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Abstract Feature selection for ensembles has shown to be
an effective strategy for ensemble creation due to its ability
of producing good subsets of features, which make the clas-
sifiers of the ensemble disagree on difficult cases. In this pa-
per we present an ensemble feature selection approach based
on a hierarchical multi-objective genetic algorithm. The un-
derpinning paradigm is the “overproduce and choose”. The
algorithm operates in two levels. Firstly, it performs feature
selection in order to generate a set of classifiers and then it
chooses the best team of classifiers. In order to show its ro-
bustness, the method is evaluated in two different contexts:
supervised and unsupervised feature selection. In the former,
we have considered the problem of handwritten digit recog-
nition and used three different feature sets and multi-layer
perceptron neural networks as classifiers. In the latter, we
took into account the problem of handwritten month word
recognition and used three different feature sets and hid-
den Markov models as classifiers. Experiments and compar-
isons with classical methods, such as Bagging and Boosting,
demonstrated that the proposed methodology brings com-
pelling improvements when classifiers have to work with
very low error rates. Comparisons have been done by con-
sidering the recognition rates only.
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1 Introduction

Ensemble of classifiers has been widely used to reduce
model uncertainty and improve generalization performance.
Developing techniques for generating candidate ensemble
members is a very important direction of ensemble of classi-
fiers research. It has been demonstrated that a good ensem-
ble is one where the individual classifiers in the ensemble
are both accurate and make their errors on different parts of
the input space (there is no gain in combining identical clas-
sifiers) [1–4]. In other words, an ideal ensemble consists of
good classifiers (not necessarily excellent) that disagree as
much as possible on difficult cases.

The literature has shown that varying the feature sub-
sets used by each member of the ensemble should help to
promote this necessary diversity [4–7]. Traditional feature
selection algorithms aim at finding the best trade-off be-
tween features and generalization. On the other hand, en-
semble feature selection has the additional goal of finding
a set of feature sets that will promote disagreement among
the component members of the ensemble. The Random Sub-
space Method (RMS) proposed by Ho in [5] was one early
algorithm that constructs an ensemble by varying the subset
of features. More recently some strategies based on genetic
algorithms (GAs) have been proposed [4, 8, 9]. All these
strategies claim better results than those produced by tra-
ditional methods for creating ensembles such as Bagging
and Boosting. In spite of the good results brought by GA-
based methods, they still can be improved in some aspects,
e.g., avoiding classical methods such as the weighted sum to
combine multiple objective functions. It is well known that
when dealing with this kind of combination, one should deal
with problems such as scaling and sensitivity towards the
weights.

It has been demonstrated that feature selection through
multi-objective genetic algorithm (MOGA) is a very power-
ful tool for finding a set of good classifiers [10, 11], since
GA is quite effective in rapid global search of large, non-
linear and poorly understood spaces [12]. Besides, it can
overcome problems such as scaling and sensitivity towards
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the weights. Kudo and Sklansky [13] have compared sev-
eral algorithms for feature selection and concluded that GAs
are suitable when dealing with large-scale feature selection
(number of features is over 50). This is the case of most of
the problems in handwriting recognition, which is the test
problem in this work.

In this light, we propose an ensemble feature selec-
tion approach based on a hierarchical MOGA. The under-
lying paradigm is “overproduce and choose” [14, 15]. The
algorithm operates in two levels. The former is devoted to
generate a set of good classifiers by minimizing two crite-
ria: error rate and number of features. The latter combines
these classifiers in order to find an ensemble by maximizing
the following two criteria: accuracy of the ensemble and a
measure of diversity.

Recently, the issue of using diversity to build ensemble
of classifiers has been widely discussed. Several works have
demonstrated that there is a weak correlation between di-
versity and ensemble performance [16, 17]. In light of this,
some authors have claimed that diversity brings no benefits
in building ensemble of classifiers [18], on the other hand,
others suggest that the study of diversity in classifier combi-
nation might be one of the lines for further exploration [19].

In spite of the weak correlation between diversity and
performance, we argue that diversity might be useful to build
ensembles of classifiers. We demonstrated through experi-
mentation that using diversity jointly with performance to
guide selection can avoid overfitting during the search. In or-
der to show robustness of the proposed methodology, it was
evaluated in two different contexts: supervised and unsuper-
vised feature selection. In the former, we have considered
the problem of handwritten digit recognition and used three
different feature sets and multi-layer perceptron (MLP) neu-
ral networks as classifiers. In such a case, the classification
accuracy is supplied by the MLPs in conjunction with the
sensitivity analysis. This approach makes it feasible to deal
with huge databases in order to better represent the pattern
recognition problem during the fitness evaluation. In the lat-
ter, we took into account the problem of handwritten month
word recognition and used three different feature sets and
hidden Markov models (HMM) as classifiers. We demon-
strate that it is feasible to find compact clusters and com-
plementary high-level representations (codebooks) in sub-
spaces without using the recognition results of the system.
Experiments and comparisons with classical methods, such
as Bagging and Boosting, demonstrated that the proposed
methodology brings compelling improvements when classi-
fiers have to work with very low error rates. It is worth of
remark that the comparisons have been done by considering
the recognition rates only.

The remainder of this paper is organized as follows.
Section 2 presents a brief review about the methods for
ensemble creation. Section 3 provides a overview of the
strategy. Section 4 introduces briefly the the multi-objective
genetic algorithm we are using in this work. Section 5
describes the classifiers and feature sets for both supervised
and unsupervised contexts. Section 6 introduces how we

have implemented both levels of the proposed methodology
and Sect. 7 reports the experimental results. Finally, Sect. 8
discusses the reported results and Sect. 9 concludes the
paper.

2 Related works

Assuming the architecture of the ensemble as the main cri-
terion, we can distinguish among serial, parallel, and hier-
archical schemes, and if the classifiers of the ensemble are
selected or not by the ensemble algorithm we can divide
them into selection-oriented and combiner-oriented methods
[20, 21]. Here we are more interested in the first class, which
try to improve the overall accuracy of the ensemble by di-
rectly boosting the accuracy and the diversity of the experts
of the ensemble. Basically, they can be divided into resam-
pling methods and feature selection methods.

