent DRS technique

proposed in the literature; and (4) the definition of the

oracle concept in DRS.

This paper is organized as follows. Section 2 shows

some related work. Section 3 describes the proposed

database. Section 4 presents an overview of DRS tech-

niques. Section 5 describes the proposed DRS framework.

Section 6 shows the experimental protocol. Section 7 pre-

sents and discusses our results. Section 8 concludes this

work.

2 Related work

Several methods can be found in the literature for fault

location in transmission lines using oscillography data, i.e.,

three-phase current and/or voltage signals measured for

one or two ends of the line, primarily through AI algo-

rithms to estimate the failure distance. In the remainder of

the section, we describe a brief review of the methods

found in the literature that apply AI algorithms in fault

location, aiming to present the main ideas used in the state

of the art. A complete review of this topic can be found in

the following papers: [1, 24, 45, 51, 55, 60]. Table 1

summarizes some information about the works described in

this section, especially concerning the transmission line

evaluated by the respective methods and the regression

scheme, composed of single or multiple algorithms divided

into modules, used to predict the fault location. These

details about the works are complemented in Table 2,

presented in the next section.

Ray et al. [54] proposed a hybrid fault location method

using one post-fault cycle for both current and voltage

waveforms, combining Discrete Wavelet Transform

(DWT) and Wavelet Packet Transform (WPT). Next, the

authors extract features from the decomposed signals that

include energy, standard deviation, arithmetic mean, kur-

tosis, skewness, and entropy. Finally, the feature set was

normalized between the range of [0, 1] to then feed a neural

network. The method was tested on a 400 kV, 50 Hz,

300 km transmission line, with a sampling rate of 30 kHz.

Ekici et al. [19] used the WPT to decompose the faulty

current and voltage signals, considering a half cycle of pre-

fault and a half cycle of post-fault. Next, the WPT coeffi-

cients were used to calculate the energy and entropy fea-

tures for each signal separately. These features were then

used as input to a neural network. The authors used a

380 kV, 360 km transmission line with a sampling rate of

10 kHz.

Fei et al. [23] proposed a scheme based on the SVR

algorithm using only the post-fault voltage signal from a

single end of the system. A data window containing a 1/8

cycle post-fault signal is submitted to a low-pass filter to

eliminate the noise and then used as the feature vector to

the SVR. The method was evaluated on a 400 kV, 50 Hz,

300 km transmission line, with a sampling rate of 20 kHz.

Swetapadma and Yadav [63] showed a method that uses

a Decision Tree (DT) to estimate the fault distance. The

feature extraction was performed considering a signal

processing technique for one pre-fault cycle and one post-

fault cycle for both current and voltage waveforms, cal-

culating the standard deviation from the processed signals

to obtain the Singular Value Decomposition (SVD) of both

signals. For this purpose, the authors assessed two tech-

niques for signal processing: Discrete Fourier Transform

(DFT) and DWT. The results demonstrated that the DT-

DWT combination performed slightly better.

It is important to mention that the method demands four

fault location modules, one for each class of fault type (LG,

LL, LLG, LLL). In a similar fashion, but using standard

deviation-based features, the same authors presented a

method combining the kNN algorithm with the DFT

technique, requiring four modules [64]. The demand for
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more than one model is a drawback of the approaches since

they require a fault type classification as a prerequisite to

select the most appropriate module to estimate the fault

location. Both studies were tested on a 400 kV, 50 Hz,

100 km transmission line, with a sampling rate of 4 kHz.

Ferreira et al. [25] proposed a method that adopted

voltage and current data for a single terminal. This method

comprises six features (root-mean-square, min, max, mean,

energy, and integral) obtained from voltage and current

waveforms for the three cycles before and three cycles after

the fault incidence for the three phases separately. Thus, a

total of 72 features were used as input to a neural network

to estimate the fault position. The authors assessed the

method in a transmission line with 500 kV, 60 Hz,

181 km, which data were sampled at a frequency of

100 kHz.

Bhatnagar et al. [5] presented a Random Forest (RF) and

Teager–Kaiser energy operator (TKEO)-based fault loca-

tion scheme [7]. The Teager energy of both voltage and

current signals of one pre-fault cycle and one post-fault

Table 1 Summary of the

transmission line and regression

scheme assessed by related

work

References Transmission line Regression scheme

Ray et al. [54] 400 kV, 50 Hz, 300 km Neural network

Ekici et al. [19] 380 kV, 360 km Neural network

Fei et al. [23] 400 kV, 50 Hz, 300 km SVR

Swetapadma and Yadav [63] 400 kV, 50 Hz, 100 km Four modules with one

Decision tree each

Swetapadma and Yadav [64] 400 kV, 50 Hz, 100 km Four modules with one

kNN each

Ferreira et al. [25] 500 kV, 60 Hz, 181 km Neural network

Bhatnagar et al. [5] IEEE 14-bus (line details not specified) Four modules with one

Random Forest each

Valabhoju et al. [66] 400 kV, 50 Hz, 198 km Ensemble of trees

Table 2 Summary of the

features usually created and

used for fault analysis by related

work

Paper Features Signal processing

technique

Swetapadma and Yadav [63] SVD DWT and DFT

Ray et al. [54] Energy, standard deviation DWT and WPT

Arithmetic mean, kurtosis

Skewness, entropy

Ekici et al. [19] Energy and entropy WPT

Fei et al. [23] Amplitudes of voltage data None

Swetapadma and Yadav [64] Standard deviation DFT

Ferreira et al. [25] RMS, max, min None

Arithmetic mean

Energy, integral

Bhatnagar et al. [5] Teager energy None

Haq et al. [33] Energy and standard deviation DWT

Valabhoju et al. [66] Standard deviation DWT

This paper Energy, distance, RMS, kurtosis None

Skewness, maximum frequency

Power spectrum density bandwidth

AUC, peak-to-peak distance, slope

Shannon entropy, arithmetic mean

Geometric mean, harmonic mean

Variance, standard deviation, median

Covariance among the phases

Correlation among the phases

Maximum and minimum
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cycle signal was given as an input to the RF regressor

modules, one for each fault type, similarly to the works

mentioned before. The number of trees in the RF modules

varies depending on the fault type: 300 for LG, 100 for LL,

200 for LLG, and 200 for LLL. The method was evaluated

considering the IEEE 14-bus power system, without spec-

ifying the transmission line details, for a sampling rate of

1 kHz.

Valabhoju et al. [66] also proposed a method using an

ensemble algorithm to estimate the fault distance. Their

approach applies DWT over one post-fault cycle of the

current and voltage waveforms, extracting standard devi-

ation features from the decomposed signals to use them as

input to an ensemble of regression trees, which number of

regressors is not explicitly defined by the authors. The

method was assessed on a 400 kV, 50 Hz, 198 km trans-

mission line for a sampling rate of 1 kHz.

Most recently, other works in the literature have been

using Deep Learning (DL) models for fault location.

Basically, those methods usually use raw current and

voltage data as input to a model based on algorithms like

Long Short-Term Memory (LSTM) and also Convolution

Neural Networks (CNN) [6, 20, 22, 62, 68].

