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Abstract: This work evaluates some strategies to approximate the performance of a dynamic 
ensemble selection method to the oracle performance of its pool of weak classifiers. For this 
purpose, we evaluated different distance metrics in the K-nearest-oracles (KNORA) method, the 
use of statistics related to the class accuracy of each classifier in the pool and some additional 
information calculated by using a clustering process in the validation dataset. Moreover, different 
strategies are also evaluated to combine the results of the KNORA dynamic ensemble selection 
method with the results of its built-in K-nearest neighbour (KNN) used to define the 
neighbourhood of a test pattern during the ensemble creation. A strong experimental protocol 
based on more than 60,000 samples of handwriting digits extracted from NIST-SD19 was used to 
evaluate each strategy. The experiments have shown that the fusion of the KNORA results with 
the results of its built-in KNN is a very promising strategy. 
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1 Introduction 

The classification task is used in different applications in 
image processing (Silva et al., 2009; Nicoletti and Bertini, 
2007). The objective of a classification algorithm is to 
assign a specific class among different possible ones to a 
given instance not previously seen (unknown sample). To 
allow a classifier to perform this non-trivial task with high 
accuracy, different aspects must be considered during the 
classifier construction, such as: the complexity of the 
problem; the feature extraction, the quality of the training 
set; the dimensionality of the feature space; the number of 
involved classes; and the amount of training samples  
(Ko, 2007). 

Ranawana (2006) cited that, often, the construction of a 
perfect classifier for any task is almost impossible. Thus, an 
alternative has been to construct an ensemble of them. This 
is based on the idea that different classifiers make errors on 
different samples (Ko et al., 2008). It has been investigated 
by Brown et al. (2005), Kittler et al. (1998), Kuncheva and 
Whitaker (2003), Opitz and Maclin (1999), Pekalska et al. 
(2004), Webb and Zheng (2004) and Zouari et al. (2004). 
The use of more than one classifier is named on the 
literature as multiple classifier system (MCS) or ensemble 
of classifiers (EoC). The researches have shown that the 
diversity among the classifiers of an ensemble contributes to 
improve the general classification accuracy. The diversity 
may be obtained by using different machine learning 
algorithms, different organisation of the training data, or 
even different configuration of the feature space for the 
same problem. 

In EoC, from an initial pool of trained classifiers, it is 
possible to select the classifier, or a subset of classifiers, that 
will be used to classify a given unknown sample. Two 
strategies have been used: 

a the static selection, where the best classifier (or subset 
of classifiers) for all samples is selected from the initial 
pool 

b the dynamic selection, where for each unknown sample 
a specific classifier (or subset of classifiers) that seems 
to be more appropriated is selected. 

In this paper, we focus on the dynamic selection. Different 
approaches have been proposed for dynamic classifier 
selection in the literature (Cao et al., 1995; Didaci et al., 
2005; Didaci and Giacinto, 2004; Giacinto and Roli, 1999; 
Woods et al., 1997). In a dynamic selection, the classifier is 
chosen and assigned to the sample based in different 
features or different decision regions. Popular examples of 
these methods are a priori selection, a posteriori selection, 
overall local accuracy (LCA) and local class accuracy 
(OCA) (Didaci et al., 2005; Didaci and Giacinto, 2004; 
Giacinto and Roli, 1999; Woods et al., 1997). Recently, we 
can find interesting methods for dynamic selection of EoCs, 
as follows: 

• The dynamic overproduce-and-choose strategy (Santos 
et al., 2008), which is divided into two phases: a phase 
of overproduction where it is generated a pool of 
candidate classifiers and the selection phase, where 
different combinations of subsets removed from the 
pool are tested. 

• The use of accuracy and diversity to build ensembles 
(Santana et al., 2006), where the classifiers (in a group 
of neighbours) are ordered in decreasing order of 
accuracy (rank) and in increasing order of diversity. It 
is selected the classifiers more diverse among the 
classifiers more accurate. 
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• The adaptive classifier ensemble selection based on 
group method of data handing (Xiao and He, 2009), in 
which a classifier ensemble is selected for each test 
pattern from the initial pool of classifiers and also the 
combination weights among the classifiers in the 
ensemble is determined. 