Resampling techniques can be used to generate differ-
ent hypotheses. For instance, bootstrapping techniques [22]
may be used to generate different training sets and a learning
algorithm can be applied to the obtained subsets of data in
order to produce multiple hypotheses. These techniques are
effective especially with unstable learning algorithms, which
are algorithms very sensitive to small changes in the train-
ing data. In bagging [23] the ensemble is formed by making
bootstrap replicates of the training sets, and then multiple
generated hypotheses are used to get an aggregated predic-
tor. The aggregation can be performed by averaging the out-
puts in regression or by majority or weighted voting in clas-
sification problems.

While in bagging the samples are drawn with replace-
ment using a uniform probability distribution, in boosting
methods [24] the learning algorithm is called at each itera-
tion using a different distribution or weighting over the train-
ing examples. This technique places the highest weight on
the examples most often misclassified by the previous base
learner: in this manner the classifiers of the ensemble focus
their attention on the hardest examples. Then the boosting
algorithm combines the base rules taking a weighted major-
ity vote of the base rules.

The second class of methods regards those strategies
based on feature selection. The concept behind these ap-
proaches consists of reducing the number of input features
of the classifiers, a simple method to fight the effects of the
classical curse of dimensionality problem. For instance, the
random subspace method [5, 7] relies on a pseudorandom
procedure to select a small number of dimensions from a
given feature space. In each pass, such a selection is made
and a subspace is fixed. All samples are projected to this
subspace, and a classifier is constructed using the projected
training samples. In the classification a sample of an un-
known class is projected to the same subspace and clas-
sified using the corresponding classifier. In the same vein
of the random subspace method lies the input decimation
method [25], which reduces the correlation among the er-
rors of the base classifiers, by decoupling the classifiers by
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Fig. 1 An overview of the proposed methodology

training them with different subsets of the input features. It
differs from the random subspace as for each class the cor-
relation between each feature and the output of the class is
explicitly computed, and the classifier is trained only on the
most correlated subset of features.

Recently, several authors have investigated GA to design
ensemble of classifiers. Kuncheva and Jain [26] suggest two
simple ways to use genetic algorithm to design an ensemble
of classifiers. They present two versions of their algorithm.
The former uses just disjoint feature subsets while the latter
considers (possibly) overlapping feature subsets. The fitness
function employed is the accuracy of the ensemble, how-
ever, no measure of diversity is considered. Gerra-Salcedo
and Withley [8] used a simple GA to explore the space of
all possible feature subsets, and then create an ensemble
based on them. In their experiments, this GA-based ap-
proach outperformed classical methods such as Bagging
and Boosting. In spite of the fact they achieved interesting
results, they did not consider any measure of diversity. A
more elaborate method, also based on GA, was proposed
by Optiz [4]. In his work, he stresses the importance of a
diversity measure by including it in the fitness calculation.
The drawback of this method is that the objective functions
are combined through the weighted sum. It is well known
that when dealing with this kind of combination, one should
deal with problems such as scaling and sensitivity towards
the weights. More recently Gunter and Bunke [27] have
applied feature selection in conjunction with floating search
to create ensembles of classifiers for the field of handwriting
recognition. They used handwritten words and HMMs as
classifiers to evaluate their algorithm. The feature set was
composed of nine discrete features, which makes simpler
the feature selection process. A drawback of this method
is that one must set a priori the number of classifiers in the
ensemble.

3 Methodology overview

In this section, we outline the hierarchical approach pro-
posed. As stated before, it is based on an “overproduce
and choose” paradigm where the first level generates sev-
eral classifiers by conducting feature selection and the sec-
ond one chooses the best ensemble among such classifiers.
Figure 1 depicts the proposed methodology. Firstly, we carry
out feature selection by using a MOGA. It gets as inputs a
trained classifier and its respective data set. Since the algo-
rithm aims at minimizing two criteria during the search,1 it
will produce at the end a two-dimensional Pareto-optimal
front, which contains a set of classifiers (trade-offs between
the criteria being optimized). The final step of this first level
consists in training such classifiers.

Once the set of classifiers have been trained, the second
level is suggested to pick the members of the team which
are most diverse and accurate. Let A = C1, C2, . . . , CL be
a set of L classifiers extracted from the Pareto-optimal and
B a chromosome of size L of the population. The relation-
ship between A and B is straightforward, i.e., the gene i of
the chromosome B is represented by the classifier Ci from
A. Thus, if a chromosome has all bits selected, all classi-
fiers of A will be included in the ensemble. Therefore, the
algorithm will produce a 2-dimensional Pareto-optimal front
which is composed of several ensembles (trade-offs between
accuracy and diversity). In order to choose the best one, we
use a validation set, which points out the most diverse and
accurate team among all. Later in this paper, we will discuss
the issue of using diversity to choose the best ensemble.

In both cases, MOGAs are based on bit representation,
one-point crossover, and bit-flip mutation. In our experi-
ments, MOGA used is the Non-dominated Sorting Genetic

1 Error rate and number of features in the case of supervised feature
selection and a clustering index and the number of features in the case
of unsupervised feature selection.
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Algorithm (NSGA) with elitism proposed by Srinivas and
Deb in [29], which is briefly introduced in the next section.

4 Multi-objective genetic algorithm

Since the concept of multi-objective genetic algorithm
(MOGA) will be explored in the remaining of this paper,
this section briefly introduces it.

A general multi-objective optimization problem consists
of a number of objectives and is associated with a number
of inequality and equality constraints. Solutions to a multi-
objective optimization problem can be expressed mathemat-
ically in terms of nondominated points, i.e., a solution is
dominant over another only if it has superior performance in
all criteria. A solution is said to be Pareto-optimal if it cannot
be dominated by any other solution available in the search
space. In our experiments, the algorithm adopted is the Non-
dominated Sorting Genetic Algorithm (NSGA) with elitism
proposed by Srinivas and Deb in [28, 29].

