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Abstract—In this work we assess the recently introduced
Local Phase Quantization (LPQ) as textural descriptor for the
problem of forest species recognition. LPQ is based on quantizing
the Fourier transform phase in local neighborhoods and the
phase can be shown to be a blur invariant property under
certain commonly fulfilled conditions. We show through a series
of comprehensive experiments that LPQ surpasses the results
achieved by the widely used Local Binary Patterns (LPB) and
its variants. Our experiments also show, though, that the results
can be further improved by combining both LPB and LPQ. In
this sense, several different combination strategies were tried
out. Using a SVM classifiers, the combination of LPB and LPQ
brought an improvement of about 7 percentage points on a
database composed by 2,240 microscopic images extracted from
112 different forest species.

I. INTRODUCTION

The field of wood Anatomy has defined a set of primitives
to discriminate the vegetable species from which wood can
be extracted. Besides the scientific importance, wood identifi-
cation has a huge practical importance. Wood is a basic raw
material applied to make a plenty of products. So, woods can
also be categorized by their different applications according
to their physical, chemical, and anatomical characteristics, and
their prices vary greatly.

Large quantities of wood are transported among short or
long distances all over the world. The safe trade of log and
timber has become an important issue. Buyers must certify
they are buying the correct material while supervising agencies
have to certify that wood has been not extracted irregularly
from forests. This matter involves millions of dollars and aims
at preventing frauds where a wood trader might mix a noble
species with cheaper ones, or even try to export wood whose
species is endangered.

Nowadays, timber is examined by using the naked eye
or sometimes with the aid of a magnifier. In addition to
the macroscopic features of wood, physical features such as
weight (different moisture content), color (variation), feel,
odour, hardness, texture, and surface appearance are also con-
sidered. However, identifying an wood log or timber outside
of its context (the forest) is not an easy task since one
cannot count on flowers, fruits, and leaves. Therefore this
task is performed by well-trained specialists but few reach
good accuracy in classification due to the time it takes for

their training, hence they are not enough to meet the industry
demands. Another factor to be taken into account is that the
process of manual identification is rather subjective and time
consuming. It might lead to diversion of attention as it is a
repetitive process and consequently may result in errors, which
can become impracticable when checking cargo for export. In
this context, computer vision systems become very interesting.
In the last decade, however, most of the applications of
computer vision in the wood industry were related to quality
control, grading, and defect detection [1], [2].

Just recently, some authors began to use computer vision to
classify forest species. Tou et al [3] reported two experiments
to classify forest species which also use the gray-level co-
occurrence matrix (GLCM) features to train a neural network
classifier. The authors report recognition rates ranging from
60% to 72% for five different forest species.

Khalid et al [4] presented a system to recognize 20 different
Malaysian forest species. A particularity of this method is
that the wood samples were first boiled and then cut with
a microtome into thin sections. The image acquisition was
then performed with an industrial camera of high performance
and a LED array lighting. The recognition process is based
on a neural network trained with information extracted from
GLCM. The database used in their experiments contains 1,753
images for training and only 196 for testing. They report a
recognition rate of 95%. A drawback of this strategy is the
expensive acquisition protocol which makes it unfeasible for
real applications.

Paula et al [5] investigated the use of GLCM and color-
based features to recognized 22 different species of the Brazil-
ian flora. In this work they have proposed a segmentation strat-
egy to deal with the great intra-class variability. Experimental
results show that when color and GLCM features are used
together the results can be considerably improved.

In this work we assess the Local Phase Quantization (LPQ)
as textural descriptor for the problem of forest species recogni-
tion. LPQ is based on quantizing the Fourier transform phase
in local neighborhoods and the phase can be shown to be
a blur invariant property under certain commonly fulfilled
conditions. Our experiments were performed on a recently
proposed database composed of 2,240 microscopic images
from 112 different forest species [6]. Such a database is



available for research purposes under request1.
A series of comprehensive experiments show that the LPQ

surpasses the results achieved by the Local Binary Patterns
(LPB) and its variants (LBPu28,2, LBPri8,2, LBPriu28,2 ). In spite of
that, we show that the LPQ results can be further improved by
combining them with LPB. In this vein, several different com-
bination strategies were tried out along with a SVM classifier.
The best results were achieved by fusing the results of the LPQ
and LPBri8,2 with the Product rule. Such a combination brought
an improvement of about 7.1 percentage points compared to
the best results reported in [6].