Although diverse works that use AI algorithms present

accurate methods for fault analysis, some limitations can

be identified. Several authors use signal processing tech-

niques, such as those based on wavelet (DWT and WPT)

and Fourier (DFT) transforms, to decompose the original

current/voltage signal to extract coefficients and attributes

[12, 24]. However, these techniques may demand a con-

siderable amount of samples, usually requiring a higher

sampling frequency, making their application unfeasible in

some real protection systems that have some restrictions on

data availability (lower sampling rates, for example)

[21, 28, 31, 33]. Another aspect is the fact that the wavelet-

based techniques increase the complexity progressively,

especially for rising levels of signal decomposition, as well

as the determination of the mother wavelet [51], resulting

in a higher computational time-consuming and lack of

generalizability of the model for other transmission sys-

tems [12].

Moreover, the use of ensemble algorithms is a virtually

unexplored method in fault location task, demonstrating a

gap that should be considered with attention. This moti-

vation is related to the arguments described in Sect. 1, in

which the combination of different regressors can result in

better performances. In this context, we can apply dynamic

selection to obtain the most competent regressors from the

ensemble to improve the prediction system. To the best of

our knowledge, this is the first work that applies the DRS

strategy for fault location.

In response to these limitations, we present in this paper

a new dataset with representative features without the use

of any signal processing technique. Furthermore, we pro-

pose a new DRS framework that aims to select the most

accurate models from an ensemble to predict the fault

location.

3 Fault analysis database with features

This section presents a new dataset composed of several

fault examples in a transmission line. Firstly, we show

some information about the environment considered to

generate the fault events and the parameters used to sim-

ulate them (Sect. 3.1). Afterward, we report the feature

extraction process along with some details about these

features (Sect. 3.2).

3.1 General information

The Fault Analysis Database with Features (FADbF) is a

novel dataset developed and introduced in this work. The

fault events were generated based on the IEEE 9-bus power

system provided by the ATPDraw tool v7.2 [35], which

reproduces a real electrical power system network. This

database comprises several attributes extracted from time

series of fault simulations of a transmission line with 500

kV, 414 km, and 60 Hz. In addition, the data were sampled

at a sampling rate of 10 kHz. It is essential to mention that

these simulation data were originally described and created

by Ensina et al. [21], where it is possible to access the

original data with current and voltage time series used for

feature extraction for this new dataset (FADbF).

The database contains 168,000 failure examples, com-

bining essential parameters that include:

• Fault type:

– LG: AG, BG, CG;

– LL: AB, AC, BC;

– LLG: ABG, ACG, BCG;

– LLL: ABC.

• Fault location: 1 to 100% of line extension, with

intervals of 1%;

• Fault resistance: 0.01 to 200 X, with intervals of 10 X;
• Fault inception time, in seconds (s): 0.091 s, 0.093 s,

0.095 s, 0.097 s, 0.099 s, 0.101 s, 0.103 s, and 0.105 s.

The letters A, B, and C symbolize each of the three phases

of the transmission line, while the letter G represents the

ground involvement in a fault. Thereby, the initial ACG

refers to a failure involving phases A and C with the

ground, while AB means a fault between phases A and B

without the action of the ground. Each of these ten failure

types corresponds to a class for the fault-type classification

task, and every fault is guaranteed to contain the same
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number of examples with the same parameter values. In

other words, FADbF is a balanced dataset with the same

number of input samples for both possible targets: fault

type classification and fault distance estimation (location).

3.2 Feature extraction

The proposed database extends the features commonly

used in the literature on fault analysis based on machine

learning (arithmetic mean, standard deviation, energy,

entropy, root-mean-square, maximum, and minimum)

[11, 45, 54]. It is noteworthy that we explored several

surveys, reviews, and related papers, such as those works

mentioned and referenced in Sect. 2, aiming to identify the

main features used in the literature to compose our dataset.

Besides these features, we added some new attributes in

FADbF, like geometric mean, distance, and covariance,

among others that we will list below.

In total, we extracted 21 features separately for each of

the three phases for both voltage and current waveforms

along two post-fault cycles from a single terminal, resulting

in 126 attributes (21� 3� 2 ¼ 126) in addition to the two

possible targets, i.e., fault type (classification task) and

fault location (regression task). The feature list includes:

fault type, fault location given in kilometers (km), energy,

distance, root-mean-square (RMS), kurtosis, skewness,

maximum frequency, power spectrum density bandwidth,

area under the curve (AUC), peak-to-peak distance, slope,

Shannon entropy, arithmetic mean, geometric mean, har-

monic mean, variance, standard deviation, median,

covariance among the phases, correlation among the pha-

ses, maximum, and minimum. The feature extraction from

the current and voltage time series was performed with the

support of the following libraries in Python: TSFEL v0.1.4

[4], PyInform v0.2.0 [46], and statistics v3.11.4 [53].

The choice of the length of this window (i.e., two post-

fault cycles, such as depicted in Fig. 1) was decided con-

sidering the related work in the fault location literature,

reporting that two cycles provide sufficient information for

fault diagnosis [45, 51]. Besides, using more than two

cycles can implicate data unavailability since the protec-

tion system acts as quickly as possible to identify a failure

onset and isolate it from the rest of the system [20].

This dataset makes future benchmarks and evaluations

possible for electrical engineering and machine learning-

based applications, such as classification (fault type clas-

sification) and regression tasks (fault location). Particularly

regarding the fault location, this task is responsible for

accurately estimating the fault occurrence point on the

transmission line, usually considering the distance between

a substation and the failure point. The list and all details

about each feature are available in our repository.2

Table 2 summarizes the features commonly created and

used by related work. It is worth mentioning that all these

datasets are not available to the scientific community

except our database. Additional works and their respective

datasets information can be found in the references cited at

the beginning of Sect. 2.

Some of these databases were developed using signal

processing techniques, such as identified by the respective

column in Table 2. Consequently, they are affected by the

same signal processing problems previously discussed in

Sect. 2. On the other hand, our dataset does not rely on any

of these techniques. It is also evident that our features are

more diversified and interesting to be explored by machine

learning methods, contributing to classification and

regression problems.

4 Dynamic regressor selection

Consider a regression problem and let F ¼ ff1; f2; . . .; fNg
be an ensemble of N experts. The dynamic selection can be

seen as a division of the feature space in K[ 1 competence

regions, denoted by R1;R2; . . .;RK . Thereby, for each

region Rj; j ¼ 1; 2; . . .;K, at least one predictor from F

manifests superior performance than the others in Rj [59].

The DRS technique consists of selecting the best

regressor(s) from the ensemble to predict the target of a

particular test pattern. For this purpose, the selection is

commonly performed by calculating the error of each

regressor in the RoC and selecting the regressors that attain

the smallest errors based on a particular criterion.

Regarding the test pattern xj, its RoC is a set W com-

posed of the K nearest neighbors of xj in the training set (or

validation set) given by T ¼ ft1; t2; . . .; tKg. In other

words, RoC is the local region that surrounds the query xj,

which is predominantly defined by the kNN algorithm [15].