The idea behind the NSGA is that a ranking selection
method is used to emphasize good points and a niche method
is used to maintain stable subpopulations of good points. It
differs from simple GA only in the way the selection op-
erator works. The crossover and mutation remain as usual.
Before the selection is performed, the population is ranked
based on an individual’s nondomination. The nondominated
individuals present in the population are first identified from
the current population. Then, all these individuals are as-
sumed to constitute the first nondominated front in the pop-
ulation and assigned a large dummy fitness value. The same
fitness value is assigned to give an equal reproductive poten-
tial to all these nondominated individuals. This is exempli-
fied in Fig. 2a. In such a case, a population of six individuals
was classified into three nondominated fronts and each indi-
vidual of the first front received a large dummy fitness (6.00
in this example).

In order to maintain the diversity in the population,
these classified individuals are then shared with their
dummy fitness values. Sharing is achieved by performing
selection operation using degraded fitness values obtained
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Fig. 2 Sorting population: a The population is classified into three nondominated fronts and b shared fitness values of six solutions

by dividing the original fitness value of an individual by a
quantity proportional to the number of individuals around it.
After sharing, these nondominated individuals are ignored
temporarily to process the remaining population in the same
way to identify individuals for the second nondominated
front. These new sets of points are then assigned a new
dummy fitness which is kept smaller than the minimum
shared dummy fitness of the previous front. This process is
continued until the entire population is classified into several
fronts. This process is illustrate in Fig. 2b. It can be observed
from this Figure that the individuals “1” and “3” had their
fitness shared because they are close to each other. In this
case, their fitness were reduced from 6.00 to 4.22. Then, the
dummy fitness is assigned to the individuals of the second
front by multiplying the lowest value of the first front by a
constant k (let us say k = 0.95 for this example). Therefore,
the individuals of the second front will receive a dummy
fitness of 4.00 (4.22 × 0.95). Since the two individuals of
the second front are not close to each other, their dummy
fitness is maintained and a dummy fitness is assigned to the
individual of the last front (4.00 × 0.95 = 3.80).

The population is then reproduced according to the
dummy fitness values. Since individuals in the first front
have the maximum fitness value, they get more copies than
the rest of the population. This was intended to search for
the nondominated regions of Pareto-optimal fronts. The ef-
ficiency of NSGA lies in the way multiple objectives are
reduced to a dummy fitness function using nondominated
sorting procedures.

Figure 3 shows a flow chart of NSGA. The algorithm is
similar to a simple GA except for the classification of non-
dominated fronts and the sharing operation. The sharing in
each front is achieved by calculating a sharing function value
between two individuals in the same front as:

Sh(d(i, j)) =
⎧
⎨

⎩
1 −

(
d(i, j)

σshare

)2

if d(i, j) < σshare

0 otherwise (1)

where d(i, j) is the distance between two individuals i and
j in the current front and σshare is the maximum distance
allowed between any two individuals to become members
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of a niche. In any application of sharing, we can implement
either genotypic sharing, since we always have a genotype
(the encoding), or phenotypic sharing. However, Deb and
Goldberg in [30] indicate that in general, phenotypic shar-
ing is superior to genotypic sharing. Thus, we have used a
phenotypic sharing which is calculated from the normalized
Euclidean distance between the objective functions.

The parameter σshare can be calculated as follows [30]:

σshare ≈ 0.5
p
√

q
(2)

where q is the desired number of distinct Pareto-optimal so-
lutions and p is the number of decision variables. Although
the calculation of σshare depends on this parameter q , it has
been shown [29] that the use of the above equation with
q ≈ 10 works in many test problems.

5 Classifiers and feature sets

As stated before, we have carried out experiments in both su-
pervised and unsupervised contexts. The remaining of this
section describes the feature sets and classifiers we have
used.

5.1 Supervised context

To evaluate the proposed methodology in the supervised
context, we have used three base classifiers trained to recog-
nize handwritten digits of NIST SD19. Such classifiers were
trained with three well-known feature sets: Concavities and
Contour (CCsc) [31], Distances (DDDsc) [32], and Edge
Maps (EMsc) [33]. It should be noted, though, that the orig-
inal feature set of distances proposed by Oh and Suen [32]
contains 256 features. After carrying out some experiments
with different strategies of zoning, we realized that using
96 features (6 zones: 3 horizontal and 2 vertical) we could
achieve the same results as using 256 features (16 symmet-
rical zones).

All classifiers here are MLPs trained with the gradi-
ent descent applied to a sum-of-squares error function [34].

The transfer function employed is the familiar sigmoid func-
tion. In order to monitor the generalization performance dur-
ing learning and terminate the algorithm when there is no
longer an improvement, we have used the method of cross-
validation. Such a method takes into account a validation
set, which is not used for learning, to measure the gener-
alization performance of the network. During learning, the
performance of the network on the training set will continue
to improve, but its performance on the validation set will
only improve to a point, where the network starts to over-
fit the training set, that the learning algorithm is terminated.
All networks have one hidden layer where the units of in-
put and output are fully connected with units of the hidden
layer, where the number of hidden units were determined
empirically (see Table 1). The learning rate and the momen-
tum term were set at high values in the beginning to make
the weights quickly fit the long ravines in the weight space,
then these parameters were reduced several times according
to the number of iterations to make the weights fit the sharp
curvatures.

Among the different strategies of rejection we have
tested, the one proposed by Fumera et al [35] provided the
better error-reject trade-off for our experiments. Basically,
this technique suggests the use of multiple reject thresholds
for the different data classes (T0, . . . , Tn) to obtain the op-
timal decision and reject regions. In order to define such
thresholds we have developed an iterative algorithm, which
takes into account a decreasing function of the threshold
variables R(T0, . . . , Tn) and a fixed error rate Terror. We start
from all threshold values equal to 1, i.e., the error rate equal
to zero since all images are rejected. Then, at each step, the
algorithm decreases the value of one of the thresholds in
order to increase the accuracy until the error rate exceeds
Terror.