This paper is structured as follows: Section II introduces
the used image database. Section III describes the feature
sets we have used to train the classifiers. Section IV reports
our experiments and discusses our results. Finally, section V
concludes the work.

II. DATABASE

The database used in this work contains 112 differ-
ent forest species which were catalogued by the Labo-
ratory of Wood Anatomy at the Federal University of
Parana in Curitiba, Brazil [6]. As stated before, it is avail-
able for research purposes upon request to the VRI-UFPR
(http://web.inf.ufpr.br/vri/forest-species-database). The proto-
col adopted to acquire the images comprises five steps. In
the first step, the wood is boiled to make it softer. Then, the
wood sample is cut with a sliding microtome to a thickness of
about 25 microns (1 micron = 1× 10−6 meters). In the third
step, the veneer is colored using the triple staining technique,
which uses acridine red, chrysoidine, and astra blue. In the
fourth step, the sample is dehydrated in an ascending alcohol
series. Finally, the images are acquired from the sheets of
wood using an Olympus Cx40 microscope with a 100x zoom.
The resulting images are then saved in PNG (Portable Network
Graphics) format with a resolution of 1024×768 pixels.

Each specie has 20 images, totalizing 2,240 microscopic
images. Of the 112 available species, 37 are Softwoods and
75 are Hardwoods (Fig. 1). Looking at these samples, we can
see that they have different structures. Softwoods have a more
homogeneous texture and/or present smaller holes, known as
resiniferous channels (Figure 1a), whereas Hardwoods usually
present some large holes, known as vessels (Fig. 1b).

Another visual characteristic of the Softwood species is the
growth ring, which is defined as the difference in the thickness
of the cell walls resulting from the annual development of
the tree. We can see this feature in Figure 1a. The coarse
cells at the bottom and top of the image indicate more
intense physiological activity during spring and summer. The
smaller cells in the middle of the image (highlighted in light
red) represent the minimum physiological activity that occurs
during autumn and winter.

It is worth noting that color cannot be used as an identifying
feature in this database, since its hue depends on the dyeing
substance used to produce contrast in the microscopic images.

1http://web.inf.ufpr.br/vri/forest-species-database

(a) (b)

Figure 1. Samples of the database (a) Softwoods and (b) Hardwoods.

All the images were therefore converted to gray scale (256
levels) in our experiments.

III. FEATURES

In order to make this paper self-contained, in this section
we briefly describe both textural descriptors assessed in our
experiments, the Local Phase Quantization and Local Binary
Patterns.

A. Local Phase Quantization (LPQ)

Proposed by Ojansivu e Heikkila [7], LPQ is based on
quantized phase information of the Discrete Fourier Transform
(DFT). It uses the local phase information extracted using the
2-D DFT or, more precisely, a Short-Term Fourier Transform
(STFT) computed over a rectangular M×M neighborhood Nx
at each pixel position x of the image f(x) defined by

F (u, x) =
∑

y∈Nx

f(x− y)e−j2πu
T y = wTu fx (1)

where wu is the basis vector of the 2-D DFT at frequency
u, and fx is another vector containing all M2 image samples
from Nx.

The STFT can be implemented using a 2-D convolutions
f(x)e−2πju

T x for all u. In LPQ only four complex coefficients
are considered, corresponding to 2-D frequencies u1 = [a, 0]T ,
u2 = [0, a]T , u3 = [a, a]T , and u4 = [a,−a]T , where a is
a scalar frequency below the first zero crossing of the DFT
H(u). H(u) is DFT of the point spread function of the blur,
and u is a vector of coordinates [u, v]T . More details about the
LPQ formal definition can be found in [7], where Ojansivu e
Heikkila introduced all mathematical formalism. At the end,
we will have an 8-position resulting vector Gx for each pixel
in the original image. These vectors Gx are quantized using
a simple scalar quantizer (Eq. 2, and 3), where gj is the jth
component of Gx [7].

qj =

{
1, if gj>0
0, otherwise (2)

b =

8∑
j=1

qj2
j−1. (3)

The quantized coefficients are represented as integer values
between 0-255 using binary coding (Eq. 3). These binary codes



will be generated and accumulated in a 256-bin histogram,
similar to the LBP method [8]. The accumulated values in the
histogram will be used as the LPQ 256-dimensional feature
vector.

