
IJDAR (2013) 16:127–137
DOI 10.1007/s10032-012-0185-9

ORIGINAL PAPER

Handwritten digit segmentation: a comparative study

F. C. Ribas · L. S. Oliveira · A. S. Britto Jr. ·
R. Sabourin

Received: 6 July 2010 / Revised: 13 February 2012 / Accepted: 9 March 2012 / Published online: 28 March 2012
© Springer-Verlag 2012

Abstract In this work, algorithms for segmenting handwrit-
ten digits based on different concepts are compared by eval-
uating them under the same conditions of implementation.
A robust experimental protocol based on a large synthetic
database is used to assess each algorithm in terms of cor-
rect segmentation and computational time. Results on a real
database are also presented. In addition to the overall per-
formance of each algorithm, we show the performance for
different types of connections, which provides an interesting
categorization of each algorithm. Another contribution of
this work concerns the complementarity of the algorithms.
We have observed that each method is able to segment sam-
ples that cannot be segmented by any other method, and do so
independently of their individual performance. Based on this
observation, we conclude that combining different segmenta-
tion algorithms may be an appropriate strategy for improving
the correct segmentation rate.

1 Introduction

In spite of the efforts made over the past two decades, the
recognition of handwritten digit strings is still an open prob-
lem. One of the main bottlenecks in this kind of system is

F. C. Ribas · A. S. Britto Jr.
Pontifical Catholic University of Parana (PUCPR),
R. Imaculada Conceição, 1155, Curitiba, PR 80215-901, Brazil

L. S. Oliveira (B)
Federal University of Parana (UFPR), Rua Cel. Francisco H. dos
Santos, 100, Curitiba, PR 81531-990, Brazil
e-mail: lesoliveira@inf.ufpr.br

R. Sabourin
Ecole de Technologie Superieure, 1100 rue Notre Dame Ouest,
Montreal, QC, Canada

the segmentation module, which reads a string of characters
(usually digits, but sometimes non-digits can appear, in bank
check processing systems, for example) and segments them
into isolated characters. The main problem is a lack of con-
text, that is, usually we do not know the number of characters
in the string and so the optimal boundary between them is
unknown.

Segmentation algorithms can be divided into two classes:
segmentation–recognition, and recognition-based [2]. In the
former, the segmentation module provides a single sequence
hypothesis where each sub-sequence should contain an iso-
lated character, which is submitted to the recognizer. In the
latter, the algorithm yields a list of segmentation hypotheses
and then assesses each of them through the recognition pro-
cess. The literature shows that this kind of approach produces
good results, but is computationally expensive, since all the
hypotheses generated must be evaluated. Moreover, the rec-
ognition module has to discriminate different patterns, such
as fragments, isolated characters, and connected characters.
In this strategy, segmentation can be explicit or implicit. In
the explicit methods, segmentation is performed prior to rec-
ognition, which producing candidate characters for the rec-
ognizer. In contrast, in the implicit methods, segmentation is
embedded in the recognition process and is performed simul-
taneously with recognition (Fig. 1).

In recent years, several algorithms have been proposed
for explicit segmentation. They normally take into consider-
ation a set of heuristics and information of the foreground
[7,10,12,18,23], background [4,13,16], or a combination of
these, [3,15] in order to generate potential segmentation cuts.
The main drawbacks of most of these algorithms are the large
number of cuts, which must be evaluated by the recognition
algorithm, and the number of heuristics that must be set. A
way to reduce the number of segmentation cuts has been
proposed by Vellasques et al. [22].

123



128 F. C. Ribas et al.

Fig. 1 Variability of connections between handwritten digits

Fig. 2 Methods for segmentation and recognition of digit strings
(adapted from [18])

In order to avoid explicit segmentation and the complexity
of setting several heuristics, some authors have tried implicit
segmentation to recognize strings of digits [1,17]. The litera-
ture has shown that explicit segmentation has achieved better
results, but implicit segmentation offers very interesting per-
spectives. The main drawback of implicit segmentation is its
high sensitivity to slanted images, which makes the use of a
pre-processing step obligatory, in order to correct the slant.
Figure 2 depicts the various methods for the segmentation
and recognition of digit strings.

In reviewing the literature, we find various algorithms
for handwritten digit segmentation. A direct comparison,
though, is not a trivial task. On the contrary, it may not even
be feasible. The main obstacle in this case is the database used
during the experiments, which can range from specific forms,
to the bank checks of different countries (Canada, France,
Brazil, USA, etc.), to subsets of publicly available databases
such as NIST-SD19, CEDAR, and so on. Moreover, the num-
ber of data used can range from a few hundred to thousands.
Also, the computational cost, which can be expressed by the
number of segmentation hypotheses produced by the algo-
rithm, is very often neglected. In some cases, especially in
real-time applications, this is a very important issue that can
determine the success or failure of an handwriting recogni-
tion system.

In this work, we compare various explicit segmentation
algorithms. In order to avoid implementing a huge number of
algorithms, we selected those we deemed the most different,
in terms of the features and ideas used to produce the segmen-
tation cuts. We then assess them for performance, number of
segmentation hypotheses produced, and processing time.

