
Segmentation-Free Approaches for Handwritten
Numeral String Recognition

Andre G. Hochuli, Luiz S. Oliveira
Federal University of Parana

Department of Informatics (DInf)
Curitiba, PR - Brazil

Email: {aghochuli, lesoliveira}@inf.ufpr.br

Alceu de Souza Britto Jr.
Pontifical Catholic University of Parana

PPGIA
Curitiba, PR - Brazil

Email: alceu@ppgia.pucpr.br

Robert Sabourin
Ecole de Technologie Superieure

Montreal, QC - Canada
Email: robert.sabourin@etsmtl.ca

Abstract—This paper presents segmentation-free strategies for
the recognition of handwritten numeral strings of unknown
length. A synthetic dataset of touching numeral strings of sizes 2-,
3- and 4-digits was created to train end-to-end solutions based on
Convolutional Neural Networks. A robust experimental protocol
is used to show that the proposed segmentation-free methods
may reach the state-of-the-art performance without suffering the
heavy burden of over-segmentation based methods. In addition,
they confirmed the importance of introducing contextual infor-
mation in the design of end-to-end solutions, such as the proposed
length classifier when recognizing numeral strings.

I. INTRODUCTION

THe challenge of recognizing numeral strings of unknown
length which are not neatly written is still an open

problem in the field of document analysis and recognition.
The difficulties contributing to the unsatisfactory performance
of many methods available in the literature are usually related
to the presence of broken, overlapping and touching digits in
the string. In such a case, a straightforward solution to segment
the string into components representing single digits usually
becomes unfeasible.

One may find in the literature a variety of segmentation
algorithms that explore different background and foreground
features to provide potential segmentation cuts for a given
unknown length numeral string. An interesting comparison
of different approaches is presented in [1], in which it is
possible to observe that an alternative to reduce the heuristics
necessary to provide the correct string segmentation cuts is the
over-segmentation based algorithms. They segment the string,
as many as necessary, into components that may represent
digits or part of them. After obtaining the recognition result
of each component, or their combination, the algorithms in
this approach compute the optimal integrated result. The over-
segmentation process for touching numeral ‘56’ is depicted on
Figure 1. In fact, the rational behind this approach is to maxi-
mize the chances of generating the correct segmentation cuts,
however paying the high price of increasing significantly the
computational cost of the segmentation/recognition process.

The alternative methods resort to segmentation-free based
methods in which the string is recognized without the need of
its a priori segmentation into isolated digits. Such an approach
has recovered the attention of the research community in
the last years with the recent advances in machine learning

(a)

(b)

Figure 1. (a) Segmentation paths for the string “56” and (b) Images that can
be easily confused with digits “1” and “0” (extracted from [2]).

motivated by the deep learning techniques. While the over-
segmentation based methods demand some specific strategy to
generate segmentation cuts, a robust isolated digit recognizer
and a strategy for searching the best path among the generated
segmentation hypothesis, the segmentation-free demands a
significant amount of training data.

One of the first attempts to apply Convolutional Neural
Networks (CNN’s) to recognize large input fields with unseg-
mented characters was done by Matan et al. [3]. For a given
vector sequence, their SDNN (Spatial Displacement Neural
Network) provides a series of output vectors that are post-
processed in order to find out the best possible label sequence.
The authors observed 66% of correct classification on 3000
images of ZIP Codes. Even being an important contribution,
the SDNN did not provide better results than the segmentation
methods, as observed by LeCun et al. [4].

Another segmentation-free strategy was presented by Choi
and Oh [5]. The authors trained a modular neural network
composed of 100 separate subnetworks. They reported a 95.3%
recognition rate on 1374 digit pairs extracted from the NIST



dataset. In a similar strategy, Ciresan [6] trained a 100-
class CNN using 200,000 images, and reported a 94.65%
recognition rate. In addition, he described experiments on 3-
digit strings using two CNNs, one for isolated digits and the
other for touching pairs. Spite of the fact that this work does
not consider three overlapping digits, a 93.4% recognition
performance was reported on 1,476 3-digit strings from the
NIST dataset.

