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Abstract In this work, we propose a writer verification sys-
tem that takes into account texture-based features and dis-
similarity representation. Textures of the handwritings are
created based on the inherent properties of the writer. Inde-
pendent of the writing style, the proposed method reduces
the spaces between lines, words, and characters, producing a
texture that keeps the main features thus avoiding the com-
plexity of segmentation. We also address an important issue
of verification system, i.e., the number of writers used for
training. Our experiments show that the number of writers
do not have an important impact on the overall error rate, but
it has an important role in reducing the false acceptance of
the verification system. We show that the false acceptance
decreases as the number of writers increases. Finally, the
ROC curves produced by different classifiers trained with
different texture descriptors are combined using the maxi-
mum likelihood analysis, producing a ROC combined clas-
sifier. A set of experiments on a database composed of 315
writers show the efficiency of the texture-based features and
the ROC combination scheme. Experimental results report
an overall error rate of about 4%. This performance com-
pares to the state of the art. Besides, the combination scheme
is able to considerably reduce the false-positive rates while
maintaining the same true-positive rates.
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1 Introduction

The main goal of a writer verification system is to deter-
mine whether or not a handwritten text was written by a
given writer. Similar to other verification systems, like sig-
nature verification, a failure is referred as type I error (false
rejection), i.e., rejecting a genuine text. The system should
cope also with a more challenging problem, i.e., avoiding the
acceptance of forgeries as being authentic. This second error
is referred as type II error (false acceptance).

The writer verification problem can be categorized into
on-line and off-line. In general, on-line systems achieve bet-
ter performance since they can use spatial and temporal infor-
mation about the writing. Off-line systems, on the other hand,
are difficult to design since the dynamic information about
the writing is lost during the document acquisition. They also
can be categorized into text-dependent and text-independent.
As the name suggests, in the text-dependent methods, the
writing samples contain a predefined text. These methods
normally use the comparison between individual characters
or words of known transcription and thus require the text to
be recognized or segmented into characters or words prior
to writer verification [28]. As pointed out by Siddiqi and
Vincent [31], in this respect, text-dependent writer verifica-
tion is similar to signature verification. The text-independent
methods, on the other hand, use any text to establish the iden-
tity of the writer; hence, they feature less constraints and are
more suitable for real applications.

The writer verification problem is a binary problem by
nature. Given an input feature vector x extracted from a text t
and a claimed identity I , determine whether (I, x) belongs to
class ω1 or ω2. The class ω1 indicates that the claim is true,
i.e., the text has been written by the author I , and ω2 indi-
cates that the claim is false, i.e., the text is from an impostor.
Differently from the identification problem, where the task
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consists in determining the identity I among all the writers
enrolled in the system, the verification task performs an 1:1
comparison, which makes this kind of approach suitable even
when a huge number of writers should be considered.

One can deal with the writer verification problem in two
different ways. The standard approach, which is often used
for signature verification, consists in building a specific
model for each writer. In this context, different techniques
of classification have been reported in the literature, such
as hidden Markov models [28], distance measures [6,7],
grapheme Clustering [1], dissimilarity [3,30], and Bayes-
ian classifiers [31]. In these cases, some samples of a given
writer are used to model ω1, and some samples of other writ-
ers, chosen randomly, are used to model the forgery class ω2.
The main drawbacks of this approach are the need of learn-
ing the model each time a new writer should be included in
the system and the great number of genuine samples neces-
sary to build a reliable model. In real applications, usually a
limited number of samples per writer is available to train a
classifier, which leads the class statistics estimation errors to
be significant, hence resulting in unsatisfactory verification
performance.

An alternative approach that has been successfully applied
to signature verification have been presented by Bertolini
et al. in [2]. It is based on dissimilarity representation, and
it allows the possibility of adding new writers into the sys-
tem without retraining the models. This strategy is based
on a forensic document examination approach and is called
writer-independent approach as the number of models does
not depend on the number of writers [33]. It has been demon-
strated that through this strategy, it is possible to build robust
verification systems even when few samples per writer are
available.

Regarding the feature extraction methods used in writer
verification systems, they can be classified into local and
global. Local methods [4] are based on specific features
which in general involve a segmentation process, whereas
global techniques [25] are based on the overall look and feel
of the writing. Combining both global and local strategies
has been investigated by some authors [1,30,31], which have
reported interesting results.

In general, local approaches are preferred from the
forensic experts perspective, since they can be based on well-
known graphometric features [16,20]. A fundamental prob-
lem with this approach lies in the difficulties of automatically
segmenting the handwriting into lines, words, and characters
for further feature extraction. To overcome the difficulties
imposed by explicit segmentation strategies, in this work we
propose a global approach for writer verification based on
texture analysis. Such a texture is built based on the inherent
properties of the writer. That is, regardless of the way the text
has been drafted, all connected components are rearranged
into a new space keeping the original slant but reducing the

spaces between lines of text, words, and characters. This
process creates a texture that keeps important features that
enables us to use a global approach, avoiding the complexity
of segmentation. Moreover, it is suitable for both text-depen-
dent and text-independent verification systems.