Regarding performance, we are interested not only in the
global performance, but also the performance of each algo-
rithm on the different types and locations of connections.
We believe that this categorization will be a useful contri-
bution to the development of more intelligent segmentation

algorithms. For example, if we know a priori the type of con-
nection we are dealing with, we can choose the most suitable
segmentation algorithm. To make this kind of investigation
possible, we created a database of 79,966 images of touching
pairs, and manually labeled them with respect to the type and
location of the connection. These images were extracted from
the synthetic database proposed in [14], and they represent
realistic scenarios of connected handwritten digits where cur-
sive writing is usually involved. To demonstrate the usability
of the synthetic data for research purposes, we applied the
segmentation algorithms on a real database, composed of
2,369 images of connected pairs extracted from NIST SD19.
We show that the results on both real and synthetic data are
very similar.

The second aspect we investigate here concerns compu-
tational cost. Very often, promising results are reported in
the literature, but important details, such as the number of
segmentation cuts produced, the number of heuristics, and
the amount and complexity of the features used to yield the
cuts, are omitted. Besides this comparative study, we also
show that the use of different features provide a high degree
of complementarity which can be used to build more reliable
segmentation systems. The experimental results show that all
the algorithms combined can produce a correct segmentation
rate of 99.57 % considering the ideal case based on an oracle.

This paper is structured as follows. Section 2 surveys sev-
eral different segmentation algorithms reported in the litera-
ture. Section 3 presents the database in which the algorithms
were assessed. Section 4 shows the assessment methodology
we have applied. Section 5 reports all the experimental results
and discusses them. Finally, Sect. 6 concludes this work.

2 Segmentation algorithms

In this section, we review several segmentation algorithms
proposed in the literature in the last few years. We show how
the algorithms fit into the taxonomy depicted in Fig. 2 and
report the number of images used for testing and their accu-
racy. More aspects of the algorithms are reported at the end
of this section in Table 1. We believe they provide a good
coverage of the main underlying algorithmic approaches.

Fujisawa et al. [9] propose a recognition-based algorithm
that detects all the connected components (CC) of the image
and classifies each of them as an isolated digit or into a string
of digits. This classification is based on the horizontal length
of the CC. In other words, if the horizontal length of the
CC is greater than a threshold T , then it is considered as a
string of digits (≥2). To segment touching digits, the algo-
rithm first splits the contour information into upper and lower
contours. Then it computes an approximate measure of verti-
cal width and assigns potential segmentation points to those
locations where this measure exceeds a given threshold ht .

123



Handwritten digit segmentation: a comparative study 129

Table 1 Comparison of different segmentation algorithms

References Primitives Ligatures Pre-proc Pre-class ≥2 OverSeg Approach Data Size Perf. (%)

[8] Contour No No No Yes No Rec-based ZIP codes 450 94.9

[9] Contour No No Yes No Yes Rec-based Proprietary 920 95.0

[4] Skeleton
(background)

No No Yes No Yes Seg-then-Rec Proprietary 120 80.8

[20] Contour No Yes No No No Seg-then-Rec USPS 212 94.2

[19] Contour Yes No No No Yes Seg-then-Rec CEDAR 1,966 80.8

[13] Skeleton
(background)

No No No No No Seg-then-Rec NIST, proprietary 3,355 92.5

[3] Skeleton
(background,
foreground)

Yes Yes No No No Seg-then-Rec NIST, proprietary 4,500 96.0

[23] Contour,
concavities

No Yes No Yes No Seg-then-Rec NIST SD19 3,287 94.8

[15] Contour profile No No No Yes Yes Rec-based Brazilian bank
cheques

900 98.5

[10] Contour,
concavities

No Yes Yes No No Rec-based NIST SD19 3,500 92.5

[16] Reservoir No No Yes No No Seg-then-Rec French bank
cheques

2,250 94.8

[6] Skeleton, contour Yes Yes No No No Seg-then-Rec NIST, CEDAR,
proprietary

− 96.0

[11] Contour No Yes Yes Yes Yes Rec-based NIST SD19 3,359 97.72

[21] Skeleton Yes Yes No No No Seg-then-Rec NIST SD19 2,000 88.7

[18] Skeleton
(background,
foreground)

Yes Yes Yes Yes Yes Rec-based NIST SD19 5,000 96.5

This algorithm treats images with touching loops differently,
such as “0–0”, “8–8”, and “0–9.” It divides the inner loops
into two groups (left and right) and computes the distance
between them. If this distance is greater than a threshold D,
the algorithm produces a segmentation cut.

All segmentation cuts are produced using line segments
connecting the segmentation points. Thereafter, all segmen-
tation points are used to build a segmentation graph. The best
segmentation hypothesis is the shortest path of the graph,
which is computed using some thresholds on the size of the
CCs. The authors have tested their algorithm on a proprietary
dataset composed of 46 most frequent touching pairs. Twenty
samples per class were considered summing up 920 images.
Pairs of digits with touching multiple times were not used.
The authors reported a correct segmentation rate of 95 %.

The method proposed by Shi and Govindaraju [19] con-
sists of segmentation followed by recognition, based on the
observation that touching points and ligatures between two
digits reveal that the chaincode contour makes significant
right turns at each point of touching. The segmentation cuts
are then defined by the most significant right turn points,
along with their opposite contour point. The method assumes
that the touching pair is free of slant. The final segmentation
point is then determined using a vertical histogram and a set
of heuristics. This method was evaluated on a database of

1,966 images of pairs of digits from the CEDAR database.
The authors reported a correct segmentation rate of 78 %.

