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Centrality measures have been helping to explain the behavior of objects, given their
relation, in a wide variety of problems, since sociology to chemistry. This work considers
these measures to assess the importance of every classifier belonging to an ensemble of
classifiers, aiming to improve a Multiple Classifier System (MCS). Assessing the classi-
fier’s importance by employing centrality measures, inspired two different approaches:
one for selecting classifiers and another for fusion. The selection approach, called Cen-
trality Based Selection (CBS), adopts a trade-off between the classifier’s accuracy and
their diversity. The sub-optimal selected subset presents good results against selection
methods from the literature, being superior in 67.22% of the cases. The second approach,
the integration, is named Centrality Based Fusion (CBF). This approach is a weighted
combination method, which is superior to literature in 70% of the cases.
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1. Introduction

Classification is one of the main tasks in the field of pattern recognition. Every

classification problem may present a different number of instances, attributes, and

classes, characterizing different levels of difficulty. Sometimes the problem difficult

makes unfeasible the use of monolithic classifiers due to the wide range of variability

involved. However, the Multiple Classifier System (MCS) is considered attractive in

such a scenario. With an MCS, we can avoid the risk of defining a single classifier

to work with data showing wide pattern variability. Therefore, the success of an

MCS relies upon an ensemble composed of accurate and diverse members, so the

problem space is covered by sharing the responsibility among them. Each member

of the ensemble of classifiers must be accurate in the sense that its decision is

better than random guessing. On the other hand, they must show diversity in their

decisions, which concerns making different errors. Thus, their decisions combined

may improve classification performance.

An MCS is composed of three distinct phases: Generation, Selection, and Combi-

nation. Concerning the generation phase, they can be categorized as heterogeneous

when different base classifiers are used to achieve diversity, while in the homoge-

neous, the same base classifier is used while diversity is obtained by data manip-

ulation. Bagging,1 boosting2 and random subspaces3 are classical approaches for

the generation of homogeneous pools. In the selection phase, there are static and

dynamic strategies. In the former, one or more classifiers can be part of a subset,

defined statically during the ensemble training phase. In the later, the classifiers

are dynamically selected in the test phase accordingly to the test pattern charac-

teristics.4 In the MCS combination phase, the decisions of all classifiers inside the

whole ensemble or a subset of them are merged, producing a final decision. Several

fusion methods are present in the literature.5,6

A challenge in the MCS context is related to how combining the classifiers

generated. The whole pool can be combined or just a subset of its classifiers. Testing

all possible classifier combinations is often unfeasible, but some heuristic can be used

to approximate an optimal subset. The performance of the subset may outperform

the performance of the entire pool if the approach used to select the classifiers

considers two requirements: (i) accuracy and (ii) diversity. In such a context, our

challenge is how to select and combine diverse classifiers, considering not only their

accuracy as a team but also their competence working together, covering more

properly the problem feature space.

The scheme used to measure the classifier competence in a selection or combi-

nation method can vary, but the primary goal is the same, improve the accuracy of

the ensemble, usually based on its members’ ability and limitations. The combina-

tion methods in the literature can be divided into three categories: Non-trainable,

trainable, and dynamic weighting.7 The non-trainable strategy does not require any

extra training to determine the influence of the classifiers on voting. A trainable

strategy, on the other hand, goes in the opposite direction. This strategy uses the
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output of every classifier as an input feature for another learning step. In this step,

its influence is adapt according to the flaws observed in the training data, using a

new learning algorithm for this. Dynamic weighting, similarly to dynamic selection,

consider that a test pattern can fall into a region that matches (or not) the region

of competence of a classifier.

This work presents two distinct MCS approaches, both inspired by centrality

measures of complex network. We used centrality measures to estimate the impor-

tance of the classifiers that compose an ensemble, i.e., their influence taking into

account their relationship inside the ensemble. In our previous work, a weighted

fusion algorithm, named CBF (Centrality Based Fusion),8 is used to combine the

decision of each classifier member considering its importance estimated on centrality

measures computed in a network created with the ensemble members. Here, we ex-

tend the CBF algorithm by considering the strategy used to compute the pairwise

relationship between the classifiers using not only asymmetric but also symmet-

ric diversity measures. Besides, we propose a new algorithm for static selection of

classifiers, named Centrality Based Selection (CBS) that uses the importance, or

influence, of each classifier inside the ensemble to determine whether an ensemble

member will be selected, or not, to compose a subset of most promising classifiers

for a given problem.

This paper presents five sections. Section 2 introduces some fundamental con-

cepts and definitions concerning the proposed approaches for classifier fusion and

static selection of classifiers. Section 3 describes the two approaches, while Section 4

shows our experiments, results, and corresponding discussions. Finally, Section 5

presents our conclusion and future work perspectives.

2. Definitions

This section presents some important concepts of complex network theory, mainly

focused on centrality measures. Those measures help to score classifiers by their

importance, regarding the relationship each classifier has with all others represented

in the network. This background is the basis of the selection and the combination

methods presented in this paper.