Since our focus in this work is the texture generation rather
than exploring different texture analysis methods, we decided
to apply a widely used approach to texture analysis, i.e., the
gray-level co-occurrence matrix (GLCM), which have been
extensively validated in several different domains, including
writer identification [5,10,25]. In light of this, several GLCM
were tried out, and those with best performance were con-
sidered in this work. We also show that these results can be
further improved by combining classifiers without the need
for joint training. This combination is based on the maximum
likelihood analysis of the receiver operating characteristics
(ROC) curves of the classifiers.

Regarding the dissimilarity representation, one issue
addressed in this work is the number of writers used to
train the dissimilarity model, in our case, a support vector
machine (SVM) trained to discriminate between genuine and
forgery. We have shown that the size of the training set does
not have an important impact on the overall error rate, but it
has an important role in reducing the false acceptance (error
type II) of the system. Through a set of experiments on a
database composed of 315 writers, we demonstrate that the
proposed approach is feasible. The overall error rate yielded
by the system is about 4% after combining the classifiers.
This performance compares to other methods reported in the
literature. Besides, the combination scheme is able to con-
siderably reduce the false-positive rates while maintaining
the same true-positive rates.

The remaining of this paper is organized as follows:
Section 2 presents the dissimilarity framework proposed in
this work. Section 3 introduces the ROC combination algo-
rithm used in this work. Section 4 describes the database
considered in our experiments. Section 5 shows the pro-
posed texture-based feature sets and classification methods,
while the experimental results and discussions are reported
in Sect. 6. Finally, Sect. 7 concludes this work and points out
some future works.

2 The dissimilarity and writer identification framework

In this section, we describe the proposed framework based on
dissimilarity for writer verification. Our approach is inspired
on forensic experts who compare a questioned sample with
some references to assert whether a piece of handwriting
is genuine or forgery. During this comparison, the experts
extract different features to compute the level of similarity
between the samples being compared [20]. In fact, the work
performed by forensic experts is quite more complex in the
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Fig. 1 The dissimilarity framework proposed for writer verification

sense they decide on the fly, based on their tacit knowledge,
which features from the handwriting they should extract.

The concepts of similarity, dissimilarity, and proximity
have been discussed in the literature from different perspec-
tives [13,23,27]. Pekalska and Duin [23] introduce the idea
of representing the relations between objects through dis-
similarity, which they call dissimilarity representation. The
seminal work using this concept in the field of author identifi-
cation was presented by Cha and Srihari [7]. In this work, we
use the idea of dissimilarity vectors presented by Bertolini
et al. in [2], which combines feature-based description with
the concept of dissimilarity. The idea is to extract the feature
vectors from both questioned and reference samples and then
compute what we call the dissimilarity feature vector. If both
samples come from the same writer (genuine), then all the
components of such a vector should be close to 0, otherwise
(forgery), the components should be far from 0.

Of course, this is totally true under favorable conditions.
As any other feature representation, the dissimilarity feature
vector can be affected by the intra-writer variability. Such a
variability could generate values far from zero when measur-
ing the dissimilarity of genuine writers.

The proposed framework is depicted in Fig. 1. After a
preprocessing step, composed basically of the Otsu thres-
holding algorithm [22], a set of n genuine handwriting sam-
ples, Ri (i = 1, 2, 3, . . . , n) is sent to the feature extraction
module and the feature vectors Vi are stored into a data-
base. Feature extraction is discussed in Sect. 5. When ques-
tioned samples Si are presented to the system, they go through
the same feature extraction process, thus generating the fea-
ture vectors Qi . Then, the dissimilarity feature vectors Zi =
|Vi − Qi | are computed to train a binary classifier, which
provides a decision for each dissimilarity feature vector. The
final decision D depends on the combination of these partial
decisions, which are obtained through a fusion rule. Section 6
discusses how such a combination is performed.

In the remaining of this work, we use several SVM classi-
fiers trained on two features representations (directional and
texture), employ traditional straightforward fusion rules, and
also explore the use of a ROC-based classifier combination
algorithm (described in Sect. 3) as an alternative combination
method.

Fig. 2 2 × 2 confusion matrix

3 Combining classifiers in the ROC space

ROC curves are two-dimensional graphs in which true-
positive rate (TPR) is plotted on the y axis and false-positive
rate (FPR) is plotted on the x axis. Given a decision list and
an instance set, a 2×2 confusion matrix (Fig. 2) can be gener-
ated, representing the classification performance. From this
matrix, four statistics are represented: tp, f p, f n, and tn,
which stand for true-positive, false-positive, false-negative,
and true-negative, respectively.

For a given classifier C , the ROC is a set of points
( f pC (kC ), tpC (kC )) where kC is the parameter that governs
the decision process. A ROC graph depicts relative trade-offs
between benefits (tp) and costs ( f p). Each classifier produces
a ( f p, tp) pair corresponding to a single point in the ROC
space. For an extensive review of ROC, please refer to [9].

Besides being an important tool to analyze and compare
classifiers, ROC also have been used for combining classifi-
ers. In this work, we have used the algorithm introduced by
Haker et al. in [14]. It is based on the calculation of a com-
bined ROC using maximum likelihood analysis to determine
a combination rule for each ROC operating point.