The aforementioned segmentation-free strategies rests on
the assumption that most touching occurs between two ad-
jacent digits. In the same direction, a quite recent approach
was proposed by Hochuli et al. [7], which consists of a
segmentation-free method based on dynamic selection of clas-
sifiers [8][9]. The first one, named L, is applied to estimate
the number of components in the string, while other three
are responsible to discriminate 10 [0 . . . 9], 100 [00 . . . 99],
and 1000 [000 . . . 999] classes. Their approach achieved state-
of-art levels, surpassing segmentation based approaches for
touching components.

Although Hochuli et al. [7] brings up a new perspective
to the problem, towards an end-to-end solution two important
questions are still open: (a) Could a single classifier, capable to
discriminate those 1110 classes, surpass the proposed dynamic
selection strategy based on four classifiers? and, in this case,
(b) May the string length classifier remain useful in a single
based classifier method?

To answer those questions we have implemented end-to-end
solutions composed of a 1110 digit classifier combined with
the string length classifier. In order to assess those approaches,
we used a robust experimental protocol on a Touching Pairs
(TP) dataset of 79,464 touching digits, as well as on Synthetic
Dataset composed of 570,461 samples of isolated digits and
touching strings of 2- and 3-digit. We observed that the
evaluated segmentation-free approaches can achieves state-
of-the-art performance without suffering the heavy burden
of segmentation. In addition, the experiments confirm the
importance of the Length classifier when recognizing strings
of digits of unknown length. The information related to the
number of digits in the string allow us to introduce some
context to the problem, solving different confusions between
isolated digits and touching components.

The remainder of this paper is organized as follows: Section
II presents the process used to create a synthetic dataset
necessary to train our models on touching numeral strings
with 2-, 3-, and 4-digits. Section III describes the proposed
segmentation free strategies, while Section IV presents the
experiments performed to validate the proposed strategies for
numeral string segmentation. Finally, the last section presents
our conclusions and perspectives of future work.

II. SYNTHETIC DATA

In order to efficiently learn representation from data, we had
to rely on a considerable amount of samples. We thus created
a synthetic dataset composed of touching numerical strings of
sizes 2, 3, and 4. The strings are built by concatenating isolated
digits of NIST SD19 [10] through the algorithm described by

Ribas et al. in [1]. Figure 2 shows some samples. The SD19
database, which is an update of SD3 and SD7, is provided by
the American National Institute of Standards and Technology
(NIST). This database contains the full page binary images
of 3699 Handwriting Sample Forms (HSFs) and 814,255
segmented hand-printed digits and alphabetic characters from
the forms.

To avoid building a biased dataset, we used the information
on the authors available on the NIST SD19, such that digits
from different authors were used exclusively for training,
validation, and testing. Table I shows the purpose (training,
validation, and testing), as well as the amount of data created1.
Isolated digits were extracted from NIST SD19. No data
augmentation was necessary since more than 240,000 isolated
digits are available in this dataset.

Table I
DISTRIBUTION OF THE DATA USED FOR TRAINING AND TESTING THE
CLASSIFIERS. SAMPLES ARE UNIFORMLY DISTRIBUTED AMONG THE

CLASSES.

Length/Classes Samples Authors Purpose
1 (Isolated digits) 197,784 0000-2099 Training
10 classes 23,384 3850-4099 Validation

23,621 3600-3849 Testing
2-Digit String 161,563 1000-1599 Training
100 classes 53,907 1600-1799 Validation

55,091 1800-1999 Testing
3-Digit String 1,448,680 1000-1599 Training
1000 classes 484,346 1600-1799 Validation

491,749 1800-1999 Testing
4-Digit String 100,000 1000-1599 Training
* 20,000 1600-1799 Validation

20,000 1800-1999 Testing
*Data used to train the Length classifier.

(a) (b) (c)

Figure 2. Synthetic data representing touching numerical strings composed
of (a) 2-digit, (b) 3-digit and (c) 4-digit.

III. SEGMENTATION-FREE STRATEGIES

The framework proposed in [7] is depicted in Figure 3.
An image x is first classified by the Length classifier (L)
which will assign to it a probability of having 1, 2, 3 or
4 touching digits. The digit classification module comprises
three classifiers (C1, C2, C3) designed to discriminate 10
[0 . . . 9], 100 [00 . . . 99], and 1000 [000 . . . 999] classes. The
classifiers that will be used for a given image depends on the
output of the Length Classifier. According to a fusion rule,
more than one digit classifier may be invoked to mitigate any
possible confusions.