2.1. MCS background

This section presents the knowledge required to understand how the MCS con-

cepts are related to our approach, based on complex network techniques. In an

ensemble of classifiers C = {c1, c2, . . . , cT }, every member represents an indepen-

dent function ct : Rn → W that assigns a class label wi ∈ W to x ∈ Rn, where

W = {w1, w2, . . . , wM}. Usually, a training dataset Strain is an input to produce

an ensemble through classical approaches, such as bagging, boosting, or random

subspaces. Then, the whole ensemble C, or a subset of classifiers selected from C,

can be used in the classification process.

2060004-3

In
t. 

J.
 A

rt
if

. I
nt

el
l. 

T
oo

ls
 2

02
0.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
O

 P
A

R
A

N
A

 o
n 

06
/1

8/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 4, 2020 14:42 IJAIT S0218213020600040 page 4

R. Assumpção Silva et al.

Table 1. Pairwise relation between two classifiers ci

and cj .

cj Correct (1) cj Incorrect (0)

ci correct (1) N11 N10

ci incorrect (0) N01 N00

Total: N = N00 +N01 +N10 +N11

As mentioned before, there are two distinct selection approaches to provide the

most promising subset C′ ∈ C, named static and dynamic.4 The static selection

defines the subset C′ during the training phase of an MCS, using during the test-

ing phase the same selected subset for all the unseen patterns available in Stest.

Commonly, during the selection process, it uses a validation set Sval to evaluate

each candidate subset, avoiding the same data used for training (overtuning). The

dynamic selection approach, on the other hand, defines a subset C′ for each test

pattern xtest during the testing phase. In this case, the validation set Sval is also

used in the testing phase to estimate the competence of each classifier for a given

unknown pattern (xtest). The idea is to select the most promising classifier(s) for

each test pattern xtest. In this paper, we focus on the weighted fusion of all classifiers

in the ensemble and the use of a static selection approach.

Both methods described here have in the initial steps the estimation of the

pairwise diversity between classifiers. The well-known diversity measures such as

double fault, Q statistics, correlation coefficient, kappa pruning, and disagreement

are based on four basic relations. These relations involve correct and incorrect

answers of a pair of classifiers, ci and cj , regarding to every pattern xval ∈ Sval.

Table 1 presents these relations.

A detailed description of each diversity measure used in our work is available in

Ref. 6, where one may also find an interesting investigation related to the impact

of diversity on the ensemble accuracy. The most used diversity measures are asym-

metric. However, here we will also investigate the pairwise relations N10 and N01,

which are symmetric. Next, we present the network representation for the pool,

which is capable of dealing with symmetric and asymmetric diversity measures.

2.2. Ensemble network

Recently, the authors in Ref. 9 proposed a network representation for the ensemble

of classifiers. Every ensemble member ci has a pairwise relationship with another

member cj . The relationship can represent the difference between them, e.g., a pair-

wise diversity measure. Figure 1 presents the graph representation of an ensemble

network. Figure 1(a) represents an ensemble with symmetric pairwise relations,

while Figure 1(b) represents the same ensemble with asymmetric relations. Con-

sidering Table 1, N11 and N00 can be used as the asymmetric relationship, as well

as the traditional diversity measures such as Q statistics, correlation coefficient,
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Fig. 1. The ensemble network. The first type (a) is an ensemble with symmetric pairwise relations
while the second type (b) have asymmetric relations.

disagreement, double fault, and kappa pruning. However, the relations N10 and

N01 demand a special asymmetric representation.

The network structure allows the estimation of the importance of the ensemble

members, through the centrality measures.8,10 In the case of the proposed static

selection method, the importance of the classifier can be used as criteria to select

a subset C′ that approximates the best possible subset without the need for an

exhaustive search. The equations required to score the ensemble members in a

network structure must also respect the symmetric and the asymmetric relations.

In the next sections, we present some popular centrality measures.

2.2.1. Centrality measures

The centrality measures use topological information about members inside a

particular network to suggest a score, according to the member influence or im-

portance. The following measures are classic: Degree,11 betweenness,12 closeness,11

and eigenvector.13 They focus on different network information, such as (a) the

number of edges (degree centrality); (b) geodesics (betweenness centrality, closeness

centrality), and (c) walks, in which vertices and edges can be revisited (eigenvector

centrality).

The degree centrality Kci is related to the number of edges of a given network

member. It is defined by Eq. (1).

Kci =

T∑

cj=1

Ecicj (1)

where edge Ecicj connects the members ci and cj , and T is the number of members

(classifiers) of the network. The weight associated with Ecicj can be the original

weight of the edge, so it is used to estimate the weighted degree. However, to

estimate the unweighted degree, the weight is considered to be simply 1.0, which

only indicates the presence of an edge, i.e., the score of all edges is the same when it

exists. For an ensemble network with diversity representing the classifiers relations,

a classifier with a high degree means it is very divergent from its neighbors.

Betweenness12 is another classic centrality measure. It considers the number

of shortest paths (geodesic paths) from each member of the network to all others
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that pass through a particular member. That member, frequently present on that

type of path is considered important. The betweenness centrality measure can be

described as the Eq. (2).

Bci =
∑

cjck

gcicjck
gcjck

(2)

where gcicjck is the number of geodesics between cj and ck that pass through ci.