Let us consider the ROC for two different classifiers
A and B and their respective parameters kA and kB . The per-
formance of classifiers CA and CB are represented in the ROC
space by the points, ( f pA, tpA) and ( f pB , tpB), respectively.
Given an input pattern, both classifiers will produce an out-
put either positive (+) or negative (−), giving us a total of
4 possible cases. For each case, we have an expression of
the maximum likelihood estimation (MLE) of the unknown
truth T (Table 1).
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Table 1 Binary output for classifiers A and B and the maximum like-
lihood combination

CA CB Combination MLE for truth T

+ + P(A = 1, B = 1|T = 1) ≥ P(A = 1, B = 1|T = 0)

+ − P(A = 1, B = 0|T = 1) ≥ P(A = 1, B = 0|T = 0)

− + P(A = 0, B = 1|T = 1) ≥ P(A = 0, B = 1|T = 0)

− − P(A = 0, B = 0|T = 1) ≥ P(A = 0, B = 0|T = 0)

Table 2 Binary output for classifiers A and B and the maximum like-
lihood combination

CA CB Combination MLE for truth T

+ + tpAtpB ≥ f pA f pB

+ − tpA(1 − tpB ) ≥ f pA(1 − f pB )

− + (1 − tpA)tpB ≥ (1 − f pA) f pB

− − (1 − tpA)(1 − tpB ) ≥ (1 − f pA)(1 − f pB )

Table 3 Schemes for combining classifiers A and B

CA CB SA&B SA SB SA|B

+ + + + + +
+ − − + − +
− + − − + +
− − − − − −

Each inequality (logical expression) in the rightmost col-
umn evaluates to either + or −, and the resulting value is the
maximum likelihood estimate of the truth T . If conditional
independence is assumed, then P(A = 1, B = 1|T = 1) =
P(A = 1|T = 1)P(B = 1|T = 1) = tpAtpB . Proceed-
ing similarly for the other terms in the rightmost column of
Table 1, we get Table 2.

From the assumptions detailed above, tpAtpB = f pA f pB

and (1 − tpA)(1 − tpB) = (1 − f pA)(1 − f pB), so when-
ever A and B are in agreement, their common output is the
maximum likelihood estimate of T . Thus, the middle two
rows of the Table 2 need to be determined, resulting in one
of four possible MLE combination schemes, which are mne-
monically named schemes “A AND B” (SA&B), “A” (SA),
“B” (SB), and “A OR B” (SA|B). Table 3 summarizes these
schemes.

Using again the assumption of conditional independence,
Table 4 shows how to calculate the false-positive and true-
positive rates for these schemes. In practice, this means that
decision processes can be combined without retraining, since
there is no need to estimate joint distributions for the output
of A and B, nor the need to know the distribution of the
underlying truth T .

As stated before, the classifiers (ROC) A and B are gov-
erned by the parameters kA and kB , respectively. In other

Table 4 FPR and TPR for the combination schemes

Scheme FPR TPR

SA&B f pA f pB tpAtpB

SA f pA tpA

SB f pB tpB

SA|B f pA + f pB − f pA f pB tpA + tpB − tpAtpB

Fig. 3 Illustration of the algorithm proposed by Haker [14]

words, kA and kB are simple thresholds applied to the outputs
sA and sB calculated as part of the A and B decision process.
Thus, A returns the estimate T = 1 if and only if sA > kA.
The same holds for B. Therefore, a new decision rule is neces-
sary for each scheme described so far. Let ϒ be the combined
classifier, created as described above. For a chosen operating
point ( f p, tp) on the ROC for ϒ , we have associated thresh-
olds kA and kB and an associated MLE combination rule.
The new decision rules s for ϒ are defined as function of sA

and sB as follows: min(sA −kA, sB −kB), sA −kA, sB −kB ,
and max(sA − kA, sB − kB)for the schemes SA&B, SA, SB ,
and SA|B , respectively. The combined classifierϒ will assign
“+” when s > 0; otherwise, it will assign “−”. Algorithm 1
shows the pseudo-code for the combined ROC.

To combine classifiers A and B, we compute for each value
of the parameter pair (kA, kB) and corresponding 4-tuple of
FPR and TPR ( f pA, tpA, f pB , tpB) the correct ML scheme
to use according to Table 2 and the resulting combined rates
( f p, tp) for that scheme using the formula described in
Table 4. In practice, discrete values are assumed for kA and
kB by sampling them evenly. Figure 3 shows an example
of what would be a resulting set of points ( f p, tp) for two
example ROCs.