The fusion rule used in this case considers the Top-2
outputs of L. Let Li(x) = pi(x) be the probability of the
input pattern x be composed of i, (i = 1, 2, 3, 4) digits. Let

1All the synthetic data is available upon request for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/



Figure 3. Segmentation-free framework proposed in [7].

C1(x) = max
0≤i≤9

pi(x), C2(x) = max
0≤i≤99

pi(x), and C3(x) =

max
0≤i≤999

pi(x) be the probability produced by 10-class, 100-

class, and 1000-class classifiers, respectively, for the input
pattern x. Let Top1(C) and Top2(C) be the functions that
return the classes with first and second highest scores of a
given classifier C, respectively. Then, x is assigned to the class
ω ∈ [0...1110], according to Equation 1,

P (ω|x)
{

if L(x) < T, max(CTop1(L)(x),CTop2(L)(x))
otherwise, CTop1(L)(x)

(1)
where T is a threshold defined empirically on the validation
set.

The justification for dealing with 1, 2, 3 touching digits
is based on the fact that most of touching occurs between
two digits and sometimes between three digits [11]. Strings
composed of more than three touching digits are very rare in
real problems and in the case of occurring L will reject them.

This dynamic selection strategy has been proved quite
efficient surpassing the results reported by all segmentation-
based techniques reported in the literature. However, one may
argue that an end-to-end solution with just one classifier
(C1110) capable of recognizing those 1110 classes (10 isolated,
100 pairs, and 1000 triples), such as the one depicted in Figure
4, is more elegant and easier to implement. In this case the
classifier should encode not only the class of the object but
also the length of the string.

Figure 4. An end-to-end solution for touching digits.

In fact the end-to-end solution is easier to implement, since
it is based on a single classifier. However, as we will discuss
in Section IV, this solution makes some confusions that could
be easily solved having the information about the length of the
string. With that in mind, we assess a third strategy (Figure 5),
in which we combine the output of the C1110 classifier with
the Length classifier (L). This approach uses the same fusion

rule described earlier in this section. The difference is that the
probability is produced by a single classifier instead of three.

Figure 5. Single digit classifier combined with Length classifier (L).

Figure 10a exemplifies the fusion process. In this case, C1110

misclassifies the input ‘60’ by assigning it to class ‘610’.
However, using the Top-1 output of L, the correct class may
be selected. In the case illustrated in Figure 10b, because L

produces a score smaller than T , the two outputs (Top-1 and
Top-2) of L was used to solve the confusion.

A. Classifiers
All the classifiers used in this work are CNNs that are

constructed using multiple layers considering the following op-
erations: convolutions, max-pooling, and dot products (fully-
connected layers), where convolutional layers and fully con-
nected layers have learnable parameters that are optimized
during training. With the exception of the last layer in the
network, after each learnable layer we apply ReLU non-
linearity. The last layer uses the softmax non-linearity.

Training is performed with the Stochastic Gradient Descent
(SGD) using back-propagation with mini-batches of 256 in-
stances, a momentum factor of 0.9 and a weight decay of
5× 10−4. The learning rate is set to 10−2 in the beginning to
allow the weights to quickly fit the long ravines in the weight
space, after which it is reduced over the time (until 5×10−4) to
make the weights fit the sharp curvatures. The network makes
use of the well known cross-entropy loss function.

In the present work, regularization was implemented
through early-stopping, which prevents overfitting from inter-
rupting the training procedure once the performance of the
network on a validation set deteriorates. During training, the
performance of the network on the training set will continue
to improve, but its performance on the validation set will only
improve up to a certain point, where the network starts to
overfit the training data; at that point, the learning algorithm
is terminated. To implement the CNN models we have used
the Caffe framework [12] on a NVidia GeForce GTX Titan
Black GPU and NVidia GeForce GTX Titan Xp GPU2.

1) Length Classifier: The length classifier (L) was de-
signed to predict the length of x. We have tested several
different architectures for this classifier but the one that yielded
the best results was based on the well-known LeNet 5 [4]. The
final architecture contained three convolutional layers followed
by max pooling layers. This architecture, which was defined
empirically on the validation set, is depicted in Figure 6.

2All trained classifiers are available for research purposes at
https://web.inf.ufpr.br/vri/databases-software/touching-digits/



Figure 6. CNN architecture for L. Layer parameters are represented as Kernel Size @ Stride @ Feature Maps.