The three techniques that DRS strategy can be used are

as follows [41, 56], which include both selection and

combination phases, depending on the respective scheme:

• Dynamic Selection (DS): selects only the regressor that

presents the lowest cumulative error in the RoC. The

errors can be weighted by the distance between the

neighborhood pattern and test pattern Eq. (1). Owing to

a single model is selected, there is no need for model

combination;

• Dynamic Weighting (DW): combines all regressors

from the ensemble using the weighted mean without

any selection. For each pattern in W, a weighted

distance dk is calculated using Eq. (1), giving more

importance to the nearest neighbors:

2 https://github.com/leandroensina/FADbF.
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dk ¼
1

distkPK
j¼1ð 1

distj
Þ

ð1Þ

where distk is the distance between a pattern tk 2 W and

the test pattern xj. The vector fd1; d2; . . .; dkg is used to

calculate the weight ai of the regressor fi using Eq. (2):

ai ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
ðdk�errk;iÞ

q

PN
n¼1ð 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
ðdk�errk;nÞ

q Þ
ð2Þ

where
P

ai ¼ 1, N is the ensemble size, k represents

the index of the neighbor, and errk;i is the error of the

regressor i calculated using the pattern tk 2 W. Thus,

the final prediction corresponds to Eq. (3):

FðxjÞ ¼
XN

i¼1

fiðxjÞ � ai ð3Þ

where FðxjÞ is the final decision of the ensemble, fiðxjÞ
and ai are the prediction of the regressor fi and its

respective weight ai for the test pattern xj;

• Dynamic Weighting Selection (DWS): selects a subset

of models before executing DW. The literature usually

uses the standard approach defined by Rooney et al.

[56]: the selected models are the ones with the

cumulative error below the interval ðEmax � EminÞ=2,
where Emax and Emin are the largest and lowest

cumulative errors of any of the regressors in the

ensemble F , respectively. An alternative is the criteria

used by Mendes-Moreira et al. [41], in which the

selected models are those with an error inferior to a

percentage threshold related to the best model (e.g.,

10%, 30%, and 90%). However, this last strategy is

more complex since several percentage thresholds must

be analyzed [43].

A key factor in dynamic selection is the definition of a

metric to represent the performance of each model of the

ensemble in the RoC, known as the competence measure.

This metric is important to serve as a reference to the

before mentioned techniques for the selection step (i.e., DS

and DWS), which will select only the model(s) that satisfy

a given criterion. Moura et al. [49] evaluated eight com-

petence measures using the DS, DW, and DWS techniques,

showing that the choice of the best measure is problem-

dependent. Moreover, the neighborhood size that determi-

nes the RoC also varies depending on the problem [41].

In this scenario, we believe that the use of different

distance measures than Euclidean one and different criteria

to select the regressors in the DWS technique can also

impact the performance of a DRS method, depending on

the problem. These analyses aim to explore the diversified

and particular data distribution, aiming to attain the most

appropriate RoC. At least for the classification problem,

there is a correlation between the quality of the neighbors

selected to compose the RoC and the models selected to

predict the target, directly affecting the final performance

[13, 14, 67]. For this purpose, our experiments used only

the DWS strategy in order to assess the impact of different

criteria to select the regressors.

5 New DRS framework

An overview of the proposed architecture is presented in

Fig. 2. In the following subsections, we describe each

phase that composes our method.

Fig. 1 Example of two post-

fault cycles demarcated in a

fault simulation of AG type for

the a current and b voltage

waveforms. The feature

extraction occurred individually

for each signal of the three

phases for both current and

voltage waveforms along two

post-fault cycles
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5.1 Generation phase

This phase, composed of a single module (ensemble gen-

eration), is responsible for generating the ensemble of

regressors F ¼ ff1; f2; . . .; fNg. In the context of multiple

predictive systems, we have to ensure that each model in

the ensemble contains a substantial level of disagreement

among them, i.e., diversity in the models.

Therefore, different strategies can be found in the lit-

erature for this purpose, mainly for the homogeneous

ensemble, such as Bagging [8], Boosting [58], and Random

Subspace [34]. An alternative is to use the models from

algorithms like Random Forest [9], Extremely Randomized

Trees (ERT) [30], and Gradient Boosting [26]. The number

of estimators for the pool of models is not considered a

hyperparameter of our method since the ensemble gener-

ation module does not perform the training process. For

example, regarding the use of the ERT’s trees to compose

our pool of regressors, the hyperparameter N (number of

estimators) belongs to the ERT algorithm, which will train

the models and provide the trained trees to our DRS

method.

5.2 Selection phase

The second phase is responsible for selecting dynamically

the most competent regressors from the pool of models,

constituted by three modules: embedded normalization;

definition of RoC; and dynamic selection. This phase

contains the valuable hyperparameters that our method

explores in order to achieve better performances, which are

adequately identified along the description of the modules.

Moreover, tuning hyperparameters automatically to define

the best configuration is not part of the method. Hence, the

researchers should manually evaluate them based on the

comparison of multiple configurations, such as we will

perform in the sequence of this manuscript.

Embedded Normalization. The first module corresponds

to the normalization of the validation set V used to deter-

mine the RoC W. Usually, the proposed methods in the

literature perform the normalization step before the

beginning of the entire process as a preprocessing [50, 61]

in view of this process is essential to distance-based

algorithms, such as kNN used to determine the RoC.

Before executing the normalization process, we added

the test pattern xj into the original validation set (V [ fxjg),
and then we conducted the normalization of this set, being

removed from the validation set right after the data scaling.

In this framework, any normalization technique can be

used to transform the original data into the same range of

values, such as MinMax scaler and Z-score scaler. This

independence of the scaling procedure is crucial since it

can also be problem-dependent [3]. It is noteworthy that

this process is repeated individually for each new test

pattern. Therefore, we used the normalization step only to

determine the neighbors around the scaled test pattern x0j
considering the transformed validation set V0 during the

second module (definition of RoC). In this module, there is

no hyperparameter to be tuned.

It should be emphasized that this kind of normalization

integrated into the DRS method is proposed and exclusive

of our framework. Due to its characteristics, we call this

process embedded normalization, after all it occurs indi-

vidually for each test pattern and is inside the framework.

Fig. 2 Overview of the

proposed DRS framework

1748 Neural Computing and Applications (2024) 36:1741–1759

123



Definition of RoC. We used the kNN algorithm to define

the RoC similarly as already carried out in the state of the

art, but in this work we assessed a hyperparameter unex-

plored in the literature of DRS strategy: the metric for

distance computation. Although the specialized literature

uses the Euclidean metric as the standard, the choice of this

measure should not be neglected because this hyperpa-

rameter can also reverberate in a performance improve-

ment. In response to this issue, we also evaluate other

distance metrics, such as Cityblock, Geodesic, and Cosine.

Furthermore, the second module obtains the indexes of

the neighbors in V0 to retrieve the respective samples in the

original validation set V to create the RoC W. As can be

observed, the normalization in the first module was used

only to determine the closest samples around the scaled test

pattern x0j, while the RoC is composed of the original

samples. The hyperparameters of this module are the dis-

tance function and the value of K for the kNN algorithm

that defines the RoC size.