The set of points ( f p, tp) represent possible operating
points for the joint process. However, we do not need to con-
sider all the points since for each point in the interior (the red
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Algorithm 1 ROC Combination
1: FPComb {buffer for combined false positives}
2: TPComb {buffer for combined true positives}
3: for j = 1 to length(F P RA) do
4: for k = 1 to length(F P RB) do
5: f pA = F P RA( j)
6: tpA = T P RA( j)
7: f pB = F P RB(k)

8: tpB = T P RB(k)

9: if (tpA ∗ tpB >= f pA ∗ f pB) AND (∼ (tpA ∗ (1 − tpB) >=
f pA ∗ (1 − f pB))) AND (∼ ((1 − tpA) ∗ tpB >= (1 − f pA) ∗
f pB)) AND (∼ ((1 − tpA) ∗ (1 − tpB) >= (1 − f pA) ∗ (1 −
f pB))) then

10: FPComb(j,k) = f pA ∗ f pB ;
11: TPComb(j,k) = tpA ∗ tpB ;
12: else if tpA ∗ tpB >= f pA ∗ f pB) AND (tpA ∗ (1 − tpB) >=

f pA ∗ (1 − f pB)) AND (∼ ((1 − tpA) ∗ tpB >= (1 − f pA) ∗
f pB)) AND (∼ ((1 − tpA) ∗ (1 − tpB) >= (1 − f pA) ∗ (1 −
f pB))) then

13: FPComb(j,k) = f pA;
14: TPComb(j,k) = tpA;
15: else if (tpA∗tpB >= f pA∗ f pB) AND (∼ (tpA∗(1−tpB) >=

f pA ∗(1− f pB))) AND ((1− tpA)∗ tpB >= (1− f pA)∗ f pB)

AND (∼ ((1 − tpA) ∗ (1 − tpB) >= (1 − f pA) ∗ (1 − f pB)))

then
16: FPComb(j,k) = f pB ;
17: TPComb(j,k) = tpB ;
18: else if (tpA ∗ tpB >= f pA ∗ f pB) AND (tpA ∗ (1 − tpB) >=

f pA ∗ (1− f pB)) AND ((1− tpA)∗ tpB >= (1− f pA)∗ f pB)

AND (∼ ((1 − tpA) ∗ (1 − tpB) >= (1 − f pA) ∗ (1 − f pB)))

then
19: FPComb(j,k) = f pA + f pB − f pA ∗ f pB ;
20: TPComb(j,k) = tpA + tpB − tpA ∗ tpB ;
21: end if
22: end for
23: end for

ones in Fig. 3) there is a point on the outer boundary of the
region which is superior, and thus a better operating point.
For example, there is a point on the boundary which has the
same FPR and a greater TPR. Such points form the combined
ROC. In practice, the outer boundary ROC can be estimated
by splitting the interval [0,1] into a number of sub-intervals
i.e., bins, and within each bin finding the pair ( f p, tp) having
the largest value of tp [9].

4 Database

The database used in this investigation is the Brazilian
Forensic Letter Database [11], which is composed of 315
writers, three samples per writer, summing up 945 images.
The motivation for using such database is the growing inter-
est of the Brazilian forensic experts as well as the Brazilian
Federal Police in writer verification.

The samples were provided by undergraduate students in
three different sessions during one month. The texts were
collected on an A4 white sheet of paper with no pen-draw
baseline and then scanned in gray level with 300 dpi (3760 ×

2448). Each writer was allowed to use his/her own pen, which
means that several different pens were used. The text is con-
cise (131 words) and complete in the sense that it contains all
characters (letters and numerals) and certain character com-
binations of interest. This makes it suitable for text-dependent
writer identification as well. Figure 4 shows (a) the letter con-
tents and (b) a image sample of the database. More details
about this database1 can be found in [11].

As discussed in the introduction, in this work we argue
that it is possible to identify discriminant features from the
texture created by concatenating the writer’s handwriting. In
this vein, a new database of image textures was build to sup-
port further experiments. More details about the technique
used to build the textures are presented in Sect. 5. The texture
database is composed of 15 (5 textures × 3 letters) images
per writer, summing 4,725 texture images.

Considering the dissimilarity-based approach adopted in
this work, the classifiers should be trained to discriminate
between genuine (positive) and forgeries (negative). To gen-
erate the positive samples, we have computed the dissimi-
larity vectors among three genuine samples of each writer
(one segment of texture extracted from each letter), which
results into three different combinations. The negative sam-
ples were generated by computing the dissimilarity between
one sample of one author against one sample of three other
authors picked randomly. This also results into three different
combinations.

The 315 writers of the database were divided into training
and testing. Four different partitions for training were con-
sidered: 25, 50, 100, and 200 writers. The idea is to analyze
the impact of the number of writers used for training in the
overall performance. The remaining 115 were used for test-
ing. It is important to remark that different writers were used
for training and testing. Considering 50 writers and three
textures segments for training, we would have 150 (3 × 50)
positive samples and 150 (3 × 50) negative samples. Figure 5
exemplifies this process.

In Fig. 5a, Va, Vb, and Vc are the reference feature vectors
extracted from the reference images (e.g., texture segments)
for a given writer. Based on these three vectors, three dis-
similarity vectors (Z1, Z2, and Z3) are computed. These are
positive (genuine) dissimilarity vectors, which are expected
to have components close to 0. A similar process is depicted
in Fig. 5b to create the negative (forgery) dissimilarity vec-
tors. In this case, the reference feature vectors are compared
with feature vector of other authors picked randomly, and it
is expected that they have components far from 0.