The total of the geodesics between cj and ck is gcjck . The network may have only

one component to calculate this centrality measure with this equation in order to

calculate all the distances (paths) between two vertices. Each geodesic represents a

sub-ensemble of classifiers with high diversity. Consequently, a classifier with high

betweenness centrality is a frequent member of the most diverse sub-ensembles.

Closeness is another classic measure that uses the shortest paths for its esti-

mation.11,14 This measure considers the average distance (length of the average

shortest paths) of a particular member to all others in the network. Members with

high closeness centrality are those members closest to all others. Like betweenness,

Eq. (3) for closeness centrality also depends on a connected network. A classifier

with high closeness centrality indicates a distinguished contribution to the team

diversity since it was obtained by the average of all diversity relationships of a

particular classifier to all others.

Cci =
1

li
=

|T |∑
cj
gci,cj

(3)

where li is the average shortest path length of each member to other members. The

geodesics of the member ci to all other members cj are estimated, and the smaller

average of the shortest path length is, higher the centrality.

Eigenvector centrality13 is the last classic measure considered in this work. A

member is considered to be central if it has a relationship with others that are

themselves central. Equation (4) presents the Bonacich eigenvector.

λx = Ax, λxi =

n∑

j=1

aijxj , i = 1, . . . , n , (4)

where A is the adjacent matrix, λ is a constant (the eigenvalue), and x is the

eigenvector. The score of centrality is proportional to the sum of the centralities of

its adjacent members.

These measures can be used in asymmetric and in symmetric relations. For

example, there are two measures derived from degree centrality to deal with asym-

metric relations: Indegree and outdegree. The first computes the ties directed to

a vertice, while the latter computes the ties a vertice directs to others. Therefore,

those variations could lead to different observations that possibly explain comple-

mentary collective behaviors.

In this section, we have presented traditional centrality measures, considered

in the literature.14 Each centrality measure scores the influence of every network
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member but uses different characteristics of the network. Besides, choosing a proper

centrality measure depends on what a network represents, and which questions the

network analysis intends to answer.

3. Proposed Methods

This section presents the two proposed methods, one for fusion and another for

static selection of classifiers, both using centrality measures to estimate the im-

portance of the classifiers in the ensemble. These methods are independent, but

they share theoretical aspects and the initial steps. The Centrality Based Fusion

(CBF) considers the fusion of all ensemble members, while Centrality Based Selec-

tion (CBS) selects a subset of classifiers from the original ensemble using a static

approach.

3.1. Centrality Based Fusion (CBF)

The CBF fusion approach is described as an ensemble composed of three distinct

phases, as depicted in Figure 2.

3.1.1. Phase a: Pool creation, accuracy and diversity estimation

The first phase of the method (Figure 2(a)) has an initial pool of classifiers C of

size T , created using a pool generation method applied in training set Strain. Any

method available in the literature can be used to create the ensemble, such as the

traditional bagging,1 boosting,2 or random subspaces.3 Then, a validation set Sval

is used to estimate the accuracy of each classifier created, as well as the pairwise

diversity. To estimate the pairwise diversity, any of the diversity measures presented

in Section 2.2.1 can be useful, but the approach is not limited to them. The score

obtained by the centrality measure must be normalized to fit the established range

[0.1, 1.0], avoiding the value 0, which can lead to misinterpretation such an edge

Fig. 2. A general overview of the CBF method.
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Table 2. Diversity is expressed as an increas-
ing value (↑) or decreasing value (↓) depending
on the centrality measure.

DF CC Dis QS

Degree ↑ ↑ ↓ ↑

Betweenness ↓ ↓ ↑ ↓

Closeness ↓ ↓ ↑ ↓

Eigenvector ↑ ↑ ↓ ↑

Local centrality ↑ ↑ ↓ ↑

with 0 weight could be interpreted either as an absent edge or as an edge presenting

a low score. Adopting another range at this point is possible, but it should respect

the meaning of the centrality score, such that the centrality score of a member

being high according to a high score or the opposite. Table 2 clarifies this point,

presenting values to better represent the weight of the edges depending on the

centrality measure to use on the analysis of the classifier’s importance.

3.1.2. Phase b: Construction of the ensemble network

A network represents the ensemble members along with the computed diversity

of each pair of classifiers (process A in Figure 2(b)). Both estimated in the previ-

ous phase. The vertices in the network are representing classifiers, while the edges

between them are representing the score of the particular pairwise diversity mea-

sure. The ensemble network is a complete graph before the simplification process

(process B in Figure 2(b)) using an edge pruning method, such as those mentioned

in Refs. 15 and 16. The reason behind this step is highlighting the most important

relations in the ensemble; in this case, the pruning directive preserves the most

important relations. To prune, we propose a modified Näıve Pruning Approach,

present in Algorithm 1. So, the proposed edge-based pruning technique keeps all

vertices, while removing edges that represent a low diversity between pairs of

classifiers without increasing the number of components of the network.