Dynamic Selection. In turn, the third module performs the

dynamic selection concerning the competence of the

regressors in the RoC W. For this purpose, several com-

petence measures can be used to determine the perfor-

mances of each model in the pool, such as those proposed

by Moura et al. [49].

The criteria for selecting the best regressors can be done

in different ways, but the standard approach corresponds to

that defined by Rooney et al. [56], as mentioned in Sect. 4,

which selects only the regressors with a cumulative error

below the interval ðEmax � EminÞ=2. In contrast, we can

also use other strategies to establish the criterion for the

selection, such as median, harmonic mean, arithmetic

mean, and geometric mean. In this scenario, we can cal-

culate the median/mean value among the performances

based on the competence measure used and use this med-

ian/mean value as a threshold, selecting only the regressors

that present an error inferior to this limit.

Another task of the third module is the definition of the

weights W ¼ fa1; a2; . . .; aMg of the M selected regressors

F 0 to the final prediction FðxjÞ. This task occurs similarly

as described in Sect. 4 through Eqs (1) and (2). The

hyperparameters of this module include the competence

measure and the selection criterion.

Table 3 summarizes the hyperparameters of the pro-

posed DRS framework. We identify in bold the combina-

tion of values determined as the best configuration of the

method for the FADbF dataset, as it will be justified in

Sect. 7.

5.3 Combination phase

In this last phase, composed of a single module, the fusion

of the predictions of the regressors selected in the previous

phase occurs as described in Sect. 4 through Eq. (3), using

the subset of the selected models F 0 and their respective

weights W. This module has no hyperparameter to be

tuned.

6 Experimental protocol

In this paper, we trained the Extremely Randomized Trees

(ERT) algorithm [30] with N ¼ 700 estimators and used its

trees to compose our pool of regressors F . We used ERT

with 700 estimators because preliminary experiments

manifested that the ensemble with less number of trees (\
700) presented worst results, while a higher number of

estimators ([700) did not reveal a significant performance

improvement. See Supplementary Material3 for complete

details. For all experiments in this study, we used the

implementations provided by the Scikit-learn library v1.2.0

[52].

The algorithm was trained and examined with shuffled

examples from the dataset. Thus, the FADbF instances

were randomly divided into training, validation, and testing

sets. The training set T comprises 50% of all examples

(84,000 instances), while validation V and testing X sets

contain 25% of all cases each (42,000 examples). This

partition process was performed ten times, resulting in

Table 3 Hyperparameters of the

proposed DRS framework
Name Values, but not limited to

Distance function Euclidean, cosine, geodesic, cityblock

K 5, 10, 15, 20, 30, 40, 50

Competence measure* Variance, sum absolute error, sum squared error, minimum squared

Error, maximum squared error, neighbor’s similarity, root sum

Squared error, closest squared error

Selection criterion Standard criterion (ðEmax � EminÞ=2), median, arithmetic mean

Geometric mean, harmonic mean

�See Moura et al. [49] for details about each competence measure

3 https://github.com/leandroensina/SM_NCAA_FaultLocation_DRS.
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different sets with distinct instances among each repetition.

So, the results in Sect. 7 represent the average and standard

deviation based on these ten repetitions. Additionally, the

following section used the same pre-trained ERT models

for every investigation in order to have fair results.

Moreover, the model was trained with the target in terms

of the percentage of the transmission line length. Conse-

quently, the model output consists of a real value between

[1%, 100%], corresponding to the percentage of the

transmission line length where the fault was located. This

value is converted to distance in kilometers (km) after the

prediction by Eq. (4). So, all results reported and discussed

in the paper correspond to the target in kilometers.

distancekm ¼ TLlength � distancepercentage
100

ð4Þ

where distancekm is the fault location in kilometers, TLlength
is the transmission line length in km (414 km), and

distancepercentage is the fault location in percentage.

The choice for training in terms of percentage instead of

directly in kilometers is justified by the fact that the sub-

stations can supervise several transmission lines with dif-

ferent lengths simultaneously, which could affect the

model’s predictions. Therefore, the use of percentages aims

to enable our method to deal with other transmission lines

independently of their lengths, making the method more

flexible and trying to avoid the requirement of new training

individually for each line under supervision [21]. Although

in this study we consider a single transmission line with

414 km, we intend to assess the generalization capacity of

our method to predict the fault distance for other trans-

mission lines with different lengths in future experiments.

Considering the module ‘‘embedded normalization’’ in

the second phase of the proposed DRS (Sect. 5.2), we

applied the MinMax technique to scale the attributes into

the interval [0, 1]. Also, we established K ¼ 30 for the

‘‘definition of RoC’’ module since it presented better

results than other neighborhood sizes in preliminary

experiments (see Supplementary Material). We analyzed

four distance metrics to assess the impact of the variation in

this hyperparameter used in the kNN algorithm to deter-

mine the RoC: Euclidean, Cosine, Geodesic, and City-

block. This evaluation is essential to determine if we can

attain better results by varying the distance metric.

In the ‘‘dynamic selection’’ module, the competence

measure employed was the maximum squared error pro-

posed by Moura et al. [49] since this metric presented

better results in preliminary experiments than the other

measures listed in their study. Besides, we also assessed

other strategies to select the most competent models in

addition to the standard approach mentioned in Sect. 4

(selection criteria). Notably, we evaluated the median,

arithmetic mean, harmonic mean, and geometric mean

together with the traditional technique.

All experiments were evaluated with the Mean Squared

Error (MSE) and Mean Absolute Error (MAE) metrics

defined by Eqs (5) and (6), respectively, in which n is the

number of examples, yi is the real fault localization, and ŷi
is the predicted fault localization for the sample i.

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 ð5Þ

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij ð6Þ

The results of the several comprehensive experiments

performed in this study were statistically compared, aiming

to provide a solid conclusion about the best strategies and

configurations. We used the D’Agostino & Pearson nor-

mality test (p-value\ 0.05) for all groups of data to then

select the most appropriate hypothesis test based on the

data distribution (parametric or nonparametric). The

respective hypothesis tests used are presented in Sect. 7, all

with a confidence interval of 95%. Thus, we used different

tests along the analyses regarding three essential aspects

for choosing the best test individually for each comparison

scenario: number of groups, data distribution, and matched/

unmatched groups.

7 Results and discussion

In this section, we present and discuss the results of our

method with comprehensive experiments. Section 7.1

presents the experiments concerning the normalization

process, justifying the decision for an embedded normal-

ization and its importance to the method. Section 7.2

evaluates the impact on the performance when we vary the

distance measure used to determine the RoC. Section 7.3

presents the results concerning the use of different criteria

to select the most competent regressors from the ensemble.

Section 7.4 assesses the impact of the proposed DRS

technique using the FADbF dataset compared to the use

with only the attributes usually used by the state of the art.