Regarding the testing set, we have picked 115 writers
randomly to use as random forgeries. To build a balanced test-
ing set, two letters from each author were selected randomly.

1 The database is available under request for research purposes. To
obtain a copy, please send an email to lesoliveira AT inf.ufpr.br.
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Fig. 4 Brazilian Forensic letter database: a the letter contents and b an image sample

Fig. 5 Dissimilarities a among genuine samples of the same writer to generate the positive samples and b among genuine samples from different
writers to generate the negative samples

Therefore, each writer of the testing set has one genuine letter,
represented by 5 pieces of texture, and one random forgery,
also represented by 5 pieces of texture.

5 Features

It is well known that the choice of the features is a crucial
aspect for any pattern recognition problem. For writer verifi-

cation, it is not different. However, when dealing with hand-
writing, one must rely on features that have well-established
scientific basis. This is an important issue especially if the
writer verification system is used to support a legal decision
in a court of justice.

In light of this, forensic document examiners (FDE)
usually rely on graphology to perform writer verification.
Graphology can be defined as the study and analysis of hand-
writing especially in relation to human psychology. A branch

123



Writer verification using texture-based features 219

of the graphology is the psychometrical graphology or graph-
ometry. This is the term used to describe the technique of
picking up psychic impressions about a person from a spec-
imen of their handwriting [21]. The graphometrical features
can be classified into genetic and generic. The genetic fea-
tures are: minimal graphics (i dots, commas, cedillas, tildes,
etc.), pressure, speed, entry/exit strokes, and movement. The
generic features are: caliber, spacing between characters and
words, proportion, slant, and alignment to baseline.

Gobineau and Perron [12] elaborated a theory of graph-
ometry or, more exactly, a statistical method of the graphic
elements. In their work, they propose more than 60 features
but choose 14 which they deem essential and easy to extract.

Some of the concepts of graphology have been intrinsi-
cally used to build automatic signature verification systems
by several different authors [17,18], but few works [26] have
applied the graphology concepts to writer verification. This is
because the extraction of graphometric features in the context
of writer verification is not straightforward. The main prob-
lems are related to the difficulties of segmenting the hand-
writing into lines, words, and characters for further feature
extraction. Consider the examples depicted in Fig. 6 where
problems such as (a) overlapping and (b) skew are impor-
tant issues for any segmentation algorithm. Besides, Fig. 6c
shows a piece of a illegible text which is not so difficult
to segment, but it is not so rich in terms of graphometric
features.

To surpass these problems, in this work, we proposed a
segmentation strategy based on the inherent properties of the
writer. That is, regardless of the way the text has been drafted,
the segmentation process will rearrange all connected com-
ponents into a new space keeping the original slant but reduc-
ing the spaces between lines of text, words, and characters.
In the end, the segmentation process will produce a texture
image that still contains the main characteristics of the writ-
ing style.

The segmentation process is straightforward. First, the im-
age is binarized using Otsu algorithm and then scanned top-
down, left-right, to detect all the connected components of the
image. The 8 adjacency was considered in this work. Small
components such as periods, commas, strokes, and noise are
discarded at this time. The bounding box of the remaining
components are then used to extract the original components
of the gray-level image. The components in gray level are
then aligned with the new image using the center of mass of
the bounding box. Figure 7a exemplifies this process.

After filling the first line, we compute the average height of
all connected components used in such a process. This value
is used to define the y-coordinate of the next line, which is
given by

new_y = previous_y + h

2
(1)

where previous_y is the y-coordinate used to fill the previous
line (in the case of the first line a constant k = 150 was used)
and h is the average height of all connected components used
to fill the previous line. Reducing the gap between the lines
by dividing h by two allows us to build more representative
textures; otherwise, the texture will contain too much blank
spots, like in Fig. 7b. This denominator was found empiri-
cally. Figure 8 shows an example of the texture created from
the original gray-level letter. As mentioned previously, the
final texture image representing the writer’s handwriting is
finally segmented into equal blocks of 256 × 256 pixel.

The letters of the database used in this work allow us to
generate up to nine blocks of texture. However, if smaller
documents were considered, it will be impossible to get the
same number of blocks. To make the proposed method less
dependent of the size of the document, we decide to use only
five blocks per letter.

This segmentation schemes differs from the ones pre-
sented in the literature [5,25] in the sense that there is no
preprocessing such as slant correction which are necessary
for line segmentation. Besides making the segmentation sim-
pler, the proposed texture generation method also keeps some
features such as skew and slant. Figure 9 shows that different
textures can be created for different handwriting styles.

In Fig. 9a, different calibers, which is the relationship
between height and width, can be observed. Words with
smaller caliber produce less-overlapped texture than those
with larger caliber. Figure 9b shows the progression where
slow writers usually yield more legible texts than fast writers.
In Fig. 9c, the proportion among ascenders, descenders, and
the main body of the words is presented. Alike words with
big caliber, high ascenders and descenders will create a more
dense texture.