Codes produced by the LPQ operator are insensitive to cen-
trally symmetric blur, which includes motion, out of focus, and
atmospheric turbulence blur [9]. Although this ideal invariance
is not completely achieved due to the finite window size, the
method is still highly insensitive to blur. Because only phase
information is used, the method is also invariant to uniform
illumination changes [7].

B. Local Binary Patterns (LBP)

The original LBP proposed by Ojala et al. [10] labels the
pixels of an image by thresholding a 3 × 3 neighborhood of
each pixel with the center value. Then, considering the results
as a binary number and the 256-bin histogram of the LBP
labels computed over a region, they used this LBP as a texture
descriptor. Figure 2 illustrates this process.

Figure 2. The original LBP operator.

The limitation of the basic LBP operator is its small neigh-
borhood, which cannot absorb the dominant features in large-
scale structures. To overcome this problem, the operator was
extended to cope with larger neighborhoods. By using circular
neighborhoods and bilinearly interpolating the pixel values,
any radius and any number of pixels in the neighborhood
are allowed. Figure 3 depicts the extended LBP operator,
where (P,R) stands for a neighborhood of P equally spaced
sampling points on a circle of radius R, which forms a
neighbor set that is symmetrical in a circular fashion.

Figure 3. The extended LBP operator [11].

The LPB operator LBPP,R produces 2P different binary
patterns that can be formed by the P pixels in the neighbor set.
However, certain bins contain more information than others,
and so, it is possible to use only a subset of the 2P LBPs.
Those fundamental patterns are known as uniform patterns.
A LBP is called uniform if it contains at most two bitwise
transitions from 0 to 1 or vice versa when the binary string is
considered circular. For example, 00000000, 001110000 and
11100001 are uniform patterns. It is observed that uniform

patterns account for nearly 90% of all patterns in the (8,1)
neighborhood and for about 70% of all patterns in the (16, 2)
neighborhood in texture images [10][8].

Accumulating the patterns that have more than two tran-
sitions into a single bin yields an LBP operator, denoted
LBPu2P,R, with fewer than 2P bins. For example, the number of
labels for a neighborhood of 8 pixels is 256 for the standard
LBP but 59 for LBPu2. Then, a histogram of the frequency
of the different labels produced by the LBP operator can be
built [10].

LBP variants were proposed in [8]. LBPri and LBPriu2

have the same LBPP,R definition, but they have only 36 and
10 patterns, respectively. LBPri accumulates, in only one bin
(Eq. 4), all binary patterns which keep the same minimum
decimal value LBP riP,R when their P bits are rotated (ROR).
LBPriu2 combines LBPu2 and LBPri definition. Thus, it uses
only the uniform binary patterns and accumulates, in only one
bin, those that keep the same minimum decimal value LBP riP,R
when their P bits are rotated.

LBP riP,R = min{ROR(LBPP,R, i) i = 0, ..., P − 1}. (4)

IV. EXPERIMENTS AND DISCUSSION

The classifier used in this work was the Support Vector
Machine (SVM) introduced by Vapnik in [12]. Normalization
was performed by linearly scaling each attribute to the range
[-1,+1]. The Gaussian kernel was used, with parameters C and
tuned using a grid search.

In our experiments, the database was divided into training
(40%), validation (20%), and testing (40%). In order to show
that the choice of the images used in each subset does
not have a significant impact on the recognition rate, each
experiment was performed five times with different subsets
(randomly selected) for training, validation, and testing. The
small standard deviation (σ) values show that the choice of
the images for each dataset is not an important issue.

To analyze the data into a multi-class problem, we used the
one-against-others strategy, which works by constructing an
SVM ωi for each class q that first separates the class from all
the other classes and then uses an expert F to arbitrate between
their SVM outputs, in order to produce the final decision. A
good reference work listing the multi-class SVM methods is
[13].

We used estimation of probabilities to proceed the com-
bination of outputs in order to get a final decision. In this
situation, is very useful to have a classifier producing a
posterior probability P(class|input). To perform that, we have
used the method proposed by Platt in [14]. Here, we are
interested in estimation of probabilities because we want
to try different fusion strategies like Majority Voting, Sum,
Averaging, Product, Max, and Min. A good review about the
combination rules can be found in [15].

In the next subsections we i) compare LPQ and LBPu2, ii)
assess rotation invariant LPB and iii) show how the combina-
tion of LPQ and LPB variants can improve the final results.