The classifier was trained using the protocol described
in Section III-A using 400,000, 79,157 and 79,742 samples
(uniformly distributed) for training, validation, and testing,
respectively. Using the Caffe framework and the hardware
mentioned in Section III-A, it took about 90 minutes to train
this model over 30,000 iterations. Classifying a single input
image takes about 0.4 milliseconds (ms). In our experiments,
the best results were achieved when the input image was
resized to 64× 64 pixels. The recognition rate on the testing
set was 98.4% and 99.9% for Top-1 and Top-2, respectively.
Table II shows the confusion matrix.

Table II
CONFUSION MATRIX (%) FOR THE L ON THE TESTING SET.

Length (1) (2) (3) (4)
(1) 99.9 0.01
(2) 0.02 99.2 0.07
(3) 0.9 96.9 2.3
(4) 2.3 97.7

Analyzing the confusions resulting from L we conclude
that the number and location of the vertical strokes seem to
bear important information needed to determine the size of the
string. For example, single digits that are classified as 2-digit
string are often slashed zeros, zeros with missing parts, and the
digit “6” similar to those presented in Figure 7a and b. Digits
that are almost overlapping such as the “3” and “9” in Figure
7c and strings with several vertical strokes close together such
as in the “44” in Figure 7d are also sources of confusion.

(a) (b) (c) (d)

Figure 7. Some images misclassified by L: (a) single digit classified as 2-digit
string, (b) 2-digit classified as 3-digit string, (c) 3-digit classified as 2-digit
string, and (d) 3-digit classified as 4-digit string.

2) Digit Classifiers: The classifiers C1, C2, C3, and C1110

presented in the previous section are based on the architecture
depicted in Figure 8. The four CNNs, which also are based
on the LeNet 5 [4], share the same structure but with different
numbers of filters, kernel sizes, and strides. Figure 8 summa-

rizes the parameters used in all four classifiers, which were
defined empirically on the validation set.

Table III shows the amount of data used for training,
validation, and testing for all four classifiers. It also shows
training (30,000 iterations) and classification time using the
Caffe framework and the hardware mentioned in Section III-A.

All four classifiers were trained using the protocol described
in Section III-A and yielded the accuracies reported in Table
IV.

IV. EXPERIMENTS

In order to validate the segmentation-free strategies we have
used the 79,464 images of touching digits available in the
Touching Pairs (TP) database [1]. This dataset allows us to
better compare with the literature. We also perform experiment
on the dataset described in Section II, which contains single
digits, 2-, and 3-digit connected.

It is important to mention that, because these datasets
contains only a single connected component per image, the
pre-processing module was suppressed in those approaches.
Also, the threshold value T from Equation 1 was set to 0.95
according to the authors [7].

A. TP dataset
When evaluating the segmentation algorithms, the authors

in [1] were interested in knowing whether or not the segmen-
tation cuts produced by the algorithms were the good ones,
independently of their quantity. For the algorithms based on
the segmentation-recognition approach, this task is straightfor-
ward, since there is only one hypothesis to be assessed. For
those algorithms based on over-segmentation, all the cuts must
be assessed. In the latter case, the strategy used is as follows:
if there are two digits among the hypotheses (using a classifi-
cation engine) that match to the ground truth, the segmentation
is considered successful. It is clear that this strategy considers
the best case scenario since all misclassifications due to over-
and under-segmentation are not considered.

Table V summarizes the results reported in [1] and [13]
where the authors compare several segmentation algorithms
in terms of correct segmentation on the TP database. Besides
the overall performance, this table also shows the performance
depending on the connection types depicted in Figure 9.

Table V also allows us to draw some conclusions. Algo-
rithms based on a single segmentation hypothesis (segmenta-
tion cuts = 1) usually fail in more complex touching cases



Figure 8. CNN architecture for digit classifiers. Layer parameters are represented as Kernel Size @ Stride @ Number of Feature Maps.

Table III
DATA USED TO TRAIN THE DIGIT CLASSIFIERS.

Classifier Number of Amount of data (×1000) for Source Training Classification
Classes Train Validation Testing Time (min) Time (ms)

C1 10 197 23 23 NIST SD 19 701 0.571

C2 100 161 53 55 Synthetic data 901 0.601

C3 1000 1448 484 491 Synthetic data 2001 0.631

C1110 1110 1808 561 570 Synthetic data 1832 1.101

(1) NVIDIA Titan Black GPU and (2) NVIDIA Titan Xp GPU

Table IV
RECOGNITION RATE OF THE DIGIT CLASSIFIERS ON TESTING SET.