• The linear random oracle (Kuncheva and Rodrígues, 
2007), where each classifier in the set has a subset with 
two classifiers and an oracle, which is a random linear 
function. When a new object comes to be classified, the 
oracle to a respective classifier decides which 
subclassifier use. Then, the class chosen for each 
subclassifier is subjected to the rule of combining 
results. 

• The K-nearest-oracles (KNORA) method (Ko et al., 
2008), which considers the neighbourhood of the test 
patterns in the validation set to select the classifiers to 
compose the ensemble. 

The aforementioned methods select a subset of classifiers 
from an initial pool. In such schemes, the ideal selection 
should always provide the correct subset of classifiers, i.e., 
the subset of classifiers that recognises the class of the 
unknown sample, if any. This is related to the oracle 
concept, which can be used as the possible upper limit of 
classification accuracy, defined as the ratio of samples that 
is correctly classified by at least one classifier in the pool to 
all samples. Thus, methods of dynamic selection usually 
have their performances compared with the oracle accuracy. 

In this paper, we focus in the investigation of some 
strategies to approximate the performance of a dynamic 
ensemble selection method to the oracle performance of its 
pool of weak classifiers. Proposed in Ko et al. (2008), the 
KNORA uses a K-nearest neighbour (KNN) to find the K 
nearest neighbours of a test pattern (to be recognised) in a 
feature space, where we know the classifiers of the pool that 
correctly classify each sample. Then, different strategies are 
used to select these classifiers to compose an ensemble that 
will be used to classify the test pattern. The selection 
strategies are related with the ability of each classifier in 
recognising the neighbours of the test sample. 

The results reported in Ko et al. (2008) were very 
promising. Therefore, our investigation considers the 
KNORA method applied in a handwriting numeral 
recognition problem. The objective is to evaluate different 
strategies trying to improve the recognition rates of the 
KNORA method, based on oracle information. The 
following strategies are investigated: 

• Since the KNORA method uses the Euclidian distance 
to define the neighbourhood of a test sample, the first 
question to be answered is: How the use of different 
distance metrics in KNORA method may affect the 
recognition rates? To answer this question the use of 
different distance metrics will be investigated. 

• Since a classifier in the initial pool is chosen to 
compose the ensemble to recognise a specific sample 
based on its accuracy in recognise the sample 

neighbourhood, another point that can be investigated is 
related to the class recognition accuracy of each 
classifier in the pool. Here, the questions are: 
a Are the statistics related to the class recognition 

accuracy calculated for the pool of classifiers 
important in the classification task of KNORA? 

b May the use of a clustering scheme, where each 
test sample may be addressed to a cluster, for 
which we know the frequency of each class, be 
used as additional information to improve the 
KNORA performance? 

• Finally, may the use of additional information provided 
by the KNN used to select the K nearest neighbours of 
the test pattern in the KNORA method be interesting to 
improve the KNORA final results? To answer this 
question, we will evaluate different strategies to 
combine the KNN used to select the K nearest 
neighbours of the test pattern in the KNORA method 
with the final KNORA results. 

This paper is organised into five sections. Section 2 presents 
the KNORA ensemble selection method and its schemes. 
Section 3 describes the four strategies evaluated: different 
distance metrics; additional information about the classifier 
accuracy; additional information about the class frequency 
inside the clusters; and the fusion of KNN and KNORA. 
The experimental results are presented in Section 4, while 
the conclusion and further works may be found in Section 5. 