A. LPQ and LBPu2 features

In this first experiment we compared LPQ with the most
used configuration of LBP, the LBPu2. To better assess the
impact of these feature sets we trained the classifiers so that
both feature sets could be assessed independently. For the
LBPu2 we tried eight neighbors and different distances, but
distance two presented the best results. LPQ was also tested
for different window sizes and the best results were achieved
using a 3×3-sized window.

Table I shows the best results for each feature set. As we
can observe, LPQ surpassed LBPu2 in about 3.66 percentage
points.

Table I
RECOGNITION RATES FOR LBPu2 AND LPQ.

Features Feature % σ
Vector Size

LPQ 255 79.82 1.34
LBPu2

8,2 59 76.16 1.09

In order to get a better insight of these results we analyze
some classes that have an elevated error rate (between 40%
and 65%). Figure 4 shows some samples of these classes.

Figures 4a and 4b show samples of Picea abies. For this
class of forest species, both LPQ and LBP were able to
correctly classify only 50% of the images. In such a case the
LPQ performs slightly better since it can deal better with blur
(e.g., Figure 4a) than LBP.

Another difficult class is the Mimosa bimucronata where
the error rate ranges from 40 to 50%. As we can observe
from Figures 4c and 4d the same species has quite a different
definition of cells and intensity. A similar problem occurs with
samples of the class Eucalyptus grandis, depicted in Figures
4e and 4f.

B. Invariance to Rotation

Analyzing the misclassified images, we have just observed
differences on their orientations (Fig. 5). These differences are
consequence of the slides’ displacement on the microscope
during image acquisition process. It is important to mention
that we did not apply any filter to correct the rotation to the
images in our experiments.

Two configurations of rotation invariant LBP were tried out,
both of them with eight neighbors and different distances. As
reported in Table II, the best results for LBPri and LBPriu2

were achieved for the distance two. LBPri8,2 achieved better
results than LBPriu28,2 , but both of them were worse than those
achieved by traditional LBPu28,2.

We observed that LBPriu28,2 and LBPri8,2 have correctly
classified most of those images with differences on their
orientation, like the ones shown in Figure 5. However, the
overall recognition rate decreased. By analyzing the database,
we observed a small number of images with some kind of
rotation. Besides LBPu2, LBPri, and LBPriu2 have feature
vectors of 59, 36, and 10 components, respectively. So, this

(a) (b)

(c) (d)

(e) (f)

Figure 4. Species with recognition rates lower than 60%: (a-b) Picea abies,
(c-d) Mimosa bimucronata, and (e-f) Eucalyptus grandis.

(a) (b)

Figure 5. Different angles.

impact in the recognition rates could be caused by a loss of
representation capability as the number of elements in the LBP
feature vector decreases.

C. LPQ and LBP Classifiers Combination

In this last experiment we have combined LPQ and LBP
variants using two different strategies. In the first one we

Table II
RECOGNITION RATES FOR LBPri

8,2 AND LBPriu2
8,2 .

Features Feature % σ
Vector Size

LBPri
8,2 36 75.00 0.63

LBPriu2
8,2 10 54.68 1.77



concatenate the LPQ and LPB feature vectors into a single
vector. Then, these bigger vectors were used to train the
classifiers using the same experimental protocol we have been
using so far. Table III shows the recognition rates achieved by
such a strategy, where ⊕ stands for vector concatenation.

The final feature vectors were composed of 361 components
with all four feature vectors concatenated, 315 components for
LPQ ⊕ LBPu2, 292 components for LPQ ⊕ LBPri, and 266
components for LPQ ⊕ LBPriu2. We got an improvement of
about 3 percentage points by concatenating the four feature
vectors (83.14%, σ=1.78).

Table III
LPQ AND LBP COMBINED THROUGH FEATURE VECTORS JOINT.

Features Feature % σ
Vector Size

LPQ ⊕ LBPu2 ⊕ LBPri ⊕ LBPriu2 361 83.14 1.78
LPQ ⊕ LBPu2 315 82.72 1.41
LPQ ⊕ LBPri 292 81.80 1.48
LPQ ⊕ LBPriu2 266 80.32 1.33

In the second strategy, instead of concatenating the feature
vectors we have combined the classifiers’ output using the
following well-known fusion rules: Majority Voting, Sum,
Averaging, Product, Max, and Min. This experiment was
motivated after the error analysis when we could observe
that the classifiers trained with LPQ and LBP make different
mistakes in some cases.