Pressure is related to the changing width of a line as pen
pressure on paper varies. High pressure will produce darker
textures, while low pressure will produce lighter textures, as
depicted in Fig. 9d. Entry/End points are related to how a
writer starts of finishes a character or word. This feature is
known as characteristic gesture and usually very difficult to
find by means of a computer program. In a texture (Fig. 9e),
bigger entry/end points (strokes) may produce more white
spaces. Finally, Fig. 9f shows different slants produced by
different writers, which are clearly captured by the texture.

5.1 Feature extraction

After producing the textures from the handwritings, the next
step is to choose a suitable descriptor that is capable of pro-
viding measures such as smoothness, coarseness, and regu-
larity. As stated before, our choice was to apply a widely used
approach to feature analysis, the GLCM. A GLMC is the joint
probability occurrence of gray-level i and j within a defined
spatial relation in an image. That spatial relation is defined in
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Fig. 6 Problems faced during feature extraction a overlapping, b skew, and c illegible text

Fig. 7 The texture generation process. a Filling a line and b spaced texture

Fig. 8 Original letter and texture blocks
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Fig. 9 Some observable features in the texture image

terms of a distance d and an angle θ . Given a GLMC, some
statistical information can be extracted from it. The most
common descriptors were proposed by Haralick [15] and
have been successfully used in several application domains,
including writing verification/identification [5,10,25]. In this
work, we have used the following five descriptors, which pro-
vided the best preliminary results:

Entropy = −
n∑

i=0

m∑

i=0

p(i, j) × log(p(i, j)) (2)

Homogeneity =
n∑

i=0

m∑

i=0

p(i, j)/(1 + |i − j |) (3)

Dissimilarity =
n∑

i=0

m∑

i=0

p(i, j) × |i − j | (4)

Inverse variance =
n∑

i=0

m∑

i=0

p(i, j)/(i − j)2, i �= j (5)

Energy =
√√√√

n∑

i=0

m∑

i=0

p(i, j)2 (6)

In that case, p(i, j) is the probability of co-occurrence of
gray-level i and j observing consecutive pixels at distance d
and angle θ .

Based on these measures, five different feature sets were
extracted. Each of them contains 20 components, which are
the combination of five distances (d = 1, 2, 3, 4, 5) and four
angles (θ = 0, 45, 90, 135). Longer distances and different
angles were tried out during our experiments, but these val-
ues brought us the best results. The features are normalized
between 0 and 1 using the min-max rule.

6 Experiments and discussion

Our experiments are divided into three parts. First, we ex-
plore the use of directional features extracted from both

original and texture images. Then, we discuss different
texture descriptors extracted from the GLCM and the impacts
of the number of writers on the overall error rate. Finally, we
report the experiments concerning the combination of clas-
sifiers using the ROC-based classifier combination strategy
described in Sect. 3.

In all experiments, support vector machines (SVM) were
used as classifiers. Training is done using fivefold cross-
validation. Different kernels were tried, but the best results
were achieved using a Gaussian kernel. Parameters C and
γ were determined through a grid search. The overall error
rate that has been used for evaluation purposes in this work
is given by Eq. 7.

Overall Error Rate = f p + f n

tp + tn + f p + f n
(7)

One of the limitations with SVMs is that they do not work
in a probabilistic framework. There are several situations
where it would be very useful to have a classifier producing a
posterior probability P(class|input). In our case, as depicted
in Fig. 1, we are interested in the estimation of probabili-
ties because we want to try different fusion strategies like
sum, max, min, average, and median. Due to the benefits of
having classifiers estimating probabilities, many researchers
have been working on the problem of estimating probabilities
with SVM classifiers [24,32]. In this work, we have adopted
the strategy proposed by Platt in [24].

6.1 Experiments with directional features

Before reporting the experiments using texture-based fea-
tures, first we present some results using one of the tradi-
tional characteristics used by FDEs. According to the experts
[16,20], a given writer takes some directions more frequently
and more intensively than others. Therefore, the cumulative
distribution of such directions is an important and discrim-
inative feature of the writer. The directional features have
been implemented as suggested by Crettez [8]. The feature
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Table 5 Comparison between texture-based and directional features

Descriptor Type I Type II Overall error
error (%) error (%) rate (%)

Directional (original—5 blocks) 10.6 34.6 22.6

Directional (original—3 blocks) 10.3 34.1 22.2

Directional (texture) 6.9 12.1 9.5

vector is composed of 17 components containing a histogram
of 17 directions ranging from 0 to 180 degrees.

The experimental protocol aforementioned, using 50 writ-
ers for training, was used into two different experiments. In
the first case, the letters were segmented into 5 blocks of
800 × 600 pixels and then the features were extracted from
these sub-images. In the second experiment, we extracted
the features from five blocks of textures. The size 800 × 600
was the maximum size that allowed us to created five distinct
pieces with handwriting information in all of them. In spite
of the large size of the original image (3760 × 2448), some
writers use just part of the sheet with the handwriting, which
makes it impossible to extract more blocks of handwriting.

Using five blocks in both cases allows us to keep the same
experimental protocol, i.e., combining five outputs to pro-
duce a final decision. However, it is fair to argue that this
is not a complete honest comparison since the five original
blocks of handwriting contain less information than the tex-
ture blocks. With this in mind, we increased the size of the
original blocks to 1200 × 600 pixels, thus reducing the num-
ber of blocks to three. Experimental results show that using
larger blocks has almost no impact in the overall error rate.
Table 5 compares these experiments.