2 KNORA dynamic ensemble selection method 

The KNORA is a dynamic ensemble selection method 
proposed by Ko et al. (2008). It considers the 
neighbourhood of the test pattern in the validation set to 
select the classifiers to compose the ensemble. For a given 
test pattern, it locates the K neighbours in the validation set. 
Since we know which classifiers in the pool can recognise 
each sample in the validation set, an EoCs can be 
dynamically selected to label the given test pattern. 
Different schemes have been proposed: 

• KNORA-Eliminate: given K neighbours xj, 1 ≤ j ≤ K, of 
a test pattern X, and supposing C(j), 1 ≤ j ≤ K, a set of 
classifiers that correctly classifies all its KNNs, then 
every classifier ci ∈ C(j) should submit a vote on the 
sample X. In the case where no classifier can correctly 
classify all the KNNs of the test pattern, find the 
classifier that correctly classifies more neighbours in K. 
Then, only use the classifiers that recognise this number 
of neighbours. On the left side in Figure 1, test pattern 
is shown as a hexagon, validation data points are shown 
as circles and the five nearest validation points are 
darkened. On the right side, the used classifiers in the 
intersection of correct classifiers are darkened. 

• KNORA-Union: given K neighbours xj, 1 ≤ j ≤ K, of a 
test pattern X, and supposing that the j-nearest 
neighbour has been correctly classified by a set of 
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classifiers C(j) 1 ≤ j ≤ K, then every classifier ci ∈ C(j) 
should submit a vote on the sample X. Note that, since 
all the KNNs are considered, a classifier can have more 
than one vote if it correctly classifies more than one 
neighbour. The more neighbours a classifier recognise, 
the more votes this classifier will have for a test pattern. 
On the left side in Figure 2, test pattern X is shown as a 
hexagon, validation data points are shown as circles, 
and the five nearest validation points are darkened. On 
the right side, the used classifiers in the union of correct 
classifiers are darkened. 

• KNORA-Eliminate-W: this scheme is the same as 
KNORA-Eliminate, but each vote is weighted by the 
Euclidean distance between the neighbour pattern xj and 
the test pattern X. 

• KNORA-Union-W: this scheme is the same as 
KNORA-Union, but each vote is weighted by the 
Euclidean distance between the neighbour pattern xj and 
the test pattern X. 

The KNORA method apparently gives better performances 
than static ensemble selection schemes such as genetic 
algorithm (GA) with the majority voting error (MVE) as the 
objective function and also perform slightly better than 
other dynamic selection methods as reported in Ko et al. 
(2008). 

Figure 1 KNORA-Eliminate 

 
Source: Ko et al. (2008) 

Figure 2 KNORA-Union 

 
Source: Ko et al. (2008) 

3 Proposed strategies 

Four strategies to improve the KNORA method  
were evaluated. The idea is to achieve the oracle 
performance. The first strategy uses different distance 
metrics (Section 3.1) to define the neighbourhood of a test 
sample in the KNORA method. The distance metrics 
evaluated are: Camberra distance, Cosine distance and 
Pearson distance. The second strategy uses additional 
information about the class accuracy of each classifier in the 
pool (Section 3.2), while the third strategy uses clustering 
and the corresponding statistics about the class frequency at 
each cluster as additional information in the KNORA 
method (Section 3.3). Finally, Section 3.4 describes the 
fusion of the KNORA and its build-in KNN method. 

3.1 The use of different distance metrics 

As described before, the KNORA method applies the 
Euclidian distance to find the K neighbours of a test sample. 
Then, the neighbours are used to select the corresponding 
classifiers that will compose the ensemble. The idea is that 
different distance measures may define different 
neighbourhoods, then, different ensembles will be selected. 
This section describes the distance measures evaluated: 
Camberra distance (Section 3.2.1), Cosine distance (Section 
3.2.2) and Pearson distance (Section 3.2.3). The obtained 
results are shown in Section 4.3. These distance metrics 
were selected since they are frequently used in the literature 
and also represent distinct approaches to calculate the 
distance between two feature vectors. 