Table IV reports the best result of this experiment. As
we can notice, the best result (86.47%) was achieved when
combining LPQ and LPBri8,2 through the Product rule. By the
way, the Product rule, which is a severe fusion strategy by
nature, brought the best results for all the experiments. All
four feature sets combined surpassed by 3.3 and 7.1 percentage
points the previous combination experiment (feature vectors
concatenated) and the best result reported in [6], respectively.

The row Oracle indicates the upper limit for each set of
combined classifiers. The Oracle rate is computed considering
that the better classifier is always selected. Of course that
getting these is not a trivial task and techniques such as
dynamic classifier selection can get us closer to the upper
limit [16]. In our experiments the best recognition rates were
close to the upper limit value. This small difference of 3.8
percentage points shows the effectiveness of combining LPQ
and LBP.

V. CONCLUSION

In this work we have exploited two textural descriptors
for the problem of forest species recognition. Our results
have shown that LPQ surpasses the widely used LPB (and
its variants) in all experiments. In spite of the fact that the
LBP did not provide the best results, it can not be discard
in this kind of application. The combination of LPQ and
LPB has been proved effective in improving the overall error
rate. Compared with the best results reported in [6], the
combination of both feature sets yielded a improvement of

Table IV
LPQ AND LBP COMBINED THROUGH FUSION RULES.

Features % σ Combining-Rule
77.91 1.09 Maj. Voting

LPQ, 83.63 0.99 Sum
LBPu2

8,2 83.63 0.99 Average
84.21 0.86 Product
81.07 0.83 Max
74.73 1.25 Min
86.39 0.90 Oracle
77.30 0.93 Maj. Voting

LPQ, 85.54 0.74 Sum
LBPri

8,2 85.54 0.74 Average
86.47 0.83 Product
82.12 1.79 Max
71.51 0.57 Min
88.14 1.55 Oracle
67.65 1.53 Maj. Voting

LPQ, 82.52 0.82 Sum
LBPriu2

8,2 82.52 0.82 Average
83.18 0.56 Product
78.13 1.05 Max
57.02 2.15 Min
84.48 1.24 Oracle
80.41 0.59 Maj. Voting

LPQ, 85.74 0.66 Sum
LBPu2

8,2, 85.74 0.66 Average
LBPri

8,2, 85.95 0.83 Product
LBPriu2

8,2 81.05 1.41 Max
53.71 0.98 Min
90.22 1.20 Oracle

about 7 percentage points, achieving a overall recognition
rate of 86.47% on a database composed of 112 microscopic
images.

Another point worth of remark is the upper limit of the
descriptors considered in this work. As we have seen, if the
right classifier is always selected, we could reach 90% of
recognition rate. This could be achieved by applying tech-
niques of dynamic selection of classifiers. This is not a trivial
task, though, but it sure offers some perspective to build more
reliable and robust classification systems.

ACKNOWLEDGMENT

This work have been supported by The National Council
for Scientific and Technological Development (CNPq) - Brazil
grant # 301653/2011-9 and Coordination for the Improvement
of Higher Education Personnel (CAPES).

REFERENCES

[1] L. Thomas and L. Mili, “A robust gm-estimator for the automated
detection of external defects on barked hardwood logs and stems,” IEEE
Transaction on Signal Processing, vol. 55, pp. 3568–3576, 2007.

[2] H. Kauppinen, “A two stage defect recognition method for parquet
slab grading,” 15th International Conference on Pattern Recognition
(ICPR’00), vol. 4, pp. 803–806, 2000.

[3] J. Y. Tou, P. Y. Lau, and Y. H. Tay, “Computer vision-based wood recog-
nition system,” International Workshop on Advanced Image Technology,
pp. 197–202, 2007.

[4] M. Khalid, E. L. Y. Lee, R. Yusof, and M. Nadaraj, “Design of an
intelligent wood species recognition system,” International Journal of
Simulation Systems, Science & Technology Special Issue on: Artificial
Intelligence, pp. 9–17, 2008.



[5] P. L. Paula Filho, L. S. Oliveira, A. S. Britto Jr., and R. Sabourin, “For-
est species recognition using color-based features,” 20th International
Conference on Pattern Recognition (ICPR2010), pp. 4178–4181, 2010.

[6] J. G. Martins, L. S. Oliveira, S. Nisgoski, and R. Sabourin, “A database
for automatic classification of forest species,” Machine Vision and
Applications, 2012.
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