Fenrich and Krishnamoorthy [8] used a very simple rec-
ognition-based algorithm based on two primitives, namely,
vertical histogram projection and contour information (peaks
and valleys). These primitives inspired other authors [11,12,
15,20]. The algorithm first attempts to segment the string
using vertical histogram projection. The column with the
minimal value becomes a candidate for a vertical split
through the component. If the minimal value is larger than
a stroke width threshold or the candidate cut crosses two
or more vertical runs, the cut is aborted. If the histogram
produces no segmentation cuts, then the second part of the
algorithm uses upper and lower contours of the components
to define the segmentation cuts. If a peak of the lower con-
tour and a valley of the upper contour can be connected with
a line segment that satisfies slope thresholds, then a piece-
wise linear split is made. If they cannot be connected, then
a straight line is used to produce the segmentation cut. The
authors reported a correct segmentation rate of 94.9 % on 450
images of ZIP Codes.

An alternative approach to segmenting touching digits has
been presented by Chen and Wang in [3]. The algorithm
they describe also uses a segmentation/recognition approach,
theirs combining background and foreground analysis to

123



130 F. C. Ribas et al.

segment handwritten numeral strings that touch single or
multiple times. The foreground and background regions on
the image of connected numeral strings are first thinned, and
the feature points on foreground and background skeletons
are extracted. Several possible segmentation paths are then
constructed and ligatures are removed. Finally, the parame-
ters of the geometric properties of every possible segmenta-
tion path are determined, and these parameters are analyzed
by a mixture of Gaussian probability functions to decide on
the best segmentation path or rejection of a path. Similar
approaches can be found in [4,13]. The authors used 4,178
images from the NIST SD19 database and another 322 pro-
prietary images. The main drawback of this kind of approach
is the computational cost, since both background and fore-
ground skeletons should be created. The authors report a cor-
rect segmentation rate of 96 % on 4,500 images of the NIST
Database.

The segmentation/recognition algorithm presented by Yu
and Yan [23] uses the morphological structural technique
to segment strings of digits. The preprocessing step involves
smoothing, linearization and detection of the structural points
of the image contours, which are used to define the segmen-
tation cuts. If a string contains more than two numerals, the
region of the left two numerals of this string is determined
first. In this way, the process of separating a string consisting
of more than two numerals is reduced to that of separating
a string of two numerals. After a separation, the separated
string is processed with the same method until there is no
region left that contains at least two numerals. The algorithm
is implemented with a huge set of rules and a considerable
number of heuristics. The algorithm was assessed on 3,287
images extracted from the NIST database. The correct seg-
mentation rate ranges from 85 to 95 %, depending on the
string length. Another approach using similar features is pre-
sented by Kim et al. [10].

The method proposed by Pal et al. [16] is similar to the
previous methods, in that, it first classifies the image into
isolated or touching digits. It also uses a segmentation/rec-
ognition strategy. Since they use background information, no
preprocessing is necessary. The rationale behind this algo-
rithm is that, when two digits touch each other, they create
a large space, also known as a “reservoir,” between the dig-
its. According to the authors, such a space is very important
because it concentrates the extraction of cutting points essen-
tially around the reservoir, reducing the search area. First, the
positions and sizes of the reservoirs are analyzed and a res-
ervoir is detected where touching occurs. Considering the
type (top or bottom reservoir) and its features, the touching
position (top, middle, or bottom) is ascertained. Then, based
on the touching position and the analysis of the profile of the
reservoir, the initial feature points for segmentation are deter-
mined. Considering closed loops, reservoir heights, and the
distance from the component center, the initial feature points

are ranked and the best feature point (highest ranking point) is
noted. Finally, based on touching position, closed loop posi-
tions and the morphological structure of the touching region,
the cutting path is generated. As a result, the algorithm pro-
vides one segmentation cut for a touching pair. The algorithm
was evaluated on a database of 2,250 images extracted from
a French bank cheque database. The performance reported
was a 94.8 % rate of correct segmentation.

Elnagar and Alhajjb [6] designed a segmentation/recogni-
tion algorithm to split pairs of digits that takes a binary image
as input and then applies normalization, preprocessing, and
thinning processes prior to segmentation. The authors argue
that, although thinning is computationally expensive, it is
essential to obtain uniform stroke width that simplifies the
detection of feature points. Since all thinning algorithms cre-
ate spurious points, a noise reduction technique is needed to
filter out some of these points. Segmentation is performed
using features extracted from the skeleton and contour. A
set of heuristics is defined to determine the most probable
segmentation cuts. As a result, the algorithm produces a sin-
gle segmentation cut. The author tested their algorithm on
images from the CEDAR and NIST databases, and reported
a correct segmentation rate of 96 %. The number of images
used in the tests was not mentioned.

Suwa and Naoi [21] proposed a segmentation/recogni-
tion algorithm to segment strings of digits, which takes as
input the skeleton of the image. From this skeleton, edges
and vertices are extracted and the pattern is represented as a
connected graph. Potential segmentation points are located
based on the peaks and valleys of the upper and lower parts
of the skeleton. The segmentation path is computed through
graph theory techniques and heuristic rules. The algorithm is
designed to detect and remove ligatures using the algorithm
described in [6]. According to the authors, the segmented dig-
its have a more natural shape than can be achieved using algo-
rithms that split patterns using straight lines or line segments.
Experimental results on 2,000 images from the NIST SD19
database were used in their experiments, and they achieved
a correct segmentation rate of 88.7 %.