Algorithm 1 differs from the original Näıve Pruning Algorithm15 in two main

aspects. First, as mentioned earlier, it always stops pruning upon encountering

the first edge whose removal would increase the number of components, while the

original algorithm ignores the bridge edge, i.e., an edge whose removal may increase

the number of components of the network, and continues pruning. Second, it does

not require the γ parameter to estimate the number of edges to be removed, due to

some knowledge about the network is required. The graph as a single component

allows the estimation of the presented classic centrality measures. So the adopted

stop criterion pursues a network presenting only one component while reduces the

number of edges by preserving the most diverse relations. As a consequence of

the pruning process, the network H is used as the input for centrality estimation

(process C in Figure 2(b)).
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Algorithm 1 Modified Näıve algorithm

Input: A weighted graph G = (V,E) such that E = {e1, e2, ..., eN} and V =

{c1, c2, ..., cT }

Output: A subgraph H ⊂ G such that H = (V, F ) and F ⊂ E

1: F ← E

2: SortEdges(F )

3: i← 1

4: while i <= N do

5: if C(cr, cs;F\ei) 6= −∞ then

6: F ← F\ei
7: else

8: return H = (V, F );

9: end if

10: i← i+ 1

11: end while

The centrality estimation (process C in Figure 2(b)) is responsible for highlight-

ing the prominent vertices (classifiers) of the ensemble. A classifier showing a higher

centrality score means an important influent position in the network; therefore, it

plays an essential role concerning the diversity of the given group of classifiers. It is

the meaning of a centrality measure considering an ensemble network in which the

edges represent the diversity relation provided by the score of a computed pairwise

diversity measure. Each centrality measure provides different scores accordingly to

its philosophy of what is an influential position. Therefore, a centrality measure may

suggest a different rank of importance for the classifiers compared to others. For

instance, the classifier that has the most neighbors is the most important regarding

degree centrality, while the classifier that lies in most of the geodesic paths is the

most important for betweenness centrality and so on. Different centrality measures

are evaluated on Section 4.1.1 to observe the relation between them to the ensemble

accuracy.

After the centrality measure is computed, every single classifier will receive

a score (CEi), as well as the previously computed accuracy Acci. These scores

are normalized using the min-max normalization process, adopting the range of

[0.1, 1.0] (process D in Figure 2(b)). Therefore, after this process, both measures

are considered equally important for the estimation of the influence of each ensemble

member. It does make a difference considering the scores suggested by the centrality

measures are on different scales. Also, normalizing the accuracy may prevent this

score of being less or more important than its diversity role. Then, these normalized

scores are merged to obtain the final weight for each ensemble member i (process E

in Figure 2(b)) as denoted in Eq. (5):

ψi = CEi ×Acci (5)
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where the resulting weight ψi is an input of the final phase of the presented ap-

proach (Prediction in Figure 2(c)). Applying the normalization processes and merg-

ing them into a new scoring measure, this proposal suggests that both attributes,

individual accuracy and diversity role being equally essential and complementary.

It is supported by two different aspects of the classifier, so, considering that the

first measures how distinct the classifier is according to its relationship to another

ensemble members, on the other hand, accuracy selfishly considers only its indi-

vidual performance. Even two classifiers in the ensemble performing equally well in

individual accuracy, but eventually, one classifier can contribute most for the en-

semble’s generalization than the other by recognizing different problems. Another

doubtful solution is choosing the Centrality of classifier assessed by diversity rela-

tions as the unique parameter. Basing the classifier influence only on disagreement

decisions may lead the ensemble to poor results due to the lack of accuracy within

its members. An attractive solution in this direction is moving forward and mapping

when these disagreements are healthy for the ensemble generalization. These few

situations already justify the importance of combining both parameters to measure

the influence of the classifier in the ensemble’s final prediction.

3.1.3. Phase c: Prediction

As shown in Figure 2(c), each classifier in the pool has its own weight ψi, which

reflects its importance for the ensemble. Each classifier manifests its decision by

choosing a particular class among the possible ones, and its influence is computed

only for that class. The most preferred class accordingly to each classifier influence

is the final ensemble decision. It is the closure of the final phase of our method.

3.2. Centrality Based Selection (CBS)

This section presents the Centrality Based Selection (CBS) method, which performs

the static selection of classifiers from an initial pool. Basically, it shares the main

modules of Phases “a” and “b” of the CBF method, in which we have the ensemble

generation, the network construction, and estimation of the classifiers’ importance

based on centrality measures. In the CBS method, we have an additional module

in which a subset of classifiers C′ is obtained from C, the original ensemble, still

in the training phase. For this purpose, the created network structure (graph G)

allows the evaluation of the classifiers’ importance by using a centrality measure χ.

The score Ψ of each classifier, assigned by the centrality measure χ is used as one

important criterion in the classifier subset selection. Only the p most important

classifiers have the accuracy estimated, so the best performing classifier between

the most important is chosen to be part of the subset C′. The subset C′ is used to

classify every unseen pattern xtest ∈ Stest in the Phase ’c’ using majority vote as

fusion rule.
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3.2.1. The CBS algorithm

A detailed description of the CBS method is presented in Algorithm 2. The goal

is to find a sub-optimal subset C′ ∈ C selected statically. It requires the following

inputs: the ensemble of classifiers C, a pairwise measure ̟, a centrality measure

χ, a validation set Sval, and p as the proportion of important classifiers to be

evaluated.

All the inputs are used to build and analyze the ensemble network, except p.