Classifier Top 1 Top 2
C1 99.6 99.9
C2 99.7 100.0
C3 97.7 98.9
C1110 95.9 98.6

(e.g., type V) since a single segmentation cut is very often
not enough to correctly split the digits. Algorithms based on
multiple cuts, on the other hand, achieve better performance
in terms of finding the correct segmentation cut, but with the
computational cost of having to evaluate several hypotheses.

In this context, the segmentation-free approaches compare
favorably to traditional segmentation algorithms. In the End-
to-End approach the expensive process of finding the segmen-

Figure 9. Types of connected numeral string (extracted from [1]).

tation cuts, filtering out unlikely hypotheses, and classifying
the remaining ones is replaced by one classifier call (C1110).
As we can see in Table V, this simple approach achieves
94.37% of correct classification, which compares to the best
methods reported in the literature, Chen and Wang [22] and
Gattal et al.[13]. However, these two methods generate a large



Table V
PERFORMANCE OF THE SEGMENTATION ALGORITHMS (REPORTED IN [1] AND [13]), IN TERMS OF CORRECT SEGMENTATION, ON THE TP DATABASE.

Method Performance Connection Type (%) Segmentation
% I II III V Cuts

Shi and Govindaraju [14] 59.30 68.31 59.72 60.35 25.44 1
Congedo et al. [15] 63.07 62.88 67.51 59.40 40.45 1
Lacerda and Mello [16] 65.79 71.75 71.21 63.64 56.57 1
Elnagar and Alhajajj [17] 67.34 63.88 71.51 56.40 58.73 1
Pal et al. [18] 71.21 73.96 74.69 80.09 41.52 1
Oliveira et al. [19] 88.03 90.40 90.78 89.01 64.88 1
Fusijawa et al. [20] 89.85 95.45 91.27 83.57 63.72 3.66
Fenrich and Krishnamoorthy [21] 92.37 97.54 93.79 99.45 65.57 4.07
Gattal and Chibani [13] 93.24 96.67 93.75 99.68 77.58 24.11
Chen and Wang [22] 93.80 97.87 94.23 97.55 76.76 45.40
Proposed End-to-end 94.37 94.33 95.13 96.13 91.90 0
Proposed End-to-end+L 96.05 95.95 96.87 98.03 93.35 0
Hochuli et al. [7] 97.12 97.02 97.89 98.97 93.03 0

number of hypotheses, which makes them unfeasible for real
applications due to the high computational cost.

Figure 10 shows some confusions made by the C1110

classifier. Most of the errors are related to touching pairs
confused with single digits or 3-digit strings. In light of this,
the End-to-End approach could benefit somehow from the
information provided by the Length classifier (L), which is
the strategy depicted in Figure 5.

Using the End-to-End+(L), some of these confusions are
solved increasing the recognition rate in about two percentage
points (96.05%). The total error (3.95%) is caused in parts by
L (1.76%) and C1110 (2.79%). In terms of computational cost,
there is a little penalty since we have to add another classifier
call and the fusion rule. However, compared to the traditional
segmentation algorithms the cost is still negligible.

Finally, the dynamic selection strategy presented in Figure 3
solves some of the confusions caused by the C1110. Instead of
using a general-purpose classifier for 1-, 2-, and 3-digit strings,
it divides the classification task into three parts, creating this
way task-specific classifiers. In this experiment, though, only
one of them is used along with L. Assume that the size of
the string is unknown, C2 is only used to classify the images
that were assigned as 2-digit string by L. This strategy reaches
the highest performance (97.12%). Comparing to the End-to-
End+(L), the classification error was reduced from 2.79% to
1.10%. Figure 11 shows some images that were misclassified
by C2. As reported in Table V, the poorest performance (93%)
is achieved on type V (multiple touching), which shows the
highest variability. However, when compared to others, such
a performance is outstanding.