Sadri et al. [18] describe a combination of a recogni-
tion-based algorithm and a genetic algorithm. After gener-
ating various segmentation hypotheses, the search algorithm
attempts to identify the most suitable one according to a pre-
defined fitness function. Before detecting the segmentation
points, the algorithm classifies the connected components
into three classes: parts of digits, isolated digits, or pairs
of digits. A connected component is considered a touching
digit if it is considerably larger than higher. Segmentation
cuts are generated based on the skeleton. Both the fore-
ground and the background skeleton are used to construct
the segmentation paths. Thereafter, all segmentation hypoth-
eses are combined into a segmentation graph, and a genetic
algorithm is used to search among all the possible outputs

123



Handwritten digit segmentation: a comparative study 131

of such a graph. The authors report a performance of 96.5 %
on 5,000 touching pairs extracted from the NIST SD19 data-
base.

Table 1 summarizes the segmentation algorithms dis-
cussed in this section. The following aspects are considered:

• Primitives: main primitives used to build segmentation
hypotheses.

• Ligatures: identifies and removes ligatures between dig-
its.

• Pre-processing: involves all the tools used before segmen-
tation, such as smoothing, thinning, normalization, slant
correction.

• Pre classification: identifies algorithms that detect if a
given image contains a single digit or touching digits. If
this step fails, two different kind of error may occur, that
is, an attempt was made to segment an isolated digit, or
a string of digits lacked segmentation points.

• ≥2: indicates that the authors are reporting results for
strings of digits with more than two digits.

• Over segmentation: algorithm that produces several seg-
mentation hypotheses.

• Approach: Recognition or Segmentation/Recognition.
• Data: Database considered.
• Size: Number of images used in the experiments.
• Perf: Correct segmentation rate reported.

3 Database

The database used in this work was first introduced by
Oliveira et al. in [14]. It was generated based on 2,000
isolated digits extracted from the hsf_0 series of NIST SD19.
The main goal of this database was to provide a common cat-
alog for evaluating segmentation algorithms, but, in the long
run, it could be useful for training a segmentation-free system
like the one proposed in [5]. It is important to mention that
the 2,000 images used to create it were correctly recognized
by the classifier described in [15], a multi-layer perceptron
that uses a 132-dimensional feature vector based on con-
cavities and contour information. This issue is relevant for
assessing the segmentation, and it will be further discussed in
subsequent sections. The algorithm responsible for building
the synthetic database is very simple, and is based on two
rules:

1. It connects only digits produced by one writer. The infor-
mation about the writer is provided in NIST SD19. Fifty
different writers were considered.

2. The reference axis along which the digits slide is the
center line.

The aim of these rules is to avoid unreasonable connec-
tions (e.g., very small digits connected to very big ones) and

Fig. 3 Samples extracted from the synthetic database

Fig. 4 Example of the ground truth generated by the algorithm. a The
ground truth information, b the starting and ending points

Fig. 5 Types of connected numeral strings proposed in [3]

Fig. 6 False ligature

make the synthetic data more real. As depicted in Fig. 3,
the touching pairs represent realistic scenarios of connected
handwritten digits where cursive writing is usually involved.

In addition to the image, the algorithm also produces its
ground truth, which contains the label of the image, and the
starting and ending coordinates of the optimal segmentation
paths (P = {p1, p2, . . . , pn}). Figure 4a shows an example
of the ground truth file. The first line indicates the label of
the image, while the second and third indicate the starting
and ending coordinates of the optimal segmentation paths
(p1 and p2 in this case). Figure 4b shows the points in the
corresponding image.

Besides, the image were labeled to identify the type of
touching, following the classification technique proposed by
Chen and Wang [3] (Fig. 5). However, the algorithm pro-
posed in [14] does not generate samples with ligatures (type
IV), since they do not belong to the digit itself.

123



132 F. C. Ribas et al.

Fig. 7 a Database distribution and b problems faced when connecting the digit “1”

Table 2 Distribution of the database regarding the type of connection

Connection type %

I 34.8

II 53.6

III 1.6

V 10.0

In very few cases, though, do we have anything resem-
bling a ligature, as depicted in Fig. 6. As we can see, this
stroke is not really a ligature, since it clearly belongs to the
digit “0”. After connecting the two digits, it looks like a lig-
ature. The few cases where this was observed were labeled
as type 1 connections.

Figure 7a shows how the 79,966 samples in the database
are distributed into the 100 classes of touching pairs, which
correspond to the possible combinations of two digits. Some
of the classes involving the digit 1 still contain fewer samples
than other classes. Owing to the American style of handwrit-
ing, the digit 1 is very often with the other digit in the pair.
Figure 7b illustrates this problem with samples that were
manually removed from the database.

Table 2 shows the distribution of the database based on the
type of connection. This database is available upon request
for research purposes.1

4 Evaluation methodology

As reported in Sect. 2, several different segmentation algo-
rithms have been proposed in the literature.

The ideal comparative study would involve having access
to the source code of all the algorithms. We tried that without
success, however. Some algorithms were developed a long

1 http://web.inf.ufpr.br/vri/touching-digits.