The ensemble C is used to estimate the relationship between pairs of classifiers

̟, defined by some pairwise diversity measure. A graph called ensemble network

represents these inputs, so G(C,̟). Any pairwise relation presented in Table 1 or

the diversity measures presented in Section 2.1 can be used to estimate ̟. The

number of symmetric pairwise relations is defined by the combination CT,2, where

T is the size of the ensemble. For the asymmetric relationship, the number of re-

lations is defined by a permutation PT,2. Therefore, for an ensemble of T = 100

classifiers, there are 4950 symmetric relations, while for asymmetric, the total is

9900 relations. To score the classifiers by their importance, a centrality measure

χ is chosen to analyze the ensemble network. Any chosen χ must take into ac-

count the type of relations observed in the network, i.e., asymmetric or symmet-

ric. The parameter τ and the inversion function ϕ are used to adapt the network

for the proper analysis, considering the used pairwise relation and the centrality

measure.

The pool C is the first input, represented in the network by the set of vertices V

(line 1 ). A computed pairwise diversity ̟ is represented in the network by the set

of edges E (line 2 ). In the lines 3–6, the inversion function is applied in the score of

diversity to properly analyze the importance of the network members by the chosen

centrality measure χ. Next, a normalization process (lines 7–9 ) is adopted to avoid

possible null or negative values present in the set E. It is important to consider ϕ

and τ (lines 7–10 ) to estimate the centrality measures correctly. These parameters

are detailed later in this section.

The next step is to use the set of vertices and the set of edges to build the ensem-

ble network, represented by the graph G(V,E) (line 11 ). The score of importance

Ψi related to every ensemble member is obtained by a given centrality measure χ

over the graph G (line 12 ). Every classifier from the pool C is added do the set

CR, the remaining pool (line 13 ), in which the iterations will compose the main

subset C′, initially empty (line 14 ). The CR set is ordered regarding Ψ, and the

classifier with the highest score is cM (lines 15–16 ). Each classifier added to C′ in

the algorithm is removed from the remaining pool CR, as seen in the lines 17–18.

Afterwards, the most complementary classifier regarding cM is the one that

receives an incoming edge from cC with the highest weight (line 19 ). This classifier

is added to C′ (line 20 ) and removed from set CR.

The lines 22–34 presents the process to compose the subset C′. It is a repetition

that allows adding to C′ only the most accurate classifier between the p most
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Algorithm 2 CBS(C,̟,χ,τ , Sval,ϕ, p)

Input: Ensemble of classifiers C = {c1, c2, . . . , cT }
Input: Pairwise Relation (̟), where ̟(ci, cj)

Input: Centrality Measure (χ)

Input: Validation dataset (Sval)

Input: Normalization (τ)

Input: Inversion Function (ϕ)

Input: Proportion of Candidates (p)

Output: C′

1: V ← C

2: E ← ̟

3: if ϕ = TRUE then

4: for all Ei ∈ E do

5: Ei = 1/Ei

6: end for

7: if τ = TRUE then

8: E = normalize(E)

9: end if

10: end if

11: Build the network G(V,E)

12: Ψ⇐ Estimate Centrality (χ,G)

13: CR← C

14: C′ ← ∅
15: Order CR according to Ψ score;

16: Compute cM (the classifier with the highest Ψ in CR)

17: C′ ∪ cM
18: CR← CR \ cM
19: Compute cC ← the classifier that most complement (or diverge) from cM
20: C′ ← cC ∪ C′

21: CR← CR \ cC
22: repeat

23: Estimate AC′ the accuracy of the ensemble C′

24: CP ← the p most important/central classifiers in CR

25: for all ci ∈ CP do

26: A← estimated accuracy Ai from ci ∪ C′

27: end for

28: AM ← Highest value of accuracy found in set A

29: cM ← The most accurate classifier

30: if AM ≥ AC′ then

31: C′ ← cM ∪ C′

32: CR ← CR \ cM
33: end if

34: until AM < AC′
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important classifiers in the ensemble. The accuracy of the current ensemble C′

is estimated (line 23 ) to compare with ci ∈ C′, i.e. a new configuration of C′

considering an additional classifier ci. To obtain a set of the most complementary

classifiers, CP receives only p× |CR| classifiers with the highest score Ψ (line 24 ).

The accuracy Ai estimated in line 26 is related to ci ∈ CP . Using A, the most

accurate union is selected. It is assigned to CM (line 29 ) and its accuracy value

is stored in AM (line 28 ). If the accuracy AM of the candidate union ci ∈ CP

is at least equal to the accuracy AC′ of the previously set C′ (line 30 ), then the

candidate classifier ci is really added to the set C′ (line 31 ). Otherwise, the process

stop (line 34 ).

4. Experiments

Our experimental protocol included 30 classification problems, presenting only nu-

meric features, no missing values, and a varied number of instances, attributes,

classes, and imbalance ratio (the proportion between the instances in the majority

class and the instances in the minority class). All these datasets are presented in

Table 3.

The statistical method to evaluate the performance of the approach in these

experiments is the cross-validation with k = 6. The 6-fold cross-validation was

divided as follows: three for training Strain (= 50% of the original database), two for

validation Sval (∼= 32, 3%) and one (∼= 16, 7%) for testing Stest. Stratified sampling

was adopted to guarantee a class distribution balance in all subsets from the original

dataset S (Strain, Sval and Stest). A pool of T = 100 classifiers was created with

bagging, and the perceptron with minimum squared error is the base classifier.