Table 1 Description and performance of the classifiers on TSDB
(zero-rejection level)

Feature Number of Units in the
set features hidden layer Rec. rate (%)

CCsc 132 80 99.13
DDDsc 96 60 98.17
EMsc 125 70 97.04
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Fig. 4 Performance of the classifiers on the test set for error rates varying from 0.10 to 0.50%. a Trade-off between recognition rate and error
rate. b Trade-off between reject rate and error rate

The training (TRDBsc) and validation (VLDB1sc) sets
are composed of 195,000 and 28,000 samples from hsf 0123
series respectively while the test set (TSDBsc) is composed
of 30,089 samples from the hsf 7. We consider also a sec-
ond validation set (VLDB2sc), which is composed of 30,000
samples of hsf 7. This data is used to select the best ensem-
ble of classifiers. Figure 4 shows the performance on the
test set of all classifiers for error rates varying from 0.10
to 0.50%, while Table 1 reports the performance of all clas-
sifiers at zero-rejection level. The curves depicted in Fig. 4
are much more meaningful when dealing with real applica-
tions since they describe the recognition rate in relation to a
specific error rate, including implicitly a corresponding re-
ject rate. This rate also allows us to compute the reliability
of the system for a given error rate. It can be done by using
Eq. (3).

Reliability = Rec.rate

Rec.rate + Error rate
× 100 (3)

Figure 4 corroborates that recognition of handwritten
digits is still an open problem when very low error rates
are required. Consider for example our best classifier, which
reaches 99.13% at zero-rejection level on the test set. If we
allow an error rate of 0.1%, i.e., just one error in 1,000,
the recognition rate of such classifier drops from 99.13% to
91.83%. This means that we have to reject 8.07% to get 0.1%
of error (Fig. 4a). We will demonstrate that the ensemble of
classifiers can significantly improve the performance of the
classifiers for low error rates.

5.2 Unsupervised context

To evaluate the proposed methodology in unsupervised con-
text we have used three HMM-based classifiers trained to
recognize handwritten Brazilian month words (“Janeiro”,
“Fevereiro”, “Maro”, “Abril”, “Maio”, “Junho”, “Julho”,
“Agosto”, “Setembro”, “Outubro”, “Novembro”, “Dezem-
bro”). The training (TRDBuc), validation (VLDB1uc), and

testing (TSDBuc) sets are composed of 1,200, 400, and
400 samples, respectively. In order to increase the train-
ing and validation sets, we have also considered 8,300 and
1,900 word images, respectively, extracted from the legal
amount database. This is possible because we are consider-
ing character models. We consider also a second validation
set (VLDB2uc) of 500 handwritten Brazilian month words
[36]. Such data is used to select the best ensemble of classi-
fiers.

Given a discrete HMM-based approach, each word im-
age is transformed as a whole into a sequence of observa-
tions by the successive application of preprocessing, seg-
mentation, and feature extraction. Preprocessing consists of
correcting the average character slant. The segmentation al-
gorithm uses the upper contour minima and some heuris-
tics to split the date image into a sequence of segments
(graphemes), each of which consists of a correctly seg-
mented, an under-segmented, or an over-segmented charac-
ter. A detailed description of the preprocessing and segmen-
tation stages is given in [37].

The word models are formed by the concatenation of ap-
propriate elementary HMMs, which are built at letter and
space levels. Two topologies of letter models were chosen
based on the output of our grapheme-based segmentation al-
gorithm which may produce a correct segmentation of a let-
ter, a letter under-segmentation or a letter over-segmentation
into two, three, or four graphemes depending on each let-
ter. Considering uppercase and lowercase letters, we need 42
models since the legal amount alphabet is reduced to 21 let-
ter classes and we are not considering the unused ones. Thus,
regarding the two topologies, we have 84 HMMs which are
trained using the Baum-Welch algorithm with the Cross-
Validation procedure.

The feature set that feeds the first classifier is a mixture
of concavity and contour features (CCuc) [31]. In this case,
each grapheme is divided into two equal zones (horizontal)
where for each region a concavity and contour feature vector
of 17 components is extracted. Therefore, the final feature
vector has 34 components. The other two classifiers make



268 L. S. Oliveira, et al.

Table 2 Performance of the classifiers on the test set

Feature Number of Codebook
set features size Rec. rate (%)

CCuc 34 80 86.1
DDD32uc 32 40 73.0
DDD64uc 64 60 64.5

Upper
Baseline

Lower
Baseline

Fig. 5 Zoning based on the reference baselines: a baselines and b 4-
region zoning

use of a feature set based on distances [32]. The former uses
the same zoning discussed before (two equal zones), but in
this case, for each region a vector of 16 components is ex-
tracted. This leads to a final feature vector of 32 components
(DDD32uc). For the latter we have tried a different zoning.
The grapheme is divided into four zones using the refer-
ence baselines (see Fig. 5), hence, we have a final feature
vector composed of 64 components (DDD64uc). Table 2 re-
ports the performance of all classifiers on the test set at zero-
rejection level. Figure 6 shows the performance of all classi-
fiers for error rates varying from 1% to 4%. The strategy for
rejection used in this case is the one discussed previously.
We have chosen higher error rates in this case due to the size
of the database we are dealing with.

It can be observed from Fig. 6 that the recognition rates
with error fixed at 1% are very poor, hence, the number of
rejected patterns is very high. We will see in the next sec-
tions that the proposed methodology can improve these re-
sults considerably.
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6 Implementation

This section introduces how we have implemented both lev-
els of the proposed methodology. First we discuss the super-
vised context and then the unsupervised.

6.1 Supervised context

6.1.1 Supervised feature subset selection

The feature selection algorithm used in here was introduced
in [11]. To make this paper self-contained, a brief description
is included in this section.

Regarding feature selection algorithms, they can be clas-
sified into two categories based on whether or not feature
selection is performed independently of the learning algo-
rithm used to construct the classifier. If feature selection is
done independently of the learning algorithm, the technique
is said to follow a filter approach. Otherwise, it is said to
follow a wrapper approach [38]. While the filter approach is
generally computationally more efficient than the wrapper
approach, its major drawback is that an optimal selection of
features may not be independent of the inductive and rep-
resentational biases of the learning algorithm that is used
to construct the classifier. On the other hand, the wrapper
approach involves the computational overhead of evaluat-
ing candidate feature subsets by executing a given learning
algorithm on the database using each feature subset under
consideration.