Section 7.5 compares the performance of the proposed

method against some related methods for fault location,

traditional ensemble algorithms, and one of the most recent

DRS techniques in the literature, in addition to justifying

the choice of using the ERT algorithm as the pool of

regressors. Finally, Sect. 7.6 describes the complexity and

the main drawbacks of the proposed method.
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7.1 Assessing the normalization process

Table 4 reports the results comparing three different sce-

narios in our DRS technique:

1. Without normalization: consists of the use of the

original features without any preprocessing (i.e., data

scaling);

2. Standard normalization: consists of the validation set

scaled before the beginning of the entire process of the

DRS, using its parameters to normalize each test

pattern. In other words, the normalization occurs

outside the DRS technique, in which the features for

each new example are scaled based on the validation

set distribution. Usually, related DRS methods perform

this process as a preprocessing [50, 61];

3. Embedded normalization: proposed in this work, this

scenario is presented in detail in Sect. 5.2. Basically, it

scales the test pattern and the validation set together

individually for each new example to define the RoC.

Before executing the normalization process, we added

the test pattern inside the original validation set, and

then we conducted the normalization of this set, being

removed from the validation set right after the data

scaling. This process is carried out individually for

each new example. Here, the data scaling is used only

to determine the RoC, while the original data, without

preprocessing, are used as features for the ensemble.

These results demonstrate that the data scaling reverberates

in a performance gain with this process embedded in the

DRS approach, manifesting its importance. The statistical

comparison with paired t-tests corroborated the better

operation of our strategy. Despite there being no statistical

difference between ‘‘embedded normalization’’ and

‘‘without normalization’’ for the MSE measure (p-

value = 0.2075), we can identify statistical difference for

the MAE metric (p-value\ 0.0001), the main metric used

in the literature for fault location.

We also assessed the impact of keeping the validation

set normalized and scaling the sample test based on the

parameters of the transformed validation set (standard

normalization). However, this scenario performed worse

than the embedded normalization proposed in this work.

These inferior results can be related to the discrepant val-

ues of the attributes of the test pattern, i.e., lower minimum

values and higher maximum values in the features of the

sample test compared to those inside the validation set. On

the other hand, this problem does not affect our embedded

normalization since the method adds each test pattern

inside the original validation set before the normalization.

So, this analysis is crucial to endorse the importance of

normalizing the test pattern together with the validation set.

The statistical tests, paired t-test for MAE and Wilcoxon

test for MSE, confirmed the differences among the results

for both measures (p-value\0.0001 for MAE and p-value

= 0.002 for MSE).

The embedded normalization scales the test pattern and

the validation set together, individually for each new

example, to define the RoC, leading to better results of the

DRS to estimate the fault location. The reason for this

online process was related to the fact that the kNN algo-

rithm (distance-based) used to determine the RoC can be

affected by the scale of the data, which can influence the

examples returned to compose this region. In other words,

features with discrepant scales tend to dominate the others

and may lead to an imperfect RoC and, consequently, in a

performance loss, such as happened to the standard

normalization.

7.2 Assessing the distance metrics

Table 5 presents the performances of our method con-

cerning different distance measures. It is possible to notice

that the method with Cosine and Cityblock distances per-

formed slightly better than using Euclidean distance. The

repeated-measures one-way ANOVA test manifested sta-

tistical differences among the performances (p-

value = 0.0007 for MSE and p-value\ 0.0001 for MAE),

while the Tukey post-test manifested that there are statis-

tical differences between Cityblock with each other metric,

i.e., superior performance. On the other hand, the Geodesic

measure showed inferior overall results than the other

metrics.

Table 4 Mean and standard deviation, in parentheses, of the results in

kilometers comparing the use of the normalization step, calculated in

ten replications

Scaling MSE MAE

Without normalization 1.4161 (0.0796) 0.7163 (0.0062)

Standard normalization 2.5465 (1.0858) 0.8250 (0.0156)

Embedded normalization 1.3973 (0.0942) 0.7086 (0.0068)

Table 5 Mean and standard deviation, in parentheses, of the results in

kilometers comparing the different distance metrics, calculated in ten

replications

Distance measure MSE MAE

Euclidean 1.4677 (0.0943) 0.7250 (0.0073)

Cosine 1.4583 (0.1233) 0.7196 (0.0072)

Geodesic 1.4822 (0.1154) 0.7253 (0.0071)

Cityblock 1.3973 (0.0942) 0.7086 (0.0068)
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This analysis is interesting because we attain better

results just by changing this measure, evidencing its

importance. Besides, the use of distinct distance metrics

aims to explore their influence on the behavior of each

database, which can present a diversified and particular

data distribution. In this scenario, other measurements like

Canberra and Mahalanobis can be used alternatively [18].

7.3 Assessing the selection criteria

Table 6 shows the results considering different criteria to

establish the threshold for selecting the most competent

regressors from the ensemble based on their performance

on the RoC. The performances evidenced that the standard

approach usually used in the literature (ðEmax � EminÞ=2) is
overcome by all other criteria, confirmed by the repeated-

measures one-way ANOVA (p-value \ 0.0001 for both

MSE and MAE metrics) and Tukey post-test.

Although there are no statistical differences among

geometric mean, harmonic mean, and median for the MSE

measure, geometric mean performed better than them all

for the MAE metric. Even though the literature on DRS

evidences more attention to the definition of the criterion to

measure the competence of the models in dynamic selec-

tion [49, 50], we could demonstrate through this work that

we should not neglect other hyperparameters of a DRS

method, exploring them in order to achieve better perfor-

mances. We can identify with the presented results that

defining the criterion to select the best regressors from the

ensemble is crucial, reverberating directly in the perfor-

mance improvement.

Considering the results presented for the three compo-

nents evaluated in this paper (i.e., normalization, distance

function, and selection criterion), we can establish that, for

the FADbF dataset, the distance function led to a bigger

variance in performance, followed by normalization and

selection criterion, respectively. It is interesting because

these comprehensive experiments demonstrate the impor-

tance of searching for the best combination of

hyperparameters usually neglected or unexplored by the

DRS state of the art.

7.4 Assessing FADbF dataset

In this subsection, we evaluate the importance of the fea-

tures presented in the FADbF dataset, which comprises the

features usually used in related work for fault analysis, as

much as new ones included in this work. So, we compare

the performance of the DRS technique for two contexts:

1. Using only the features usually used in the specialized

literature composed by arithmetic mean, standard

deviation, energy, entropy, RMS, maximum, and

minimum for both current and voltage signals;

2. Using all features from the FADbF dataset (Sect. 3).

Table 7 presents the results for both contexts mentioned

before, demonstrating a better performance with the

application of all features included in the FADbF dataset.

The statistical comparison with paired t-test confirmed this

statement (p-value \ 0.0001 for both MSE and MAE

measures).

This behavior can be justified somehow by the analysis

conducted in relation to the importance of the features for

the ERT algorithm used in this work to compose the pool

of regressors for the DRS technique. Table 8 shows the top

10 features ordered by their importance for the ERT

algorithm, in which the higher the value, the more relevant

the attribute. The scores presented in this table represent

the average and the standard deviation for each feature

considering the ten pre-trained models, the same used for

the analyses in the previous subsections. The relevance of a

feature is computed based on the Gini importance with a

normalized range of scores [36].