Fig. 8 Segmentation points: a ground truth with six segmentation
points and three segmentation paths and b segmentation path created
by a segmentation algorithm and both segmented digits

time ago and others were developed by companies with no
interest, for obvious reasons, in sharing their source code.
Instead of comparing all the algorithms found in the litera-
ture, we decided to implement those that use different fea-
tures or strategies to generate the segmentation points. In this
context, the algorithms selected were the ones proposed by
Fujisawa et al. [9], Shi and Govindaraju [19], Fenrich and
Krishnamoorthy [8], Chen and Wang [3], Pal et al. [16], and
Elnagar and Alhajajj [6]. It is worth noting that the algo-
rithms were implemented based on the information provided
by the authors in their respective publications. Very often
the heuristics used by the algorithms are not discussed in the
works, however, and in those cases, we defined them empir-
ically using a validation set composed of 500 images. The
remaining 79,466 were used for testing.

4.1 Assessment criteria

As stated before, we are interested in comparing the perfor-
mance of the algorithms in terms of correct segmentation
and also computational cost. Since we have the coordinates
of all the optimum segmentation cuts, it seems obvious that
we should compare the segmentation points produced by the
algorithms with the ground truth. However, depending on the
way this comparison is performed, we may face problems.

123

http://web.inf.ufpr.br/vri/touching-digits


Handwritten digit segmentation: a comparative study 133

Consider, for example, the touching pair depicted in Fig. 8a.
In this case, the ground truth is composed of six segmentation
points (three segmentation paths). Now, a segmentation algo-
rithm can produce a single segmentation path (Fig. 8b) that
is able to split the 2-digit string into two isolated digits. In
spite of the fact that this segmentation is different from the
ground truth, both digits can be classified as the number 3.

It is clear, therefore, that using only the ground truth infor-
mation is not ideal for assessing the segmentation cuts. To
overcome this problem, we used a classifier to recognize the
segmented pieces.

To guarantee that the digits are correctly classified when
the segmentation algorithm produces the best segmentation
path (the closest to the ground truth), we used only isolated
digits that are correctly classified by the classifier to build
the database of touching digits. In addition, we performed
a visual inspection to guarantee that errors caused by the
OCR engine are not introduced at this level. In this analy-
sis, we checked for both Type I and Type II errors. In the
first case, we looked for instances where the classifier gave
the incorrect recognition for the correct segmentation, while
in the second case, we looked for cases where the classi-
fier gave the correct recognition for the incorrect segmenta-
tion.

We are interested in knowing whether or not the seg-
mentation cuts produced by the algorithms are good ones,
independently of their number. For the algorithms based on
the segmentation/recognition approach, this task is straight-
forward, since there is only one hypothesis to be assessed.
For those algorithms based on over segmentation, we have
to evaluate all the cuts. If we find two digits among
the hypotheses (using classification) corresponding to the
ground truth, we consider that the segmentation was suc-
cessful. If we send only the best (the closest to the ground
truth) segmentation cuts for classification, that is, the ones
closest to the ground truth, we will risk classification
issues, since digits produced by a bad segmentation cut
can be recognized with a higher probability/score by the
classifier than those generated by the correct (ground
truth) segmentation cut. We believe that the assessment
strategy adopted here is fair, since the deficiencies of
the classifier will not penalize the segmentation algo-
rithms.

Regarding cost, the metric used was the computational
time. Since we implemented all the algorithms using the
same coding standard and the tests were performed on the
same hardware, we believe this is a valid metric that can
provide good insight into the complexity of each algo-
rithm. Even if we do not assess all the segmentation cuts,
in the case of over segmentation, we provide the num-
ber of segmentation cuts produced by those algorithms,
which is the important information for recognition-based
systems.

5 Experiments and discussion

All the algorithms were implemented in C++, and the exper-
iments were performed on a PC with an Intel Core 2 Duo, a
speed of 1.6 Ghz, 2 Gb of RAM, and Ubuntu Linux 8.04. With
respect to the computational time, in this work, we are inter-
ested only on the time spent to produce the segmentation cuts.
In the following paragraphs, we present some implementa-
tion details, as well as the performance of each algorithm.
For all the algorithms, we report the overall performance,
as well as the performance for each type of segmentation,
remembering that Type IV connections are not considered
in the database. In all the experiments, the number of digits
contained in each piece of test data is assumed to be known.

The method presented by Fujisawa et al. [9] classifies the
image into isolated or touching digits before segmentation.
Since we have only touching digits in our database, this step
was skipped. The algorithm uses a threshold called Hx to
identify touching-region candidates. In our experiments, we
used Hx = 17 (the value defined empirically on the vali-
dation set). The overall performance of this algorithm was
89.85 %, and it achieved 95.45, 91.27, 83.57, and 63.72 % for
Type I, II, III, and V connections respectively. It generates
3.66 (±0.6) segmentation cuts in 0.4 ms, on average, which
makes it one of fastest of the algorithms we implemented.
Incidentally, the authors argue that this algorithm was not
designed to segment Type V connections.

The worst overall performance was achieved by the
method proposed by Shi and Govindaraju [19]. In this work,
the authors use a threshold (THR) to identify a significant
right turn, and hence the potential for segmentation. In our
experiments, THR = 75 was used (a value defined empiri-
cally on the validation set). The performance for Type I, II,
III, and V connections were 68.31, 59.72, 60.35, and 25.44 %
respectively. The average performance of this algorithm was
59.30 %. The average time to produce a segmentation cut is
1.2 ms.

The algorithm described by Fenrich and Krishnamoorthy
[8] produces 4.07 (±0.5) segmentation cuts in 3.9 ms, on
average. In spite of its simplicity, this algorithm achieves an
interesting overall performance of 92.37 %. The performance
for Type I, II, III, and V connections was 97.54, 93.79, 99.45,
and 65.57 % respectively. However, it is surpassed by other
segmentation algorithms for certain connection types.