As stated elsewhere, the idea of using feature selection
is to promote diversity among the classifiers. To tackle such
a task we have to optimize two objective functions: mini-
mization of the number of features and minimization of the
error rate of the classifier. Computing the first one is sim-
ple, i.e., the number of selected features. The problem lies in
computing the second one, i.e., the error rate supplied by the
classifier. Regarding a wrapper approach, in each generation,
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Fig. 7 Supervised feature selection using a Pareto-based approach. a Evolution of the population in the objective plane, b Pareto-optimal front
and its different classes of classifiers

evaluation of a chromosome (a feature subset) requires train-
ing the corresponding neural network and computing its ac-
curacy. This evaluation has to be performed for each of the
chromosomes in the population. Since such a strategy is not
feasible due to the limits imposed by the learning time of the
huge training set considered in this work, we have adopted
the strategy proposed by Moody and Utans in [39], who use
the sensitivity of the network to estimate the relationship be-
tween the input features and the network performance.

The sensitivity of the network model to variable β is de-
fined as:

Sβ = 1

N

N∑

j=1

ASE(x̄β) − ASE(xβ) (4)

with

x̄β = 1

N

N∑

j=1

xβ j (5)

where xβ j is the βth input variable of the j th exemplar. Sβ

measures the effect on the training ASE (average square er-
ror) of replacing the βth input xβ by its average x̄β . Moody
and Utans show that when variables with small sensitivity
values with respect to the network outputs are removed, they
do not influence the final classification. So, in order to evalu-
ate a given feature subset we replace the unselected features
by their averages. In this way, we avoid training the neural
network and hence turn the wrapper approach feasible for
our problem. We call this strategy modified-wrapper. Such a
scheme has been employed also by Yuan et al in [40], and
it makes it feasible to deal with huge databases in order to
better represent the pattern recognition problem during the
fitness evaluation.2 Moreover it can accommodate multiple
criteria such as the number of features and the accuracy of
the classifier, and generate the Pareto-optimal front in the

2 If small databases are considered, then a full-wrapper could re-
place the proposed modified-wrapper.

first run of the algorithm. Figure 7 shows the evolution of the
population in the objective plane and its respective Pareto-
optimal front.

It can be observed in Fig. 7b that the Pareto-optimal front
is composed of several different classifiers. In order to get a
better insight about them, they were classified into three dif-
ferent groups: weak, medium, and strong. It can be observed
that among all those classifiers there are very good ones. To
find out which classifiers of the Pareto-optimal front com-
pose the best ensemble, we carried out a second level of
search. Once we did not train the models during the search
(the training step is replaced by the sensitivity analysis), the
last step of feature selection consists of training the solutions
provided by the Pareto-optimal front (1).

Before discussing the second level of our algorithm, we
would like to stress the importance of using MOGA for fea-
ture selection. Therefore, we show a result achieved by a
single GA, where the objective (number of features and error
rate of the classifiers) were combined through the weighted-
sum approach (Fig. 8). As expected, the results achieved
by the weighted-sum approach presented a premature con-
vergence to a specific region of the search space instead of
maintaining a diverse population. This kind of behavior can
be explained by the sensitivity towards weight presented by
the weighted-sum approach. Since we have chosen weights
to favor solutions with a small error rate rather than a small
number of features, the selection pressure drove the search
to the region where the error rates are lower. Thus, after sev-
eral trials of using different weights we did not succeed in
finding the Pareto-optimal front but rather an approximation
of the Pareto-optimal solutions.

6.1.2 Choosing the best ensemble

As defined in Sect. 3 each gene of the chromosome is repre-
sented by a classifier produced in the previous level. There-
fore, if a chromosome has all bits selected, all classifiers of
will compose the team. In order to find the best ensemble of
classifiers, i.e., the most diverse set of classifiers that brings
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Fig. 8 Feature selection using the weighted-sum approach. a Evolution of the population in the objectives plane (one trial) and b Pareto-optimal
solutions found by the classical approach after several trials

a good generalization, we have used two objective func-
tions during this level of the search, namely, maximization
of the recognition rate of the ensemble and maximization
of a measure of diversity. We have tried different measures
such as overlap, entropy [41], and ambiguity [3]. The results
achieved with ambiguity and entropy were very similar. In
this work we have used ambiguity as diversity measure. The
ambiguity is defined as follows:

ai (xk) = [Vi (xk) − V (xk)]2 (6)

where ai is the ambiguity of the i th classifier on the example
xk , randomly drawn from an unknown distribution, while Vi

and V are the i th classifier and the ensemble predictions,
respectively. In other words, it is simply the variance of en-
semble around the mean, and it measures the disagreement
among the classifiers on input x . Thus the contribution to di-
versity of an ensemble member i as measured on a set of M
samples is:

Ai = 1

M

M∑

k=1

ai (xk) (7)

and the ambiguity of the ensemble is

Ā = 1

N

∑
Ai (8)

where N is the number of classifiers. So, if the classifiers
implement the same functions, the ambiguity Ā will be low,
otherwise it will be high. In this scenario the error from the
ensemble is

E = Ē − Ā (9)

where Ē is the average errors of the single classifiers and
Ā is the ambiguity of the ensemble. Equation (9) expresses
the trade-off between bias and variance in the ensemble, but
in a different way than the common bias-variance relation
in which the averages are over possible training sets instead

of ensemble averages. If the ensemble is strongly biased the
ambiguity will be small, because the classifiers implement
very similar functions and thus agree in inputs even outside
the training set [3].

At this level of the strategy we want to maximize the gen-
eralization of the ensemble, therefore, it will be necessary to
use a way of combining the outputs of all classifiers to get a
final decision. To do this, we have used the average, which is
a simple and effective scheme of combining predictions of
the neural networks [42]. Other combination rules such as
product, min, and max have been tested but the simple aver-
age has produced slightly better results. In order to evaluate
the objective functions during the search described above we
have used the validation set VLDB1sc.

6.2 Unsupervised context

6.2.1 Unsupervised feature subset selection

A lot of work done in the field of handwritten word recog-
nition take into account discrete HMMs as classifiers, which
have to be fed with a sequence of discrete values (symbols).
This means that before using a continuous feature vector, we
must convert it to discrete values. A common way to do that
is through clustering. The problem is that for the most of
real-life situations we do not know the best number of clus-
ters, what makes it necessary to explore different numbers
of clusters using traditional clustering methods such as the
K-means algorithm [43] and its variants. In this light, clus-
tering can become a trial-and-error work. Besides, its result
may not be very promising especially when the number of
clusters is large and not easy to estimate.