Every bag used to train a classifier presents only 66% of the training samples. An

unstable base classifier, along with small bags, may enforce a pool of weak and

diverse classifiers. Each classifier presented accuracy higher than 50% (estimated

on Sval).

4.1. CBF evaluation

CBF experiments begin with the evaluation of different setups, which requires to

consider the possible combination of different pairwise diversity and centrality mea-

sures. The best setup is then compared to the literature. A final discussion ends

the section, which inspires some decisions concerning the CBS approach.

4.1.1. Evaluation of pairwise diversity and centrality measures

A combination of 4 pairwise diversity measures (double fault-DF, correlation

coefficient-CC, disagreement-Dis, and Q statistics-QS) and seven different central-

ity measures (betweenness unweighted (NW), betweenness weighted (W), closeness,

degree unweighted (NW), degree weighted (W), eigenvector e local centrality) were

assessed to estimate the effect of parameters for the proposed CBF.
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Table 3. Main characteristics of the classification problems: Number of instances (# I), number
of attributes (# A), number of classes (# C), and Imbalance Ratio (I.R.).

Base # I # A # C I.R. Repository

Australian 690 14 2 1.25 UCI17

Banana 2000 2 2 1.00 PRTools18

Blood 748 4 2 3.20 UCI17

CTG 2126 21 3 9.40 UCI17

Diabetes 766 8 2 1.86 UCI17

Ecoli 336 7 8 71.50 UCI17

Faults 1941 27 7 12.24 UCI17

German 1000 24 2 2.33 STATLOG19

Glass 214 9 6 8.44 UCI17

Haberman 306 3 2 2.78 UCI17

Heart 270 13 2 1.25 STATLOG19

ILPD 583 10 6 2.49 UCI17

Ionosphere 351 34 2 1.79 UCI17

Laryngeal1 213 16 2 1.63 LKC20

Laryngeal3 353 16 3 4.11 LKC20

Lithuanian 2000 2 2 1.00 PRTools18

Liver 345 6 2 1.38 UCI17

Magic 19 020 10 2 1.84 KEEL21

Mammo 830 5 2 1.06 KEEL21

Monk 432 6 2 1.12 KEEL21

Phoneme 5404 5 2 2.41 KEEL21

Segmentation 2310 19 7 1.00 UCI17

Sonar 208 60 2 1.14 UCI17

Thyroid 692 16 2 12.06 LKC20

Vehicle 847 18 4 1.10 STATLOG19

Vertebral 300 6 2 2.13 UCI17

WBC 569 30 2 1.68 UCI17

WDVG 5000 21 3 1.03 UCI17

Weaning 302 17 2 1.00 LKC20

Wine 178 13 3 1.48 UCI17

After performing 28 experiments (4 diversity measures × 7 centrality measures)

and considering all the 30 classification problems, we computed these statistics:

Friedman and the Nemenyi post hoc test. Figure 3 shows the average rank, pre-

sented as the score next the names used on parameters for CBF method, suggesting

that the best setup is the Weighted Degree Centrality (Degree W) estimated over

Double Fault (DF) as the estimated pairwise diversity of the ensemble. Interestingly,

degree centrality, weighted or unweighted, is much easier to compute compared to

other centrality measures, and also requires less computational effort. The DF mea-

sure is the choice of the five best configurations, but the difference between them is

not statistically significant. A comparison between the five best scores also confirms

Degree W (DF) as the best approach; however, the critical distance still suggests

these approaches being similar.

In these experiments, QS and the CC diversity measures can present an un-

defined value due to a division by zero. It occurs when some relations between
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Fig. 3. Nemenyi and Friedman test to assess pairwise diversity and centrality on CBF. The
centrality estimation may consider the weight of the edges (W) or not (NW).

incorrect/correct samples described in Table 1 are not observed. Therefore, a new

value of 1.0 is assumed when this problem is detected.

4.1.2. Comparison with state-of-art methods

The most suitable parameters for CBF were observed using weighted degree cen-

trality computed in double fault pairwise relations.The mentioned setup was the

same for comparing the new method to these nine fusion methods of the litera-

ture: (a) the Majority Vote (MV); (b) the Weighted Majority Vote by Accuracy

(WMV); (c) the Performance Weighting (PW);22 (d) the Kuncheva Weighted Ma-

jority Vote (KWMV);6 (e) the Bayesian Combination (BC);23 (f) the Max Rule

(MAR);5 (g) the Median Rule (MER);5 (h) the Sum Rule (SR);5 (i) the Product

Rule (PR).5 Only MV disregards the classifier influence, assuming that influence is

the same for every classifier. The others may fall into two groups: (i) static weighted

score of the classifier based on individual accuracy or (ii) the score of the classifier

is based on posterior probability. BC is the only exception because it estimates

classifier influence using the accuracy of the classifier and combines with its poste-

rior probability. CBF is compared to competitors, aiming to inform how the new

estimation of the classifier weights can reveal issues concerned with performance

and limitations.

Average accuracy, along with the corresponding standard deviation of the 10

methods (CBF and the 9 fusion methods in the literature) are presented in Table 4.