The segmentation algorithm proposed by Chen and Wang
[3] produces the best overall performance, but it is the most
expensive in terms of computational time and the num-
ber of segmentation hypotheses. It generates, on average,
45.4 (±24) segmentation cuts per image in about 74.8 ms.
Unlike the other algorithms discussed so far, the computa-
tional time varies considerably, depending on the type of
connection. For Type V, for example, it takes about 100 ms
on average. Besides, this method makes extensive use of the

123



134 F. C. Ribas et al.

Fig. 9 a Performance of the segmentation algorithms on different connection types and b average processing time

Table 3 Summary of the segmentation algorithms

Method Performance (%) Connection type (%) Segmentation Time
cuts (ms)

I II III IV

Fusijawa et al. [9] 89.85 95.45 91.27 83.57 63.72 3.66 0.4

Shi and Govindaraju [19] 59.30 68.31 59.72 60.35 25.44 1 1.2

Fenrich and Krishnamoorthy [8] 92.37 97.54 93.79 99.45 65.57 4.07 3.9

Chen and Wang [3] 93.80 97.87 94.23 97.55 76.76 45.40 74.8

Pal et al. [16] 71.21 73.96 74.69 80.09 41.52 1 0.7

Elnagar and Alhajajj [6] 67.34 63.88 71.51 56.40 58.73 1 7.5

skeletonization process (background and foreground), which
contributes to the high computational cost. In order to select
the best segmentation hypothesis, the authors trained a mix-
ture of Gaussians using 823 images, although this filtering
process was not implemented in our experiments. The Chen
and Wang algorithm achieves the best overall performance
of 93.80 %, and its performance for Type I, II, III, and V con-
nections was 97.87, 94.23, 97.55, and 76.76 % respectively.

The most innovative set of features developed recently was
proposed by Pal et al. [16]. The authors use the concept of the
reservoir. The method is quite fast, finding the optimal seg-
mentation point in about 0.7 ms on average. Like the method
presented by Fujisawa et al. [9], this method also classifies
the image into isolated or touching digits prior to segmenta-
tion. As before, this process was not considered. The average
performance of this algorithm was 71.21 %, while the per-
formance for connections of Type I, II, III, and V was 73.96,
74.69, 80.09, and 41.52 % respectively.

The algorithm proposed by Elnagar and Alhajajj [6]
achieved an overall performance of 67.54 %. It attempted to
find the segmentation points using the skeleton of the image.
To do so, they used 32 different configurations of a mask,
and this has a considerable impact on the computational time

(7.5 ms to segment an image). The authors argue that this pro-
cess can be parallelized, though. The performance for con-
nections of Type I, II, III, and V was 63.88, 71.51, 56.40, and
58.73 % respectively.

In Fig 9a, the performances of all the algorithms. for each
connection type are compared, and in Fig. 9, their average
processing times are compared. Table 3 summarizes these
algorithms.

As stated before, recognition-based algorithms such as the
ones described in [3,8,9] produce better , but their process-
ing time should be multiplied by the number of segmentation
hypotheses, which increases exponentially as a function of
the number of segmentation cuts. Figure 10 exemplifies this
problem: The segmentation algorithm produces four cuts,
leading to 15 classifier calls.

For this reason, some authors have investigated the use
of filters to reduce the number of segmentation hypotheses
[22]. As mentioned before, Chen and Wang [3] trained a mix-
ture of Gaussians to reduce the huge number of segmentation
hypotheses created by their algorithm. Of course, there is a
cost involved in filtering these points, but it should be con-
siderably less expensive than using the classifier to assess all
the segmentation hypotheses.

123



Handwritten digit segmentation: a comparative study 135

Fig. 10 Segmentation hypotheses created by four segmentation cuts

To put this into context, consider the algorithm proposed
by Chen and Wang [3]. Using their filter, which ultimately
provides only one segmentation hypothesis, that is, the classi-
fier has to evaluate only two digits. For the sake of simplicity,
we are abstracting all the complexity and processing time of
such a filter. Consider also the algorithm proposed by Fenrich
and Krishnamoorthy [8] which is considerably faster than
the one proposed in [3]. However, the former yields about
four (3.6) segmentation cuts, which means 15 classifier calls

as against two yielded by the latter. Considering the classi-
fier used in our work, which takes about 28 ms (using the
hardware specified above) to classify a given image, the final
processing time required to segment and classify a connected
pair of digits would be 423 ms and 130 ms for Fenrich and
Krishnamoorthy and Chen and Wang respectively. Of course,
the classification process can be parallelized and the classi-
fier optimized. Nevertheless, this is an important issue that
should be considered during specification of a recognition
system.

So far we have compared the algorithms in terms of per-
formance and cost. However, there is another facet of these
results that can be explored, which is combining the seg-
mentation algorithms. As we can see in Fig. 9a and Table
3, some algorithms are better than others, depending on the
connection type.

In this context, Table 4 shows the number of images cor-
rectly segmented given a number of algorithms. For exam-
ple, “2/6” means that 2,976 images are correctly segmented
by only two of the six segmentation algorithms used. The
label “0/6” means that no algorithm was able to segment
344 images (i.e., 0.43 % of the images). Table 4 presents this
analysis for each type of connection.