B. Synthetic Data

In the previous experiments only touching pairs were
considered so that we could compare the segmentation-free
approaches with the literature. Besides, segmenting touching
pairs is the main bottleneck of any string recognition system.
However, in several cases, a digit string is composed mainly

by isolated digits and sometimes it may contain three or more
digits connected. In this section we assess the segmentation-
free approaches on the synthetic data described in Section
II, which contains over 570,000 images of isolated digits,
touching strings of 2- and 3-digits.

One may argue that recognition of isolated digits is a
problem already solved since the literature shows accuracy
close to 100% [23], [24]. It is worth remembering, however,
that the lack of context in digit string recognition makes
the problem more challenging since an image may contain
an isolated digit or several digits connected. To deal with
this problem, heuristic-based segmentation algorithms rely on
over-segmentation to maximize the chances of finding the
correct segmentation point, even when segmentation is not
necessary. This strategy has a downside, i.e., isolated digits
that do not need segmentation may be segmented and the
over-segmented pieces recognized with high probabilities. This
is exemplified in Figure 12 where the digit “9” was over-
segmented into two parts, which were recognized as “0”and
“1” with high probability.

Table VI shows the results of the three segmentation-free
approaches discussed in this work.

Table VI
PERFORMANCE OF THE SEGMENTATION-FREE APPROACHES ON THE

SYNTHETIC DATA.

Method Single digit 2-digit 3-digit
End-to-end 97.68 94.09 96.05
End-to-end+L 98.73 96.82 95.50
Hochuli et al. (2018) 99.56 99.00 94.88

The results achieved by both End-to-end+L and Hochuli et.
al. [7] corroborate to the importance of the Length classifier
when recognizing strings of digits of unknown length. Several
confusions between isolated digits and touching digits are
solved by using the information about the number of digits
in the string.



(a)

(b)

Figure 10. Confusions made by C1110 classifier - [Prediction, Probability]: Missed predictions for (a) ‘60’ and (b) ‘34’ were solved using information
provided by the Length classifier (L) and the fusion strategy from Equation 1.

(a) (b)

Figure 11. Confusions made by C2 classifier - [Prediction, Probability]:
(a)‘15’ predicted as ‘16’, (b) ‘51’ predicted as ‘57’.

Figure 12. Misclassification caused by over-segmentation (extracted from
[25]).

In the case of 3-digit strings, which are not very often
in real datasets, most of the confusions occur intra-class,
e.g., “426” confused with “406” depicted in Figure 13. Since
strings with three touching digits contain more information
to encode the size of the string the Length classifier does
not contribute to improve the recognition rate. On the other
hand, segmentation-based approaches will suffer with a higher
number of hypotheses to be assessed.

(a) (b)

Figure 13. Confusion made by C1110 - [Predicion,Probability]: (a) ‘426’
predicted as ‘406’ and (b) ‘386’ predicted as ‘586’.

V. CONCLUSION

Since segmentation of touching digits remains a challenge
for handwritten numeral recognition, in this paper we have
presented segmentation-free approaches corroborating with the
recent work [7] that achieved state-of-art performance through
a dynamic selection strategy based on four deep learning
models. Towards an end-to-end solution, we have implemented
a touching digit classifier that is capable to discriminate
1110 classes (10 for isolated, 100 for pairs and 1000 for
triples). Using a strong experimental protocol, the proposed
approaches surpass segmentation-based methods bringing up
a new perspective to the problem. Further analysis confirmed
that introducing context information related to the length of
string predicted by a trained classifier is an useful strategy to
solving some confusions made by digit classifiers. For future
works, we are developing an approach that combine length
and digits classifiers into an end-to-end solution.

ACKNOWLEDGEMENTS

This research has been supported by The National Council
for Scientific and Technological Development (CNPq) grant
303513/2014-4. In addition, we gratefully acknowledge the
support of NVIDIA Corporation with the donation of the Titan
Xp GPU used for this research.

REFERENCES

[1] F. C. Ribas, L. S. Oliveira, A. S. Britto, and R. Sabourin, “Handwritten
digit segmentation: A comparative study,” International Journal on
Document Analysis and Recognition, vol. 16, no. 2, pp. 567–578, 2013.

[2] E. Vellasques, L. S. Oliveira, A. S. Britto, A. Koerich, and R. Sabourin,
“Filtering segmentation cuts for digit string recognition,” Pattern Recog-
nition, vol. 41, no. 10, pp. 3044–3053, 2008.