Unsupervised feature selection emerges as a clever so-
lution to this problem. The literature contains several stud-
ies on feature selection for supervised learning, but only re-
cently, the feature selection for unsupervised learning has
been investigated [44, 45]. The objective in unsupervised
feature selection is to search for a subset of features that best
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Fig. 9 a Pareto-optimal front found during feature selection divided into two classes of classifiers, b Relationship between the number of clusters
and the number of features and c relationship between the recognition rate and the number of features

uncovers “natural” groupings (clusters) from data according
to some criterion. In this way, we can avoid the manual pro-
cess of clustering and find the most discriminative features
in the same time. Hence, we will have at the end a more
compact and robust high-level representation (symbols).

In the above context, unsupervised feature selection
also presents a multi-criterion optimization function, where
the objective is to find compact and well separated hyper-
spherical clusters in the feature subspaces. Differently of the
supervised feature selection, here the criteria optimized by
the algorithm are a validity index and the number of fea-
tures. [46].

In order to measure the quality of clusters during the
clustering process, we have used the Davies-Bouldin (DB)-
index [47] over 80,000 feature vectors extracted from the
training set of 9,500 words. To make such an index suitable
for our problem, it must be normalized by the number of
selected features. This is due to the fact that it is based on
geometric distance metrics and therefore, it is not directly
applicable here because it is biased by the dimensionality of
the space, which is variable in feature selection problems.

We have noticed that the value of DB index decreases
as the number of features increases. We have correlated this
effect with the normalization of DB-index by the number of
features. In order to compensate this, we have considered

as second objective the minimization of the number of fea-
tures. In this case, one feature must be set at least. Figure 9
depicts the Pareto-optimal front found after the search, the
relationship between the number of clusters and number of
features and the relationship between the recognition rate on
the validation set and the number of features.

Like in the supervised context, here we also divided the
classifiers of the Pareto into classes. In this case, we have
realized that those classifiers with very few features are not
selected to compose the ensemble, and therefore, just the
classifiers with more than 10 features were used into the sec-
ond level of search. In Sect. 7.2 we discuss this issue in more
detail. Figure 9 shows the Pareto-optimal front where a line
divides the classifiers into two different groups: weak (less
than 10 features) and strong (more than 10 features). The
way of choosing the best ensemble is exactly the same as
introduced in Sect. 6.1.2.

7 Experimental results

All experiments in this work were based on a single-
population master-slave MOGA. In this strategy, one mas-
ter node executes the genetic operators (selection, crossover
and mutation), and the evaluation of fitness is distributed
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among several slave processors. We have used a Beowulf
cluster with 17 (one master and 16 slaves) PCs (1.1 Ghz
CPU, 512 Mb RAM) to execute our experiments.

The following parameter settings were employed in both
levels: population size = 128, number of generations =
1,000, probability of crossover = 0.8, probability of mu-
tation = 1/L (where L is the length of the chromosome),
and niche distance (σshare) = [0.25, 0.45]. The length of the
chromosome in the first level is the number of components
in the feature set (see Table 1), while in the second level
is the number of classifiers picked from the Pareto-optimal
front in the previous level.

In order to define the probabilities of crossover and mu-
tation, we have used the one-max problem, which is prob-
ably the most frequently-used test function in research on
genetic algorithms because of its simplicity [48]. This func-
tion measures the fitness of an individual as the number of
bits set to one on the chromosome. We have used a stan-
dard genetic algorithm with a single-point crossover and the
maximum generations of 1,000. The fixed crossover and mu-
tation rates are used in a run, and the combination of the
crossover rates 0.0, 0.4, 0.6, 0.8 and 1.0 and the mutation
rates of 0.1/L , 1/L and 10/L , where L is the length of the
chromosome. The best results were achieved with Pc = 0.8
and Pm = 1/L . Such results confirmed the values reported
by Miki et al in [49]. The parameter σshare was determined
initially through Eq. (2) and then tuned empirically.

We have run each experiment at least 10 times and
we have noticed that the best solution was stable over the
runs. Using the aforementioned cluster the experiments in
the supervised context took about 2 h, while in the unsu-
pervised took about 8 h. The latter is more time consum-
ing because of the clustering algorithm used during feature
selection.

7.1 Experiments in the supervised context

Once all parameters have been defined, the first step, as de-
scribed in Section 6.1.1, consists of performing feature se-
lection for a given feature set. As depicted in Fig. 7, this pro-
cedure produces quite a large number of classifiers, which
should be trained for use in the second level. After some
experiments, we found out that the second level always
chooses “strong” classifiers to compose the ensemble. Thus,
in order to speed up the training process and the second level
of search as well, we decide to train and use in the second
level just the “strong” classifiers. This decision was made
after we realized that in our experiments the “weak” and
“medium” classifiers did not cooperate with the ensemble at
all. To train such classifiers, the same databases reported in
Sect. 5.1 were used. Table 3 summarizes the “strong” classi-
fiers produced by the first level for the three feature sets we
have considered.

Considering for example the feature set CCsc, the first
level of the algorithm provided 81 “strong” classifiers which
have the number of features ranging from 24 to 125 and

Table 3 Summary of the classifiers produced by the first level

Feature Number of Range of Range of
set classifiers features rec. rates (%)

CCsc 81 24–125 90.5–99.1
DDDsc 54 30–84 90.6–98.1
EMsc 78 35–113 90.5–97.0

recognition rates ranging from 90.5% to 99.1% on TSDBsc.
This shows the great diversity of the classifiers produced
by the feature selection method. Based on the classifiers
reported in Table 3 we define four sets of base clas-
sifiers as follows: S1 = {CCsc0, . . . , CCsc80}, S2 =
{DDDsc0, . . . , DDDsc53}, S3 = {E Msc0, . . . , E Msc77},
and S4 = {S1 ∪ S2 ∪ S3}. All these sets could be seen as
ensembles, but in this work we reserve the word ensem-
ble to characterize the results yielded by the second-level
of the algorithm. In order to assess the objective functions
of the second-level of the algorithm (generalization of the
ensemble and diversity) we have used the validation set
(VLDB1sc).