3.1.1 Camberra 

The Camberra distance (dC) between two elements, A and B, 
can be expressed by means of equation (1). 
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3.1.2 Cosine 

The Cosine distance calculates the angle between the test 
sample and its neighbour. It is defined by equation (2). 
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A is a test sample and B is a validation sample 

n is the number of features 

ai is the ith feature of the test sample 

bi is the ith feature of the validation sample. 

3.1.3 Pearson 

The Pearson distance is derived from the Pearson 
correlation coefficient and it is measured by equation (3). 

( , ) 1pccd A B p= −  (3) 

where |p| is the Pearson correlation coefficient, defined by 
means of equation (4). 
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where 

n is the number of features 

ai is the ith feature of the test sample 

bi is the ith feature of the validation sample. 

3.2 The use of classifier accuracy 

In this strategy, we calculate the classifier accuracy for each 
class on the validation set. It means the probability that each 
element of the pool of classifiers has to correctly recognise 
each class. In fact, this gives us a rank of classifiers  
per class accuracy. This accuracy value is used in  
KNORA-Union and in KNORA-Eliminate as additional 
information. After the classifiers have been selected for the 
ensemble, their votes are weighed by their corresponding 
class accuracy value, i.e., the value used to create the rank 
of classifiers per class. Section 4.4 presents the experiments 
where the classifier accuracy is used to weight the vote in 
the KNORA method. 

3.3 The use of clustering 

The clustering is an unsupervised classification of samples 
into groups (Jain et al., 1999). Clustering techniques aim to 
train, automatically, data groups according to some criterion 
of similarity, which depends on the algorithm and the 
problem to be treated. 

The K-means (MacQueen, 1967; Hartigan, 1975) is a 
clustering technique by simply partitions that try to find K 
different clusters. The clusters are represented by their 
centroids. Usually, the centroid is the average of the points 
in the cluster. Since in this work we already use a K variable 
in the KNORA method, we renamed the K-means method 
for U-means, where U is the number of clusters. By 
applying this clustering method to the validation set, we 
expect to obtain some additional information related to the 

groups or clusters inside the KNORA method. The 
information that will be used is the frequency of each class 
observed inside the clusters (see Algorithm 1). The idea is 
that: since inside the cluster where the unknown sample 
belongs to, it is possible to observe the predominance of 
some classes, we may consider it inside the selected 
ensemble. For this purpose, the class frequency inside the 
cluster is used as weight in the voting scheme of the 
selected ensemble. 

Algorithm 1 Compute the frequency of each class per cluster 

Input: A validation dataset V, where En is the sample 
number n in the dataset 
A cluster i for each sample En 

Output: CFC(i, cl) = class frequency CFC in each clustering 
i, for each class cl 

Begin 
 1 Initialisation step: 
  For each cluster i Do 
   For each class cl Do 
    CFC(i, cl) = 0 
    Endfor 
   Endfor 
 2 For each cluster i Do 
  For each example En Do 
   If example En is in cluster i then 
    CFC(i, class(En)) = CFC(i, class(En)) + 1 
   Endif 
  Endfor 
  Endfor 
 3 Calculation of frequency CFC: 
  For each cluster i Do 
   SUM = Sum all class cl in CFC(i, cl) 
   For each class cl Do 
    CFC(i, cl) = CFC (i, cl) / SUM 
   Endfor 
  Endfor 
End 

In the KNORA method, after the selection of the K 
neighbours, and consequently the classifiers that will 
compose the ensemble, we multiply the number of votes for 
the class cl by the relative frequency of the class cl inside 
the cluster to which the test sample belongs to. Thus, when 
selecting a class, instead of selecting the class that has more 
votes, it is chosen the class that has more votes weighted by 
the relative frequency of class in the cluster obtained by  
U-means that owns the test instance to be recognised. Such 
kind of weight may also be quantised as: {0.25; 0.50; 0.75; 
1.0}. Thus, the class frequency could be defined considering 
these possible weights. For instance, values from 0 to 0.25 
are defined as 0.25; values from 0.26 to 0.50 are defined as 
0.50 and so on. Section 4.5 presents the results for the 
KNORA using this strategy. 
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3.4 The fusion of KNN and KNORA 