[3] O. Matan, J. C. Burges, Y. LeCun, and J. S. Denker, “Multi-digit
recognition using a space displacement neural network,” in Advances
in Neural Information Processing Systems, J. E. Moody, S. J. Hanson,
and R. L. Lippmann, Eds. Morgan Kaufmann, 1992, vol. 4, pp. 488–
495.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Procs of IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[5] S. Choi and I. Oh, “A segmentation-free recognition of two touching
numerals using neural networks,” in Proc. of 5th International Confer-
ence on Document Analysis and Recognition, Bangalore, India, 1999,
pp. 253–256.



[6] D. Ciresan, “Avoiding segmentation in multi-digit numeral string recog-
nition by combining single and two-digit classifiers trained without
negative examples,” in 10th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, 2008, pp. 225–230.

[7] A. G. Hochuli, L. S. Oliveira, A. S. Britto, and R. Sabourin, “Hand-
written digit segmentation: Is it still necessary?” Pattern Recognition,
vol. 78, pp. 1 – 11, 2018.

[8] A. S. Britto, R. Sabourin, and L. S. Oliveira, “Dynamic selection
of classifiers—a comprehensive review,” Pattern Recognition, vol. 47,
no. 11, pp. 3665 – 3680, 2014.

[9] R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, “Dynamic classifier se-
lection: Recent advances and perspectives,” Information Fusion, vol. 41,
pp. 195 – 216, 2018.

[10] P. J. Grother, NIST Special Database 19 - Handprinted forms and
characters database, NIST, 2016.

[11] X. Wang, V. Govindaraju, and S. N. Srihari, “Holistic recognition of
handwritten character pairs,” Pattern Recognition, vol. 33, no. 12, pp.
1967–1973, 2000.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[13] A. Gattal and Y. Chibani, “SVM-based segmentation-verification of
handwritten connected digits using the oriented sliding window,” In-
ternational Journal of Computational Intelligence and Applications,
vol. 14, no. 1, pp. 1–17, 2015.

[14] Z. Shi and V. Govindaraju, “Segmentation and recognition of connected
handwritten numeral strings,” Pattern Recognition, vol. 30, no. 9, pp.
1501–1504, 1997.

[15] G. Congedo, G. Dimauro, S. Impedovo, and G. Pirlo, “Segmentation of
numeric strings,” in 3rd International Conference on Document Analysis
and Recognition, 1995, pp. 1038–1041.

[16] E. Lacerda and C. A. B. Mello, “Segmentation of connected handwritten
digits using self-organizing maps,” Expert Systems with Applications,
vol. 40, pp. 5867–5877, 2013.

[17] A. Elnagar and R. Alhajj, “Segmentation of connected handwritten
numeral strings,” Pattern Recognition, vol. 36, no. 3, pp. 625–634, 2003.

[18] U. Pal, A. Belaid, and C. Choisy, “Touching numeral segmentation using
water reservoir concept,” Pattern Recognition Letters, vol. 24, pp. 261–
272, 2003.

[19] L. S. Oliveira, E. Lethelier, F. Bortolozzi, and R. Sabourin, “A new
approach to segment handwritten digits,” in Proc. of 7th International
Workshop on Frontiers of Handwriting Recognition, Amsterdam, Nether-
lands, 2000, pp. 577–582.

[20] H. Fujisawa, Y. Nakano, and K. Kurino, “Segmentation methods for
character recognition: from segmentation to document structure analy-
sis,” Proc. of IEEE, vol. 80, pp. 1079–1092, 1992.

[21] R. Fenrich and S. Krishnamoorthy, “Segmenting diverse quality hand-
written digit strings in near real-time,” in 5th USPS Advanced Technol-
ogy Conference, 1990, pp. 523–537.

[22] Y. K. Chen and J. F. Wang, “Segmentation of single- or multiple-
touching handwritten numeral string using background and foreground
analysis,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 22, no. 11, pp. 1304–1317, 2000.

[23] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, June 2012, pp. 3642–3649.

[24] S. Sabour, N. Frosst, and G. Hinton, “Dynamic routing between cap-
sules,” in Advances in Neural Information Processing Systems 30 (NIPS
2017), 2017.

[25] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Automatic
recognition of handwritten numerical strings: A recognition and verifica-
tion strategy,” IEEE Trans. on Pattern Analysis on Machine Intelligence,
vol. 24, no. 11, pp. 1438–1454, 2002.