Like the first level, the second one also generates a set of
possible solutions which are the trade-offs between the gen-
eralization of the ensemble and its diversity. Thus the prob-
lem now lies in choosing the most accurate ensemble among
all. Figure 10 depicts the variety of ensembles yielded by
the second-level of the algorithm for the four sets of base
classifiers being considered. The number over each point
stands for the number of classifiers in the ensemble. In or-
der to decide which ensemble to choose we validate the
Pareto-optimal front using VLDB2sc, which was not used
so far. Since we are aiming at performance, the direct choice
will be the ensemble that provides better generalization on
VLDB2sc. Table 4 summarizes the best ensembles produced
for the four sets of base classifiers and their performance at
zero-rejection level on the test set. For facility, we reproduce
in this table the results of the original classifiers.

We can notice from Table 4 that the ensembles and base
classifiers have very similar performance at zero-rejection
level. On the other hand, Fig. 11 shows that the ensembles
respond better for error rates fixed at very low levels than
single classifiers. The most expressive result was achieved
for the ensemble S3, which attains a reasonable performance
at zero-rejection level but performs very poorly at low er-
ror rates. In such a case, the ensemble of classifiers brought
an improvement of about 8%. We have noticed that the en-
semble reduces the high outputs of some outliers so that

Table 4 Performance of the ensembles on the test set

Rec. rate (%)
Feature Number of
set classifiers Zero-rejection level Original classifiers

S1 4 99.22 99.13
S2 4 98.18 98.17
S3 7 97.10 97.04
S4 24 99.25
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Fig. 10 The Pareto-optimal front produced by the second-level MOGA: S1 a, S2 b, S3 c, and S4 d

the threshold used for rejection can be reduced and conse-
quently the number of samples rejected is reduced. Thus,
aiming for a small error rate we have to consider the impor-
tant role of the ensemble.

Regarding the ensemble S4, we can notice that it
achieves a performance similar to S1 at zero-rejection level
(see Table 4). Besides, it is composed of 24 classifiers,
against four of S1. The fact worth noting though, is the per-
formance of S4 at low error rates. For the error rate fixed at
1% it reached 95.0% against 93.5% of S1. S4 is composed
of 14, 6, and 4 classifiers from S1, S2, and S3, respectively.
At this point, we would like to stress that the ensembles can
improve results even when just one feature set is available,
as depicted in Fig. 11a, b, and c. However, when more orig-
inal classifiers are available, it is expected that the algorithm
builds better ensembles. This is what we observe in Fig. 11d
for the ensemble S4.

To conclude the experiments in the supervised context,
we present in Fig. 12 some examples of misclassification
generated by the ensembles, where those signed with a
square would represent mislabelling. We can observe that
most of this errors are pretty difficult to recognize, with
the exception of digits “1”, which are not that difficult, but
barely appear in the training set of NIST.3

3 This style of handwriting is very similar to that found in the Brazil-
ian database.

7.2 Experiments in the unsupervised context

The experiments in the unsupervised context follow the
same vein of the supervised one. As discussed in Sect. 6.2.1,
the main difference lies in the way the feature selection is
carried out. In spite of that, we can observe that the num-
ber of classifiers produced during unsupervised feature se-
lection is quite large as well. In light of this, we have applied
the same strategy of dividing the classifiers into groups (see
Fig. 9). After some experiments, we found out that the sec-
ond level always chooses “strong” classifiers to compose the
ensemble. Thus, in order to speed up the training process and
the second level of search as well, we decide to train and use
in the second level just “strong” classifiers. To train such
classifiers, the same databases reported in Sect. 5.2 were
considered. Table 5 summarizes the “strong” classifiers (af-
ter training) produced by the first level for the three feature
sets we have considered.

Considering for example the feature set CCuc, the
first level of the algorithm provided 15 “strong” clas-
sifiers which have the number of features ranging
from 10 to 32 and recognition rates ranging from
68.1 to 88.6% on VLDB1uc . This shows the great
diversity of the classifiers produced by the feature se-
lection method. Based on the classifiers reported in
Table 5 we define four sets of base classifiers as follows:
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Fig. 11 Improvements yielded by the ensembles: S1 a, S2 b, S3 c, and S4 d

Fig. 12 Examples of misclassification (the correct label is the one in
parentheses)

F1 = {CCuc0, . . . , CCuc14}, F2 = {DDD32uc0, . . . , DD
D32uc20}, F3 = {DDD64uc0, . . . , DDD64uc49}, and
F4 = {F1 ∪ F2 ∪ F3}.

Figure 13 depicts the variety of ensembles yielded by the
second-level of the algorithm for the four sets of base clas-
sifiers. The number over each point stands for the number of
classifiers in the ensemble. Like in the previous experiments,

Table 5 Summary of the classifiers produced by the first level

Feature Number of Range of Range of Range of
set classifiers features codebook rec. rates (%)

CCuc 15 10–32 29–39 68.1–88.6
DDD32uc 21 10–31 20–30 71.7–78.0
DDD64uc 50 10–64 52–80 60.6–78.2

Table 6 Comparison between ensembles and original classifiers

Base Number of (%) Original
classifiers Rec. rate classifiers feature set Rec. rate (%)

F1 10 89.2 CC 86.1
F2 15 80.2 DDD32 73.0
F3 36 80.7 DDD64 64.5
F4 45 90.2

the second validation set (VLDB2uc) was used to select the
best ensemble. After selecting the best ensemble the final
step is to assess them on the test set. Table 6 summarizes the
performance of the ensembles on the test set. For the sake of
comparison, we reproduce in Table 6 the results presented in
Table 2.

Figure 13 also shows the performance of the ensembles
generated with all base classifiers available, i.e., Ensemble
F4. Like in the previous experiments (supervised context),
the result achieved by the ensemble F4 shows the ability of
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Fig. 13 The Pareto-optimal front (and validation curves where the best solutions are highlighted with an arrow) produced by the second-level
MOGA: F1 a, F2 b, F3 c, and F4 d

the algorithm in finding good ensembles when more base
classifiers are considered. The ensemble F4 is composed of
9, 11, and 25 classifiers from F1, F2, and F3, respectively.