It is worth of noticing that when the directional features
were extracted from the texture images, the overall error rate
was about 13% points smaller than the features computed on
the original images. This can be explained by the fact that the
texture images (Fig. 10a) contain more information so more
representative histograms can be created. From Fig. 10b, it
is easy to observe that segmenting the original letter can pro-
duce images with several blank spots (Fig. 10a), thus pro-
ducing less discriminative feature vectors.

6.2 Experiments with texture features

Concerning the experiments using the texture descriptors
introduced in Sect. 5.1, the first (baseline) experiment we
have performed used 50 writers for training and the entire
testing set, i.e., 115 writers, for testing. The original texture
images with 16 gray levels were considered. Regarding the
fusion rule responsible for combining the results produced
by the SVM on the three dissimilarity feature vectors, in our
experiments the sum rule outperformed all the other meth-

Fig. 10 Images used to compute directional histograms. a texture and
b original

Table 6 Results achieved by the baseline system

Descriptor Type I Type II Overall error
error (%) error (%) rate (%)

Entropy 4.0 8.7 6.35

Homogeneity 5.7 9.2 7.5

Dissimilarity 12.7 41.9 27.3

Inverse variance 7.5 24.8 16.2

Energy 6.0 8.7 7.4

ods. For this reason, it was used in all remaining experiments
discussed in this section. Table 6 reports the results for the
baseline system.

As we can observe from Table 6, those descriptors that
look for the homogeneity of the texture such as entropy and
homogeneity achieved smaller overall error rates. In all cases,
though, the type II error is higher than type I Error, which is
not interesting since in a verification system, it is desirable
to reduce as much as possible the false acceptance.

After analyzing the baseline results and the co-occurrence
matrices created with 16 gray-level images, we observed that
the elevated number of gray levels did not bring enough dis-
criminant information for the handwriting textures. With this
in mind, we investigated the impact of reducing the number
of gray levels until we get binary images. Table 7 shows the
results of these experiments.

From Table 7, we can conclude that binary images are
the best representation for handwriting textures when using
co-occurrence matrices. In fact, the gray-level information
contained in the letter images are not relevant. All the fea-
tures discussed previously are available in the binary texture,
which has been demonstrated through these experiments.
Figure 11 shows the ROC curves for all the descriptors trained
with binary images. As we can see, their performance is quite
similar differing only for some operational points in the ROC
space. The area under the curve (AUC), which is used very
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Table 7 Impacts of reducing the number of gray levels

Descriptor Overall error rate (%)

Gray-levels

16 8 4 2

Entropy 6.3 6.1 5.8 5.2

Homogeneity 7.5 8.4 7.2 6.7

Dissimilarity 27.3 27.0 6.9 5.9

Inverse variance 16.2 19.2 6.9 5.9

Energy 7.4 6.7 6.6 5.5

often to compare classifiers, is practically the same for all the
classifiers (AUC � 0.98).

Another experiment we performed in this work regards
the number of writers used in the training set. It is worth of
remembering that in the dissimilarity approach the writers
used for training are not used for testing. This is one of the
benefits of this approach since we can add new writers into
the system without retraining the classifier. This being said,
this experiment aims at verifying the impacts of increasing
the number of writers in the training set. In other words, is
50 writers enough to train a robust machine learning model
based on dissimilarity? For these experiments, we have used
the same protocol used so far but considering only the binary
images, which achieved the best results in the previous exper-
iments. Since we have 200 writers available in the training
set, we doubled the number of writers for each experiment
starting from 25 writers. Table 8 reports the results.

The experiments reported in Table 8 show that increasing
the number of writers does not necessarily reduce the overall
error rate. However, if we take a closer look, we will notice
a trade-off between the number of writers used for training

and the performance of error types I and II. By increasing
the number of writers for training, we sure build more robust
models against false acceptance. From the ROC depicted in
Fig. 12, it is possible to notice that the classifier trained with
200 writers dominates all the others for low FPR, but after a
certain level, it is surpassed by the others. Table 9 shows the
trade-off between the size of the training set and error types
I and II for the classifier trained with the entropy feature set.
The same phenomenon was observed for all other feature
sets.

6.3 Combining classifiers in the ROC space

A final experiment concerns the combination of classifiers
using the strategy described in Sect. 3. The objective here
is to improve the trade-off between false rejection and false
acceptance by combining the classifiers through the max-
imum likelihood analysis of the ROC classifiers. We have
done different experiments, but the setup that brought more
improvement was the combination of classifiers trained with
entropy and homogeneity descriptors. Figure 13 shows all
the ( f p, tp) pairs generated by Haker’s algorithm and the
combined ROC classifier as well.

As discussed in Sect. 3, the red dots in Fig. 13 represent
all possible operating points for the joint process. As stated
before, we do not need to consider all the points, since for
each point in the interior there is a point on the outer bound-
ary of the region which is superior and thus a better operating
point.