As shown, the CBF method presents the best possible result in 14 of 30 classification

problems, while the best literature competitor achieves the best result in just 6

classification problems.

A comparison of the number of wins, ties, and losses is presented in Figure 4. The

new method shows consistent better results compared to every literature method,

except PW. The dashed line illustrates the critical value, in this case, cv = 19.5.
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Fig. 4. Pairwise comparison of CBF:WD-DF with literature methods for combination.

Fig. 5. Friedman and Nemenyi post hoc tests comparing the combination approaches.

The cv value estimation takes into account the number of experiments with a signif-

icance level of α = 0.05. The whole set of experiments suggests CBF as a promising

strategy. The new approach prevails in 189 out of 270 experiments (70%), tied in

20 cases (7.41%), and lost in 61 cases (22.59%).

Friedman and the Nemenyi post hoc test are present in Figure 5. CBF is con-

sidered statistically different from most of the approaches in the literature. One

may observe that the proposed method is statistically different from MAR and PR.

However, it is similar to 7 out of 9 literature approaches according to the critical

distance (CD). The approach presented the lowest average rank, suggesting CBF as

a good competitor, given the literature methods. Wilcoxon test was also performed

to compare CBF:WD-DF against each of the 9 approaches in a pairwise fashion.

The results present in Table 4 show that the proposed method is statistically sig-

nificant for all pairwise comparisons, considering α = 0.05 significance level. A tie

is considered concerning the PW value (0.04884).
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4.1.3. Discussion

Our discussion considers two important points: (i) the comparison between the

centrality measures as parameters for CBF and (ii) the comparison between the

approach with the literature. First, the experiments suggest the degree centrality

as the best result regarding the relation of centrality measures with the ensemble

accuracy. The centrality exploited the diversity between the classifiers lending more

importance to classifiers with high diversity relationships; in this case, only the

direct neighbors (adjacent members) are considered. A diverse classifier may have a

large neighborhood (unweighted degree), strong relations with their neighborhood

(weighted degree), or both. The betweenness measure was not better than the

degree centrality but presented interesting results. For this measure, a classifier may

appear in many geodesics; however, as the length of the geodesics is usually short (a

few classifiers), resulting in just a few classifiers being very important. Eigenvector

and local centralities did not generate better results compared to degree centrality,

even being more complex, because both estimates the centrality score based on the

relationship a classifier has with its neighbors (adjacent members) and also their

relationship with their respective neighbors. These measures are less sensitive to

their direct neighbors compared to degree. Closeness did not show promising results

too. The DF pairwise diversity measure provided a distinct contribution compared

to the others, suggesting that classifiers should avoid common errors instead of only

one being different from others.

The comparison between approaches suggests that CBF is, in most cases, supe-

rior to literature approaches. Therefore, the ensemble’s diversity and accuracy are

essential, and it must also be considered to design fusion approaches. The critical

value (cv) reveals the existence of a statistical difference between methods, except

PW. Critical distance (CD) indicates some approaches being statistically similar.

The lowest average rank observed in CBF:WD-DF may suggest the approach being

an interesting competitor when approaches are applied to a wide range of classifi-

cation problems.

4.2. CBS evaluation

The same best setup found for the CBF method is used here. The Double-Fault

(DF) diversity measure is used to represent the relationship between the classifiers

in the network. The Weighted Degree (WD) centrality is used to analyze the pair-

wise diversity relations and score each classifier according to its importance to the

ensemble.

The following literature approaches are compared with the CBS method: the

Aggregation ordering in Bagging (AGOB),24 Diversity Regularized Ensemble Prun-

ing (DREP),25 Pruning in Ordered Bagging Ensembles (POBE),26 and Kappa

Pruning.27 The latter has the size of the subset fixed in T/2. For DREP, the param-

eter p is 0.5, the same used in CBS. For comparison purposes, we also used the best
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performing classifier (Single Best — SB) according to the estimation in Sval, and

the fusion of all classifiers using Majority Vote (MV), i.e., no selection or pruning

adopted. Both strategies, SB and MV, work as a baseline to identify the problems in

which a simple selection or the lack of selection is better than the complex process

of selecting a sub-optimal subset.

Table 5 presents the average accuracy of the approaches considering the different

classification problems. The best results are in bold, and #Best is the number of

best results for each approach. CBS had the best results in 12 over 30 problems.

According to the Wilcoxon signed test, CBS is statistically different (+) from some

strategies, as suggested by the p-value (p ≤ 0.05) with 95% of confidence.

The CBS approach, compared to the others, presented a high number (on

average) of selected classifiers for the wine dataset (see Table 5). It is related to the

small difference between classifiers. So, a pool with very similar classifiers can be

an issue to the selection process performed in the CBS method.

Another comparison to the literature is present in Figure 6. The pairwise com-

parison considers CBS and each approach from literature identified below the

column. The dashed line represents the critical value (cv), which for 30 classifi-

cation problems is cv = 19.5. Therefore, CBS is statistically different from the

greedy selection literature, except for Kappa Pruning, which CBS did not reach 20

victories (rounding up the cv).