In this analysis, we grouped the features initially sepa-

rated for each phase (A, B, or C) into a single feature in

Table 8, but separately per signal type (current or voltage

waveform). For example, considering the standard devia-

tion attribute, there are originally three features based on it,

one for each phase (A, B, or C). So, we summed the Gini

scores for these three features into a single one to enable an

analysis per feature, individually for each signal type. See
Table 6 Mean and standard deviation, in parentheses, of the results in

kilometers comparing the different selection criteria, calculated in ten

replications

Selection criteria MSE MAE

Standard criterion 1.4445 (0.1004) 0.7127 (0.0073)

Median 1.3968 (0.0921) 0.7097 (0.0067)

Arithmetic mean 1.4157 (0.0979) 0.7097 (0.0072)

Geometric mean 1.3973 (0.0942) 0.7086 (0.0068)

Harmonic mean 1.3922 (0.0885) 0.7127 (0.0064)

Table 7 Mean and standard deviation, in parentheses, of the results in

kilometers comparing the features in FADbF dataset and the features

used in the literature

Context MSE MAE

Literature features 2.1146 (0.0386) 0.9599 (0.0065)

FADbF features 1.3973 (0.0942) 0.7086 (0.0068)
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Supplementary Material for complete details about the Gini

scores, including the values individually for each feature.

This analysis evidences that six of the top 10 features

are original from the FADbF dataset: variance (current

signal); geometric mean (current signal); distance (voltage

signal); AUC (current signal); covariance (current signal);

and variance (voltage signal). Although the standard

deviation and variance have a certain relationship, they still

present different statistical perspectives. As a result, vari-

ance in this context is considered a new feature. Notice that

we chose not to group the features of both signal types into

a single feature, e.g., RMS for current and voltage signals

only as RMS, and examine them separately because current

and voltage waveforms manifest distinct properties. An

example is the variance feature, the second most important

feature with the current signal, but only in the eighth

position for the voltage waveform.

In this work, we did not carry out any feature selection,

which could reverberate in a performance gain. We could,

for example, use only standard deviation or variance since

both of them are used to measure the data dispersion

around the arithmetic average. Nevertheless, this kind of

preprocessing is out of the scope of this work and will be

considered in future works.

7.5 Comparison with the state of the art

Finally, in this section, we compare the performance of our

method against five methods reviewed in Sect. 2. Next, we

discuss some properties of the ensemble used as the pool of

regressors, along with the comparison with traditional

ensemble algorithms like Random Forest, ERT, and Gra-

dient Boosting.

Table 9 presents the performance comparison among

some state-of-the-art works reviewed in Sect. 2 and the

proposed method. We reproduced these methods using the

same dataset (FADbF) used to evaluate our approach for a

fair comparison, with the same division in training and

testing sets as we presented in Sect. 6. As a result, the

preprocessing procedures and the features used as input to

the algorithms may differ from their original proposals. For

example, signal processing techniques like DWT, WPT,

and DFT were not performed for the methods that use them

since these procedures have to be carried out on the current

and voltage signals before feature extraction, which does

not comprise the FADbF dataset for the reasons discussed

at the end of Sect. 2. On the other hand, we carried out

steps like the normalization of the feature vector [54] or the

use of multiple modules [5, 63, 64] for the methods that

require any of them. Considering that our objective is to

evaluate the proposed dataset, we used the whole FADbF

set as input for all methods, while each regression

scheme (Table 1) was reproduced with the same configu-

ration described by the respective works.

Our method demonstrated superiority over all other

methods, statistically corroborated by the Friedman test (p-

value \ 0.0001 for both MSE and MAE metrics) and

Dunn’s post-test. These high error rates of the related

methods can be explained partly by the fact that these

methods were originally developed for different transmis-

sion lines than the one used for the FADbF dataset, as well

as using different sampling rates for data collection.

Besides, the power systems’ characteristics and their

complexities also differ. Consequently, all these aspects

result in different fault signatures (e.g., distinct signal

amplitudes even for transmission lines with the same

length) among the datasets [21, 55]. As stated by Ferreira

et al. [24], the performance of the fault diagnosis system is

guaranteed only for the transmission line and fault condi-

tions for which the fault diagnosis system was developed.

This statement is reflected in the results of Bhatnagar et al.

[5], which manifested the second-best performance for the

FADbF dataset. The authors used the IEEE 14-bus power

system to develop and assess their approach (Sect. 2),

which presents similarities to the IEEE 9-bus system used

to simulate the fault events for the FADbF dataset

(Sect. 3.1). Consequently, it can explain the better perfor-

mance of their method compared to the others. Moreover,

the performance of their method for the FADbF dataset is

similar to the performance reported to the power system

considered in their original study, which represented MAE

of around 1 km against MAE of 1.3697 km in our dataset.

The choice of using the decision tree as the base model

to compose the pool of predictors is justified in part by the

results reported in Table 10. Beyond decision trees, other

learning algorithms were considered in this test: Multilayer

Perceptron (MLP) with two configurations, which struc-

tures were based on the works presented by Ferreira et al.

Table 8 Top 10 features ordered by their importance for the ERT

algorithm, considering the mean and standard deviation, in paren-

theses, of the Gini score

Ranking Feature Gini score

#1 Standard deviation (current signal) 0.0410 (0.0016)

#2 Variance (current signal) 0.0285 (0.0008)

#3 Geometric mean (current signal) 0.0257 (0.0018)

#4 Distance (voltage signal) 0.0215 (0.0018)

#5 AUC (current signal) 0.0200 (0.0007)

#6 Covariance (current signal) 0.0196 (0.0003)

#7 Energy (voltage signal) 0.0178 (0.0002)

#8 Variance (voltage signal) 0.0176 (0.0005)

#9 RMS (current signal) 0.0156 (0.0005)

#10 RMS (voltage signal) 0.0152 (0.0003)
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[25] and Ray et al. [54], such as previously presented in

Table 9; SVR for two types of kernel; kNN with k ¼ 3 and

k ¼ 7. The decision tree implementation used in this study

was the CART (Classification and Regression Tree) algo-

rithm [10]. These initial experiments comprised the FADbF

dataset using only the training and validation sets.

The CART algorithm performed better than the other

models, as evidenced by the repeated-measures one-way

ANOVA test followed by the Tukey post-test, which

manifested statistical differences between CART and each

predictor. Besides, these algorithms require a superior

computational cost than decision trees. Consequently, these

aspects explain the choice of the decision tree as the base

predictor.

In turn, Table 11 shows the performances of different

ensembles, all comprising the CART algorithm.

As can be observed, ERT performed better than the

other ensembles, justifying its use as the baseline to obtain

the most promising pool of regressors since it allows us to

obtain its list of trained models. The ERT algorithm uses a

random subset of candidate features, drawing the thresh-

olds randomly for each candidate feature and selecting the

best of these randomly generated thresholds as the splitting

rule. Also, this algorithm can avoid a particular feature

predominating over the other features since only part of the

attributes is available for each tree during its creation

process. As a result, it can reduce the variance of the model

and control overfitting. These aspects may have contributed

to a better performance of this approach over the other

techniques to compose our pool of models.