It is clear from Fig. 13 that such a combination can con-
siderably reduce the FPR while maintaining the same TPR.
Using the combined ROC, for a TPR of 0.95 the correspond-
ing FPR is 0.008. For the same TPR, entropy and homo-
geneity produce a FPR of 0.056 and 0.087, respectively.

Fig. 11 Receiver operating characteristics comparing all descriptors a original b zoom on lower FPR
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Table 8 Impacts of increasing the number of writers in the training set

Descriptor Overall error rate (%)

Number of writers

25 50 100 200

Entropy 5.8 5.2 5.0 5.9

Homogeneity 6.3 6.7 5.9 6.6

Dissimilarity 5.8 5.9 6.0 5.5

Inverse variance 5.8 5.9 6.0 5.5

Energy 5.7 5.5 4.6 5.2

Fig. 12 ROC comparing different sizes of the training set

Table 9 Trade-off between the size of the training and error types I and
II for the classifier trained with the entropy feature set

Number of writers Type I Type II Overall
in the training set error (%) error (%) error rate (%)

25 2.1 9.5 5.8

50 2.4 7.8 5.1

100 4.3 5.7 5.0

200 7.8 4.0 5.9

It is important to remember, though, that this algorithm re-
lies on the assumption of conditional independence. In other
words, the combined ROC is the upper-bound that could be
achieved if both entropy and homogeneity classifiers were
conditionally independents. In terms of recognition rate, the
upper-bound would be 97.1%, since the pair ( f p, tp) that
maximizes performance is (0.008, 0.95). Considering that
the testing set contains 575 (115 × 5 references) positive
and 575 negative samples, 97.1% = ((575 × 0.95)+ (575 −
(575 × 0.008))/1150)

Fig. 13 Entropy and homogeneity combined in the ROC space

However, in practice, the performance observed during the
experiments was 96.1%, i.e., an overall error rate of 3.9%.
This corroborates to the fact that the classifiers we have used
in this work do not hold the assumption of conditional inde-
pendence. Nevertheless, the algorithm still brought about 1%
point of improvement. This proves that it can be applied even
when there is no guarantee of conditional independence.

Still, in the context of combining classifiers, we have used
both classifiers (entropy and homogeneity) and combined
them at the feature level. In this case, the SVM classifiers
were trained with a feature vector composed of 40 texture
descriptors, and the same experimental protocol described
so far has been followed. The best overall error rate we got
using this combination strategy was 5.2%.

To have a better insight into the performance of the results
reported so far, Table 10 summarizes some works we found in
the literature on writer verification/identification. Of course,
a direct comparison is not possible since different databases,
number of writers, features, classifiers, and samples per
writer were considered. Our approach, for example, uses a
full page of handwriting instead of segmented words and
paragraphs. In spite of all that, it is possible to observe that
the performance reported in this work compares to the state
of the art.

7 Conclusion

In this work, we have proposed a writer verification system
that takes into account texture-based features and a dissim-
ilarity representation. The texture of the handwriting was
created based on the inherent properties of the writer. Inde-
pendent of the writing style, the proposed method reduces
the spaces between lines, words, and characters, producing
a texture that keeps important characteristics of the writing
style. This enables us to use a global approach, avoiding the
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Table 10 Performance of
different methods reported in
the literature

Reference Writers Data Samples/ Sample Classifier Features Perf.
writer size (%)

[25] 40 25 Text blocks kNN Gabor filters 95.3

[19] 20 IAM 5 Paragraph kNN, Slant, Width, 90.7

Neural net. Height, etc.

[33] 100 CEDAR 3 156 words Neural net. Macro and micro 94.0

features

900 CEDAR 3 156 words 87.0

[1] 150 IAM 2 Paragraph Hypothesis Graphemes 86.0

testing

150 FSI 1 107 words 97.0

[29] 100 IAM 5 Paragraph HMM Global and local 98.4

features

[30] 650 IAM 2 Paragraph Distances Graphemes and 89.0

directional features

[31] 50 IAM 2 Paragraph Distances Global and local 94

features

complexity of segmentation. The overall error rate achieved
by the system trained with texture descriptors was about 13
percentage points smaller than the system trained with clas-
sical characteristics such as directional features. Besides, the
handwriting texture can be used together with other features,
e.g., directional features, improving their results.

We also demonstrate the impacts of increasing the number
of writers for training in the proposed system. We have seen
that the size of the training set does not have an important
impact on the overall error rate, but it has an important role
in reducing the false acceptance of the verification system.
Based on these findings, it is reasonable to suggest a bigger
training set when the requirements of the verification system
demand small FPR. On the other hand, the number of writer
in the training set can be relaxed, thus reducing the false
rejection. Finally, we have demonstrated that it is possible to
considerably reduce the FPR for a fixed TPR by combining
the ROC produced by two different classifiers through the
maximum likelihood analysis.

These results suggest that some kinds of writer selection
process could be interesting to build better dissimilarity mod-
els for writer verification. Using those writers that feature
excessive variability in his/her handwriting may not be help-
ful to build a stable machine learning model. Another aspect
worth of investigation is the impact of the number of refer-
ences used to perform the verification. Both issues will be
subject of further investigation.
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