All approaches were compared statistically with the Friedman test and the post

hoc Nemenyi. Figure 7 presents the scores and critical distance. The score is based

on the rank average, in which the lower the value, the better. The order is related

to the scores, and the best-ranked methods are on the left. CBS, Kappa, and DREP

are considered similar according to the critical distance, while CBS is different from

AGOB and POBE.

Figure 8 presents the average accuracy of each approach with the respective av-

erage number of selected classifiers (estimated over the 30 classification problems).

The new approach presents the best recognition rate and an attractive amount of

selected ensemble members. It suggests an attractive performance of CBS by a low

number of classifiers.

4.3. Discussion

The literature of greedy selection compared to the new approach suggests that CBS

is an attractive alternative. The number of selected classifiers is usually less than

20% given an initial pool. The wine dataset, which is a small dataset with too

similar classifiers, showed the non-practical result of 97 classifiers selected on aver-

age. Despite the low number of selected classifiers in the datasets glass, haberman,

ionosphere, and sonar, CBS seems to not perform well in small datasets.

The stop criteria is inspired in conventional greedy selection approaches, so, the

algorithm stops selecting a candidate classifier ci ∈ CR when it does not maintain

or increase the accuracy obtained by the subset C′. It was observed that usually
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Fig. 6. Pairwise comparison between selection approaches.

Fig. 7. Friedman test and the post hoc Nemenyi (CBS).

less than 20% of the original pool is maintained in the subset C′. The exception

was observed in the wine dataset, due to the accurate but low diverse classifiers.

The pairwise comparison of CBS with the literature approaches suggested that

the new approach is superior in 82 cases (68.33%), and is worse in 38 cases (31.67%).

It also presented a statistical difference between DREP, POBE, and AGOB. The

approach performed better than Kappa, SB, and MV, but without sufficient statis-

tical difference. It is also superior to SB and MV.

The greedy approaches usually are based on different aspects when selecting the

classifiers to compose the ensemble, such as the measure to ordering the classifier

candidates (usually individual accuracy), the criteria to select them (increase en-

semble accuracy or diversity), and the number of classifiers to be selected (fixed
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Fig. 8. Accuracy and the subset size of different selection approaches.

or flexible). The CBS approach considers each one of these primary aspects. First,

the new method ranked the classifiers according to the importance of each one. To

this end, the pairwise relation DF is analyzed by the degree centrality to point out

higher scores for the essential ensemble members. It is similar to the complementari-

ness measures adopted by the literature. Another aspect of the complementariness

measure is that for some approaches, it measures the gain in relation with the

subset C′ while others consider it in relation to its direct pairs, individually. In

the selection criteria, CBS considers the accuracy contribution of the candidate ci,

similarly to DREP. Both approaches choose the most accurate classifier between

the most promising classifiers, i.e., the most complementary classifiers to the subset

C′. Kappa only selects the n-best classifiers, avoiding the additional test that CBS

and DREP perform.

5. Conclusion

This paper presents a novel ensemble fusion method along with a selection method.

Both strategies are based on the concept of centrality in the context of complex

network theory. The proposed CBF method considers the ensemble of classifiers as

a complex network to analyze the diversity between the classifiers. Each classifier
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in that network has its influence estimated using centrality measures. The score of

such measures combined with accuracy provided the weight used in the fusion and

the selection process.

The experimental results on 30 classification problems confirmed our hypothesis.

The centrality concept is a promising strategy for weighting the decisions of the

classifiers within the ensemble for the fusion method. Different measures, such as

pairwise diversity and centrality measures, were evaluated to find out the best setup

for the proposed method. Double fault pairwise diversity measure revealed better

results concerning the ensemble network relationship while the weighted degree is

the distinct centrality measure closer to ensemble accuracy used to estimate the

importance of every classifier. The experimental results showed the proposed fusion

method presents the best accuracy compared to nine different fusion methods in the

literature. It prevailed on 14 of 30 classification problems. The second-best method

in that comparison presented the best accuracy in just six cases. A total of 270

comparisons were made, and CBF won in 189 out of 270 experiments (70%), while

lost in 61 cases (22.59%).

In the proposed static selection method based on the complex network theory,

the CBS method, the ensemble network is analyzed, taking into account the central-

ity information. Then, the analysis of the most distinct classifiers based on accuracy

defines which ones should be added to a sub-optimal subset.

The robust experimental protocol confirms our hypothesis. Therefore, a central-

ity measure to scoring the classifiers’ importance is an attractive searching strategy

for selecting diverse and accurate classifiers. The results suggested that CBS was

able to find the best result in 12 out of 30 problems, which corresponds to the

best performance compared to other selection approaches. A pairwise comparison

between approaches with a critical distance measurement also suggests that the

new approach is an interesting alternative. In comparison with selection methods

in the literature and the baselines single best and majority vote, CBS showed the

best results on 67.22% of the experiments. According to the Nemenyi post hoc test,

CBS is distinct from POBE and AGOB. One last comparison suggests that the new

method performs better than literature at a reduced number of classifiers, i.e., 10%

of the original pool size. Further work is suggested to track the behavior of CBS

concerning other pool generator strategies and different base classifiers. Besides,

the centrality was analyzed in a static network context to define a static subset;

therefore, it could also be used to select classifiers dynamically.
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