The choice of ERT is also justified by the performance

of its oracle (row ‘‘Oracle’’ in Table 12), achieving a

perfect performance, i.e., at least one tree in the ensemble

could attain the exact location of the fault. The oracle is an

abstract strategy that always selects the model that predicts

the correct label for the given query sample if such a model

exists [15, 39]. In other words, the oracle is the best pos-

sible performance that the ensemble can attain, represent-

ing the ideal predictor selection scheme.

To determine the performance of the oracle, the fol-

lowing steps were carried out: first, we calculated the

absolute error between the real fault position and the pre-

dicted fault position individually for each estimator in the

ensemble; next, we selected only the regressor that pre-

sented the lowest error for the particular test pattern to

predict its label. It is essential to clarify that we had to

check the predictions of each model directly with the actual

target value of the test pattern to then select the regressor

Table 9 Mean and standard

deviation, in parentheses, of the

results in kilometers for related

methods and the proposed

method

References MSE MAE

Ray et al. [54] 183.6866 (38.0976) 10.6342 (1.2281)

Swetapadma and Yadav [63] 34.7050 (5.0698) 3.0321 (0.0277)

Swetapadma and Yadav [64] 183.0063 (5.7464) 6.6843 (0.0715)

Ferreira et al. [25] 70.6623 (10.6062) 5.6639 (0.5397)

Bhatnagar et al. [5] 5.1203 (0.3550) 1.3697 (0.0155)

Proposed method 1.3973 (0.0942) 0.7086 (0.0068)

Table 10 Mean and standard deviation, in parentheses, of the results

in kilometers for each base algorithm, calculated in ten replications

Algorithm MSE MAE

CART 40.6147 (6.0779) 3.4148 (0.0451)

MLP [25] 70.6623 (10.6062) 5.6639 (0.5397)

MLP [54] 183.6866 (38.0976) 10.6342 (1.2281)

SVR (RBF kernel) 394.5469 (4.8037) 16.1122 (0.0855)

SVR (linear kernel) 745.6150 (9.1590) 21.3690 (0.1246)

kNN (k ¼ 3) 246.0872 (9.5253) 7.3927 (0.0582)

kNN (k ¼ 7) 294.7072 (9.4705) 8.7875 (0.0440)

Table 11 Mean and standard deviation, in parentheses, of the results

in kilometers for each ensemble algorithm, calculated in ten

replications

Approach MSE MAE

ERT 1.7830 (0.1237) 0.7832 (0.0087)

Random forest 9.8331 (1.6850) 1.5183 (0.0216)

Bagging of CART 9.7880 (1.6249) 1.5158 (0.0194)

Gradient boosting 90.7166 (1.6878) 6.5164 (2.2906)

Table 12 Mean and standard deviation, in parentheses, of the results

in kilometers for each DRS method, calculated in ten replications

Approach MSE MAE

DWS-MS [50] 1.4421 (0.0815) 0.7184 (0.0071)

Proposed DWS 1.3973 (0.0942) 0.7086 (0.0068)

Oracle 0.0000 (0.0000) 0.0000 (0.0000)

Oracle of the selected models 0.0009 (0.0007) 0.0002 (0.0002)
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that presented the lowest error, which could not be possible

in a real scenario because the actual target value obviously

will not be available. That is why the oracle is considered

an abstract strategy.

Table 12 presents the results of the experiments com-

paring our method against the DRS proposed by Moura

et al. [50], called Dynamic Weighting Selection with

Measure Selection (DWS-MS). It is essential to mention

that we provided exactly the same pre-trained pool of

regressors for both methods with the size of N ¼ 700.

The hyperparameters of DWS-MS were defined simi-

larly to our technique in this work, with the same compe-

tence measure (i.e., maximum squared error), k ¼ 30, and

the same trained pool of models. We tried to achieve the

best possible configuration of this method for the FADbF

dataset in order to enable a fair comparison. For the results

of our method reported in Table 12, we used maximum

squared error as the competence measure, Cityblock as the

distance measure, and geometric mean as the criterion to

determine the threshold, in which we select only the

regressors that present an error lower than this limit. This

configuration demonstrates the better performance of our

method for the FADbF dataset.

Our technique demonstrated superior performance for

all comparisons, considering the paired t-test with a con-

fidence interval of 95%. Notice that we compared our

method against DWS-MS and all ensembles listed in

Table 11 without considering the oracle models (last two

rows in Table 12). The hypothesis test revealed statistically

significant differences comparing our approach individu-

ally with each of the other techniques for both MSE and

MAE metrics (p-valor\ 0.0001 for most comparisons).

The better performance of our technique can be

explained by the fact that we went further in the variation

of the DRS hyperparameters, together with the addition of

the embedded normalization. While DWS-MS aims to

obtain the best competence measure, our method looks for

the ideal distance metric and selection criteria along with

the best competence measure.

Even if the DWS-MS hyperparameters were configured

with the same distance function and selection criterion used

in our method, Cityblock and geometric mean, respec-

tively, it would perform similarly as our framework with-

out the embedded normalization, such as already

demonstrated in the row ‘‘without normalization’’ in

Table 4. These analyses evidence the crucial role of

embedded normalization, leading our method to superior

performance. With this process incorporated, it was pos-

sible to reach a more appropriate RoC and, consequently,

enable the method to select the most competent regressors

to predict the test pattern.

Although the oracle shows no error (row ‘‘Oracle’’ in

Table 12), with at least one regressor in the pool of models

predicting exactly the fault location of each test pattern, the

main challenge is selecting this regressor. This is our main

motivation in the use of the ensemble technique with

dynamic selection against the use of individual models

widely used in the state of the art of fault location.

Likewise, the oracle’s performance evidenced that we

can further investigate the dynamic selection strategies. For

this purpose, we explored other distance metrics and other

selection criteria aiming to gain performance, as demon-

strated in the previous subsections. Nevertheless, we

should emphasize that achieving the same performance of

the oracle is a complex task since we select multiple

regressors to define the target value unless they all predict

exactly the same (and correct) value, which is unlikely.

In addition to the oracle of the whole ensemble, we

assessed the oracle only among the selected models by our

DRS scheme (row ‘‘Oracle of the selected models’’ in

Table 12). This analysis aims to determine the best possi-

ble performance regarding only the dynamically chosen

models by our DRS technique.

Considering the original pool of models with 700 esti-

mators, the proposed DRS method selected about 382 ± 51

regressors per query with the best configuration (embedded

normalization, Cityblock as distance metric, and geometric

mean as selection criterion). Also, if we observe the oracle

among these selected models (row ‘‘Oracle of the selected

models’’ in Table 12), it is possible to identify that our

technique selected accurate predictors. Besides, these

results demonstrate that new strategies can be added as a

multi-step dynamic selection, using different competence

measures for each new step in order to achieve better

results [48].