As described in the previous section, all KNORA schemes 
take into account a built-in KNN. In this section, we 
investigate different strategies to combine the KNN (already 
used to select the classifiers for the KNORA method) with 
the final KNORA results, in order to approximate the 
recognition performance of that estimated as the oracle of 
our pool of weak classifiers. In fact, five different schemes 
were implemented: 

• KNORA conditional use (CU): execute the KNN for 
the test pattern. If less than Y% (Y is a predetermined 
value) of the all neighbours of the current test pattern 
belong to the same class, then execute KNORA 
(eliminate or union), and use only the KNORA final 
outputs. Otherwise, use the KNN outputs. Figure 3 
presents the KNORA (eliminate) CU scheme. 

• KNN + KNORA conditional fusion (CF): execute the 
KNN for the test pattern. If less than Y% of the all 
neighbours of the current test pattern belongs to the 
same class, then combine the KNN outputs with the 
outputs of the KNORA (eliminate or union). Otherwise, 

use the KNN outputs. Figure 4 presents the  
KNN + KNORA (eliminate) CF scheme. 

• KNN CU: execute KNORA (eliminate or union). If less 
than Y% of the classifiers in the ensemble selected for 
the current test pattern has the same vote, then use only 
the KNN outputs. Otherwise, use the KNORA outputs. 
Figure 5 presents the KNN (after KNORA-Eliminate) 
CU scheme. 

• KNORA + KNN CF: execute KNORA. If less than Y% 
of the classifiers of the current test pattern has the same 
vote, then combine the KNORA (eliminate or union) 
outputs with the KNN outputs. Otherwise, use the 
KNORA outputs. Figure 6 presents the KNORA 
(eliminate) + KNN CF scheme. 

• KNN + KNORA unconditional fusion (UF): combine 
the KNN outputs with the KNORA (eliminate or union) 
outputs. Figure 7 presents the KNN + KNORA 
(eliminate) UF scheme. 

The fusion or combination of outputs is always done by the 
majority voting scheme (Huang and Suen, 1995; Kuncheva, 
2004). The experimental results are reported in Section 4.6. 

Figure 3 KNORA (eliminate) CU scheme 

 

Figure 4 KNN + KNORA (eliminate) CF scheme 
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Figure 5 KNN (after KNORA-Eliminate) CU scheme 

 

Figure 6 KNORA (eliminate) + KNN CF 

 

Figure 7 KNN + KNORA (eliminate) UF 

 

 
4 Results and discussions 

This section presents the experimental results and 
discussions of the strategies proposed in Section 3. First, in 
Section 4.1, it is shown the database and the pool of weak 
classifiers used in the experiments. Then, in Section 4.2, the 
benchmark parameters with the same database reported by 

Ko et al. (2008) are presented. These parameters are 
important to compare the achieved results by means of the 
proposed strategies. 

The results of the evaluation using different distance 
metrics is presented in Section 4.3. The experiments using 
classifier accuracy and clustering are reported in Section 4.4 
and 4.5, respectively. Finally, Section 4.6 shows the results 
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obtained by means of the fusion strategies. All strategies 
were tested by considering KNORA-Eliminate and 
KNORA-Union. 

4.1 Database and pool of weak classifiers 

The experiments undertaken to evaluate the proposed 
strategies are based on the same experimental protocol 
described in Ko et al. (2008). It was selected a large scale 
pattern recognition problem related to the recognition of 
handwritten numerals from NIST SD19, with ten class  
(0 to 9). Three datasets were used: the training set with 
5,000 samples (hsf_{0 – 3), the validation set containing 
10,000 samples (hsf_{0 – 3) and the test set containing 
60,089 samples (hsf_{7). The final accuracies were obtained 
evaluating the samples of the test set. 