In light of this, we decided to introduce a new feature
set, which, based on our experience, has a good discrimina-
tion power when combined with other features such as con-
cavities. This feature set, which we call “global features”, is
composed of primitives such as ascenders, descenders, and
loops. The combination of these primitives plus a primitive
that determines whether a grapheme does not contain ascen-
der, descender, and loop produces a 20-symbol alphabet. For
more details, see [50]. In order to train the classifier with
this feature set, we have used the same databases described
in Sect. 5.2. The recognition rates at zero-rejection level are
86.1% and 87.2% on validation and testing sets, respectively.
This performance compares with the CCuc classifier.

Since we have a new base classifier, our sets of
base classifiers must be modified to cope with it. Thus,
F1G = {F1 ∪ G}, F2G = {F2 ∪ G}, F3G = {F3 ∪ G}, and
F4G = {F1 ∪ F2 ∪ F3 ∪ G}. In such cases, G stands for the
classifier trained with global features. Table 7 summarizes
the ensembles found using these new sets of base classifiers.

It is worthy of remark the reduction of the size of the teams.
This shows the ability of the algorithm in finding not just
diverse but also uncorrelated classifiers to compose the
ensemble [51]. Besides, it corroborates our claim that the
classifier G when combined with other features bring an
improvement to the performance.

In Fig. 14 we compare the error-reject trade-offs of the
ensembles reported in Table 7. Like the results at zero-
rejection level, the improvement observed here also are quite
impressive. Table 7 shows that F1G and F4G reach similar
results on the test set at zero-rejection level, however, F1G
contains just two classifiers against 23 of F4G . On the other

Table 7 Performance of the ensembles with global features

Base Number of
classifiers classifiers Rec. rate (%) testing

F1G 2 92.2
F2G 2 89.7
F3G 7 85.5
F4G 23 92.0
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Fig. 14 Improvements yielded by the ensembles: F1 a, F2 b, F3 c, and comparison among all ensembles d

hand, the latter features a slightly better error-reject trade-off
in the long run (Fig. 14d).

Based on the experiments reported so far we can af-
firm that the unsupervised feature selection is a good strat-
egy to generate diverse classifiers. This is made very clear
in the experiments regarding the feature set DDD64. In
such a case, the original classifier has a poor performance
(about 65% on the test set), but when it is used to gen-
erate the set of base classifiers, the second-level MOGA
was able to produce a good ensemble by maximizing the
performance and the ambiguity measure. Such an ensem-
ble of classifiers brought an improvement of about 15% in
the recognition rate at zero-rejection level. Figure 15 some
examples of well-classified and misclassified images of our
database.

Fig. 15 Examples of a well-classified images and b misclassified im-
ages (the correct label is the one in parentheses)

8 Discussion

The results obtained here attest that the proposed strategy is
able to generate a set of good classifiers in both supervised
and unsupervised contexts. To better evaluate our results,
we have used two traditional ensemble methods (Bagging
and Boosting) in the supervised context. Figure 16 reports
the results. As we can see, the proposed methodology
achieved better results, especially when considering very
low error rates. It also can be observed from this figure
that the gap among ensemble feature selection and bag-
ging/boosting gets bigger as the discriminative power of
the feature sets gets lower. However to verify whether this
holds, experimentation with other feature sets would be
necessary.

Diversity is an issue that deserves some attention when
discussing ensemble of classifiers. As we have mentioned
before, some authors advocated that diversity does not help
at all. In our experiments, most of the time, the best ensem-
bles of the Pareto-optimal also were the best for the unseen
data. This could lead one to agree that diversity is not impor-
tant when building ensembles, since even using a validation
set the selected team is always the most accurate and with
less diversity.
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Fig. 16 Comparison among ensemble feature selection, bagging, and boosting for the tree feature set used in the supervised context: a CCsc, b
DDDsc, and c EMsc
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Fig. 17 Benefits of using diversity. a Population (classifiers) of the last generation of the GA. b Classifiers found by the MOGA

However, if we look carefully the results, we will ob-
serve that there are cases where the validation curve does
not have the same shape of the Pareto-optimal. In such
cases diversity is very useful to avoid selecting overfitted
solutions.

One can argue that using a single GA and considering the
entire final population, perhaps the similar solutions found

in the Pareto-optimal produced by the MOGA will be there.
To show that it does not happen, we have carried out some
experiments with a single GA where the fitness function was
the maximization of the ensembles accuracy. Since a single-
objetive optimization algorithm searches for an optimum so-
lution, it is natural to expect that it will converge towards the
fittest solution, hence, the diversity of solutions presented in
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the Pareto-optimal is not present in the final population of
the single genetic algorithm.

To illustrate that, we present the results we got using a
GA to find ensemble in F2 (unsupervised context). The pa-
rameters used here are the same we have used for the MOGA
(Sect. 7). Figure 17a plots all the classifiers found in the last
population of the genetic algorithm. For the sake of com-
parison we reproduce Fig. 13b in Fig. 17b. As we can see,
the population is very homogeneous and it converged, as ex-
pected, towards the most accurate ensemble.

Some attempts in this direction were made by Optiz [4].
He combined accuracy and diversity through the weighted-
sum approach. As stated somewhere, when dealing with this
kind of combination, one should deal with problems such as
scaling and sensitivity towards the weights. We believe that
our strategy offers a clever way to find the ensemble using
genetic algorithms.

9 Conclusion

We have described a methodology for ensemble creation un-
derpinned on the paradigm “overproduce and choose”. It
takes two levels of search where the first level overproduces
a set of classifiers by performing feature selection while the
second one chooses the best team of classifiers.

The feasibility of the strategy was demonstrated through
comprehensive experiments carried out in the context of
handwriting recognition. The idea of generating classifiers
through feature selection was proved to be successful in both
supervised and unsupervised contexts. The results attained
in both situations and using different feature sets and base
classifiers demonstrated the efficiency of the proposed strat-
egy by finding powerful ensembles, which succeed in im-
proving the recognition rates for classifiers working with a
very low error rates. Such results compare favorably to tra-
ditional ensemble methods such as Bagging and Boosting.

Finally we have addressed the issue of using diversity to
build ensembles. As we have seen, using diversity jointly
with the accuracy of the ensemble as selection criterion
might be very helpful to avoid choosing overfitted solutions.
Our results certainly brings some contribution to the field,
but this still is an open problem.
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