Our method presented satisfactory performance,

achieving an MAE of 0.7086 km ± 0.0068 km, repre-

senting 0.1712% ± 0.0016% of the transmission line length

(414 km). Figure 3 illustrates the dispersion of the errors

along the transmission line, which distribution occurs

equally over the line. For this analysis, we sorted the real

location vector of the testing set, which varies from 4.14

km to 414 km, simultaneously with the prediction vector in

ascending order, respecting the corresponding positions of

the predicted and actual targets between both vectors. The

result of this ordering is the continuous curve plotted in

Fig. 3.

Table 13 shows more details about the error distribution

considering different ranges. Errors bigger than 10 km

represent only about 35 of 42,000 failure events in the

testing sets, corresponding only to about 0.0833% of the

test examples. On the other hand, most errors are less than

or equal to 0.5 km and correspond to 52.6762% of all test

examples (about 22,124 of 42,000 occurrences).

A perspective for further investigation in future works is

related to the study of DL predictors like LSTM and CNN
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as base learners. This analysis is interesting because

methods that use DL algorithms and others that use clas-

sical ones like decision trees may manifest different dis-

persion of the errors since they use different features along

with the different nature of the algorithms. In this scenario,

we can merge DL-based models with classical algorithms

to compose the pool of regressors (heterogeneous ensem-

ble), similarly as already used in the literature for time

series forecasting [17]. Moreover, we can use simpler

structures of DL models to compose the pool instead of

requiring a single and complex DL architecture, such as

proposed in some works in the literature [6, 20, 22, 68].

Owing to the key property of the DRS strategy being the

diversity among the models, we can train DL algorithms

with raw current and voltage signals data and train classical

algorithms (e.g., CART and SVR) with features manually

extracted, such as those from FADbF dataset (Sect. 3). So,

we can not only diversify the kind of data used to train the

algorithms but also explore the different characteristics of

each algorithm, ensuring diversity from several perspec-

tives. With that in mind, we believe that we can achieve

better results and also reduce the size of the ensemble

(currently with N ¼ 700). Last but not least, despite the

evaluation only with the DWS technique, our DRS

framework can also be adapted to work with DS and DW,

which will be assessed in future experiments.

7.6 Final remarks

Although the good performance and effectiveness of the

proposed method for fault location, as demonstrated in this

study, we can identify two main drawbacks: the compu-

tational cost and the number of models required in the pool

of regressors.

The former weakness is related to the fact that the

method needs to carry out a sequence of steps individually

for each new example to be predicted (Sect. 5): (1) nor-

malize the validation set together with the test pattern by

the MinMax scaler (Oðnþ 1Þ, where n is the number of

examples in the validation set, plus the test pattern); (2)

define the RoC by the kNN algorithm (Oðk � n� dÞ,
where k is the number of neighbors, n is the number of

examples in the validation set, and d is the data dimen-

sionality); (3) compute the performance of each regressor

in the ensemble for the RoC based on the competence

measure (O(r), where r is the number of regressors); (4)

determine the performance threshold using the selection

criterion (O(r)); (5) select the regressors that present an

error inferior to this limit (O(r)); (6) calculate the weights

for each selected model (O(m), where m is amount of

selected models); and (7) then perform the final prediction

(O(m)).

Consequently, there is an increase in the processing time

needed to predict the target compared with static ensemble

algorithms like Random Forest and ERT, which basically

average the prediction of all models to get the final deci-

sion. Nonetheless, this time is not a problem considering

that our method was developed to be used as an offline

application in a real protection system, which does not

Fig. 3 Representation of the

prediction errors

Table 13 Distribution of the errors for different intervals. The values

represent the mean and standard deviation, in parentheses, of the

number of occurrences over the ten repetitions

Interval of error Number of occurrences

error \ ¼ 0.5 km 22,124 (96)

0.5 km\ error \ ¼ 1 km 10,817 (109)

1 km\ error \ ¼ 5 km 8,731 (90)

5 km\ error \ ¼ 10 km 293 (19)

error[ 10 km 35 (9)
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demand a restricted time for a prediction. We can estimate

the prediction time complexity of our method by summing

the complexities of the steps mentioned before, which are

identified in parentheses in the last paragraph. In summary,

the approximate prediction complexity of the method is

Oðnþ ðk � n� dÞ þ r þ mÞ.
Another aspect associated with the computational cost is

the requirement to keep the whole validation set together

with the pool of models during the operation of the DRS

method, similar to any other dynamic selection approach. It

is required because the DRS method needs the validation

set to use in the lazy learning procedure carried out by the

kNN algorithm, which is responsible for obtaining the RoC

for each new pattern. As a result, there is a demand for

extra storage space. In this study, for example, each vali-

dation set file corresponds to about 88 MB with 42,000

instances and 126 attributes, which do not represent a

significant size. Of course, the file size should vary

depending on the database, but it will not make the method

unfeasible. A possible solution for this problem that will be

further investigated is the prototype selection [29]. This

technique seeks a reduced dataset, serving as a condensed

view of the whole original database, and can even improve

performance [37].

The latter weakness is the high number of models in the

pool required for the fault location task, allowing the

method to achieve the performances presented. This

problem also reverberates in the computational cost since it

demands that each of these regressors is evaluated. So,

future efforts will be directed at improving the generation

phase (Sect. 5.1), following directions like those men-

tioned at the end of Sect. 7.5.

It is important to emphasize again that, even with these

limitations, our method proved to be accurate and effective.

These problems do not affect the viability of our method

since it was developed to be used as an offline application.

Ferreira et al. [24] emphasize that the computational cost is

not critical for offline applications, allowing the use of

more sophisticated techniques for fault location.

8 Conclusion

This paper presented a new dataset and a novel DRS

scheme, characterized by introducing an embedded nor-

malization and evaluating multiple configurations, in which

we varied hyperparameters like the distance metric used to

define the RoC and different selection criteria to obtain the

most competent regressors. We also introduced the concept

of oracle in DRS, widely used for the classification task

[15], serving as a reference to how good can be the per-

formance of a DRS method.

The performance of the proposed method achieves an

MAE of 0.7086 km ± 0.0068 km, representing 0.1712% ±

0.0016% of the transmission line length, attaining superior

results than one of the latest DRS methods in the literature.

So, the results show that the proposed approach complies

with our objective. These results are crucial to demonstrate

that we should also look carefully for other criteria besides

the competence measure considered in related work

[49, 50]. In this scenario, we can mention the distance

function used in the kNN algorithm and the selection cri-

terion used to select the most competent regressors from

the ensemble, in which we were able to achieve statistically

better performances by changing these DRS hyperparam-

eters. Another essential property that should be highlighted

is the embedded normalization in the proposed DRS

framework. Our results and analyses demonstrated that this

process also impacted a significant performance gain.

However, the method presented some drawbacks that

include the computational cost and the high number of

models required in the pool of regressors. Nonetheless,

these aspects are not critical due to the fact that our method

is developed to be used as an offline application.

Future works include (1) the expansion of the proposed

technique to automatically determine the best combination

of hyperparameters, as well as (2) the evaluation using a

heterogeneous ensemble, and (3) the analysis with other

normalization techniques than the MinMax. We also aim to

(4) explore new strategies for defining the RoC and (5)

propose and assess new criteria for selecting the most

competent models from the ensemble, evaluating the

method with different datasets.
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