In the last line of Table 4, the label “Oracle” means that at
least one algorithm was able to segment a given image. As
we can see, by combining all segmentation algorithms, we
can reach a correct segmentation rate of 99.57 %, which is

Table 4 Images correctly segmented given a number of algorithms

Total % Type I % Type II % Type III % Type V %

0/6 344 0.43 3 0.01 178 0.42 0 0.00 163 2.05

1/6 1,233 1.55 37 0.13 535 1.26 2 0.16 659 8.30

2/6 2,976 3.74 257 0.93 1,173 2.75 24 1.90 1,522 19.18

3/6 7,083 8.91 1,748 6.32 3,281 7.70 105 8.29 1,949 24.56

4/6 16,090 20.25 5,765 20.85 8,050 18.89 327 25.83 1,948 24.55

5/6 27,749 34.92 10,784 38.99 15,190 35.65 483 38.15 1,292 16.28

6/6 23,991 30.19 9,062 32.77 14,202 33.33 325 25.67 402 5.07

Oracle 79,122 99.57 27,653 99.99 42,431 99.58 1,266 100 7,772 97.95

Table 5 Distribution of the images that were correctly segmented by only one algorithm (“1/6”)

Algorithm Total % Connection types

I % II % III % V %

Fenrich and Krishnamoorthy [8] 236 19.14 8 21.62 130 24.30 2 100 96 14.57

Chen and Wang [3] 337 27.33 12 32.43 129 24.11 0 0 196 29.74

Fujisawa et al. [9] 269 21.82 14 37.84 82 15.33 0 0 173 26.25

Pal et al. [16] 44 3.57 1 2.70 16 2.99 0 0 27 4.10

Shi and Govindaraju [19] 67 5.43 2 5.41 26 4.86 0 0 39 5.92

Elnagar and Alhajajj [6] 280 22.71 0 0.00 152 28.41 0 0 128 19.42

Total 1,233 100 37 100 535 100 2 100 659 100

123



136 F. C. Ribas et al.

Table 6 Distribution of the database regarding the type of connection

Connection %

type Synthetic Real

I 34.8 57.7

II 53.6 31.7

III 1.6 6.1

IV − 3.0

V 10.0 1.5

Comparison between synthetic and real data

considerably better than the best algorithm. This result shows
that the algorithms rely on complementary features and there-
fore can be further combined to yield a more reliable segmen-
tation. Concerning complementarity, Table 5 details the line
“1/6” of Table 4 where the images were correctly segmented
by only one algorithm.

Table 5 allows us to observe that, independently of their
individual performances, each algorithm is responsible for
correctly segmenting a specific subset of images of the data-
base. Another interesting point worth noting is that, even
though it achieves the worst individual performance, the
algorithm proposed by Elnagar and Alhajajj [6] performs
well for a subset of images. Of the 1,233 images correctly
segmented by only one algorithm, this one is responsible for
22.71 % of them. As in the classification task, where weak
classifiers can be used to build more reliable ensembles, the
experiments reported here show that combining segmenta-
tion algorithms can also contribute to building more efficient
handwriting recognition systems.

The results presented in Tables 4 and 5 can be seen as
an oracle, in the sense that if a suitable combination scheme
is employed, this would be the upper limit for this database
using these algorithms. This combination can be made to be
static, by cascading all the algorithms, or dynamic, by using
the information about the nature of the touching in the pairs
to select the best algorithm. Of course, this is not a trivial
task owing to the huge variability of the algorithms; how-
ever, it could be an interesting way to create more reliable
and efficient segmentation modules.

After analyzing the experiments reported so far, one ques-
tion arises: Do the synthetic data present the same degree
of segmentation difficulty that we find in real databases?
To answer this question, we designed an experiment where
the six algorithms were used to segment 2,369 images of
touching pairs extracted from the well-known NIST SD
19 database. Table 6 shows the distribution of the con-
nection types for the real data. For the sake of compari-
son, we show the numbers presented in Table 2 as well.
As stated before, the synthetic data does not have Type IV
connection.

Table 7 Performance of the segmentation algorithms on the touching
pairs extracted from NIST SD19

Algorithm Correct segmentation (%)

Fujisawa et al. [9] 88.9

Shi and Govindaraju [19] 62.3

Fenrich and Krishnamoorthy [8] 96.9

Chen and Wang [3] 96.8

Pal et al. [16] 82.3

Elnagar and Alhajajj [6] 72.3

The results of the correct segmentation are reported in
Table 7. As we can see, the performance achieved in this
dataset is similar to the performance reported in Table 3. The
slightly better performance achieved on the real dataset by
most algorithms can be justified by the fact that it contains
more images of Type I, which are easier to segment.

6 Conclusion

In this work, we have compared various segmentation algo-
rithms of the explicit type. We selected those algorithms that
we deemed most different, in terms of the features and ideas
used to produce the segmentation cuts. Then, these algo-
rithms were assessed for performance and cost using the
same experimental protocol on 79,966 synthetic images and
2,369 real images extracted from the NIST_SD19 database.
The proposed evaluation criteria provided the global per-
formance of each algorithm, as well as their performance
on four different types of connections. The experimental
results show that these algorithms achieve similar perfor-
mances on both databases, which qualifies the synthetic data-
set as a viable alternative for benchmarking segmentation
algorithms.

During the evaluation, we observed that, independently
of the overall performance, each method is able to segment
some samples that cannot be segmented by any other method.
It corroborates the argument that even a method with low
overall performance can contribute to building a more reli-
able segmentation system.

As we have demonstrated, this kind of analysis also con-
stitutes a useful contribution to identifying complementar-
ity among the segmentation algorithms, which can be used
to develop more intelligent systems. The main challenge in
building such an intelligent system lies in the correct identifi-
cation of the connection types, which certainly is not a trivial
task.

Acknowledgments This research has been supported by The National
Council for Scientific and Technological Development (CNPq) grant
301653/2011-9.

123



Handwritten digit segmentation: a comparative study 137

References

1. Britto, A.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: The recogni-
tion of handwritten numeral strings using a two-stage HMM-based
method. IJDAR 5, 102–117 (2003)

2. Casey, R., Lecolinet, E.: A survey of methods and strategies in
character segmentation. IEEE Trans. PAMI 18(7), 690–706 (1996)

3. Chen, Y.K., Wang, J.F.: Segmentation of single- or multiple-touch-
ing handwritten numeral string using background and foreground
analysis. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1304–
1317 (2000)

4. Cheriet, M., Huang, Y.S., Suen, C.Y.: Background region based
algorithm for the segmentation of connected digits. In: Proceed-
ings of the 11th International Conference on Pattern Recognition,
pp. 619–622 (1992)

5. Choi, S., Oh, I.: A segmentation-free recognition of two touch-
ing numerals using neural networks. In: Proceedings of 5th Inter-
national Conference on Document Analysis and Recognition
(ICDAR), pp. 253–256, Bangalore, India (1999)

6. Elnagar, A., Alhajj, R.: Segmentation of connected handwritten
numeral strings. Pattern Recognit. 36(3), 625–634 (2003)

7. Fenrich, R.: Segmentation of automatically located handwritten
words. In: Proceedings of 4th IWFHR, pp. 33–44 (1991)

8. Fenrich, R., Krishnamoorthy, S.: Segmenting diverse quality hand-
written digit strings in near real-time. In: Proceedings of 5th USPS
Advanced Technology Conference, pp. 523–537 (1990)

9. Fujisawa, H., Nakano, Y., Kurino, K.: Segmentation methods for
character recognition: from segmentation to document structure
analysis. Proc. IEEE 80, 1079–1092 (1992)

10. Kim, K.K., Kim, J.H., Suen, C.Y.: Segmentation-based recogni-
tion of handwritten touching pairs of digits using structural fea-
tures. Pattern Recognit. Lett. 23(1), 13–21 (2002)

11. Lei, Y., Liu, C.S., Ding, X.Q., Fu, Q.: A recognition based sys-
tem for segmentation of touching handwritten numeral strings. In:
Proceedings of 9th International Workshop on Frontiers of Hand-
writing Recognition (IWFHR), Tokyo, Japan (2004)

12. Lethelier, E., Leroux, M., Gilloux, M.: An automatic reading sys-
tem for handwritten numeral amounts on french checks. In: Pro-
ceedings of 3rd International Conference on Document Analysis
and Recognition, pp. 92–97 (1995)

13. Lu, Z., Chi, Z., Siu, W., Shi, P.: A background-thinning-based
approach for separating and recognizing connected handwritten
digit strings. Pattern Recognit. 32, 921–933 (1999)

14. Oliveira, L.S., Britto, A.S. Jr., Sabourin, R.: A synthetic database
to assess segmentation algorithms. In: Proceedings of 8th Inter-
national Conference on Document Analysis and Recognition, pp.
207–211 (2005)

15. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Auto-
matic recognition of handwritten numerical strings: a recogni-
tion and verification strategy. IEEE Trans. Pattern Anal. Mach.
Intell. 24(11), 1438–1454 (2002)

16. Pal, U., Belaid, A., Choisy, C.: Touching numeral segmentation
using water reservoir concept. Pattern Recognit. Lett. 24, 261–
272 (2003)

17. Procter, S., Elms, A.J.: The recognition of handwritten digit strings
of unknown length using hidden markov models. In: Proceedings
of 14th International Conference on Pattern Recognition, pp. 1515–
1517 (1998)

18. Sadri, J., Suen, C.Y., Bui, T.D.: A genetic framework using con-
textual knowledge for segmentation and recognition of handwritten
numeral strings. Pattern Recognit. 40, 898–919 (2007)

19. Shi, Z., Govindaraju, V.: Segmentation and recognition of con-
nected handwritten numeral strings. Pattern Recognit. 30(9), 1501–
1504 (1997)

20. Strathy, N.W.: A method for segmentation of touching handwrit-
ten numerals. Master’s thesis, Concordia University, Montreal,
Canada, Sept 1993

21. Suwa, M., Naoi, S.: Segmentation of handwritten numerals by
graph representation. In: Proceedings of 9th International Work-
shop on Frontiers of Handwriting Recognition (IWFHR), Tokyo,
Japan (2004)

22. Vellasques, E., Oliveira, L.S., Britto, A.S. Jr., Koerich, A.,
Sabourin, R.: Filtering segmentation cuts for digit string recog-
nition. Pattern Recognit. 41(10), 3044–3053 (2008)

23. Yu, D., Yan, H.: Separation of touching handwritten multi-numeral
strings based on morphological structural features. Pattern Recog-
nit. 34(3), 587–598 (2001)

123


	Handwritten digit segmentation: a comparative study
	Abstract
	1 Introduction
	2 Segmentation algorithms
	3 Database
	4 Evaluation methodology
	4.1 Assessment criteria

	5 Experiments and discussion
	6 Conclusion
	Acknowledgments
	References