We need to address the fact that the pool of the KNORA 
method is composed of 1-NN (KNN where K = 1) classifiers 
generated with feature subsets having only 32 features out 
of 132 by using a random subset selection scheme. The 
same pool of weak classifiers proposed in Ko et al. (2008) is 
used in our experiments. This pool contains 100 1-NN 
classifiers. It is important clarify that the variable K in this 
paper is related to the KNORA method and all experiments 
were executed considering values from 1 to 30. 

4.2 Benchmark parameters 

In Ko et al. (2008), the authors have reported that with  
the 132-feature-based 1-NN (KNN where K = 1), the 
performance on the testing set is 93.34%. The combination 
of all 32-feature-based 1-NN classifiers available in our 
pool (100 elements) by simple majority voting gives 
96.28% of classification accuracy. In addition, the best 
KNORA recognition rates for the same database were 
reported as: 97.25% for KNORA-Union (K = 1) and 97.52% 
for KNORA-Eliminate (K = 7 and K = 8), as shown in  
Table 1. The K parameter of the KNORA method had been 
evaluated from 1 to 30. 

Table 1 Best recognition rates (in %) and the corresponding K 
values, plus the oracle performance 

Scheme Recognition rates(K) 

KNN 93.34(1) 
KNORA-Eliminate 97.52(7,8) 
KNORA-Union 97.25(1) 
Oracle performance 99.95 

As one can see in Table 1, the oracle of our pool of weak 
classifiers is 99.95% of recognition rate. This was calculated 
by looking down at the pool of classifiers if there is some 
classifier that well-recognise each test sample. 

4.3 Evaluation using different distance metrics 

The experiments in this section are related to the use of 
Camberra, Cosine and Pearson distances as alternative to 
the Euclidian distance used in the original KNORA method. 

The first line of Table 2 presents the best results (and the 
corresponding K values) in terms of recognition rates 
obtained by using the Camberra distance to select the 
neighbours. In the KNORA-Eliminate scheme, the best 
recognition rate observed was 97.13%, with K = 6 to K = 30 
and in the KNORA-Union was 96.99%, with K = 8 to  
K = 10. These results were worst than the best result 
obtained by means of the KNORA-Eliminate with Euclidian 
distance (97.52%). The second line in Table 2 presents the 
best results by using the Cosine distance. The best result for 
the KNORA-Eliminate was 97.49%, which is slightly worst 
than the recognition rate obtained using the Euclidean 
distance. In KNORA-Union, the recognition rate was 
97.25%, with K = 1 (the same obtained using Euclidean 
distance). 

Table 2 Best recognition rates (in %) for different distance 
metrics and the corresponding K values 

Distance metric KNORA-Eliminate(K) KNORA-Union(K) 

Camberra 97.13(6–30) 96.99(8–10) 
Cosine 97.49(9, 10, 12–15) 97.25(1) 
Pearson 97.44(4, 5, 7) 97.25(1) 

The best results using Pearson distance for the  
KNORA-Eliminate was 97.44%, with K = 4, K = 5 and  
K = 7 (worst than the recognition rate obtained using 
Euclidean distance) and for KNORA-Union was 97.25%, 
with K = 1 (the same obtained using Euclidean distance). 

The Camberra, Cosine and Pearson metrics did not 
provide any improvement in terms of recognition rates when 
compared with the results obtained using the Euclidian 
distance to select the test neighbourhood in the KNORA 
method. In fact, we may conclude that small changes in the 
selected neighbourhood do not provide significant changes 
in the results. A deeply analysis of the selected 
neighbourhoods shows that most of the time they are very 
similar. 

4.4 Experiments using the classifier accuracy 

Here, the classifiers that compose the initial pool are ranked 
by class recognition accuracy. First, we calculate the 
classifier class accuracy in the validation set. Thus, when 
the classifier is selected to give a vote for the predicted 
class, the vote is weighted by the classifier class accuracy 
already estimated. This was evaluated in the KNORA-
Eliminate and KNORA-Union methods. 

The worst and best accuracies per class of the ranking of 
classifiers are presented in Table 3. The worst observed 
result is 62.8% of recognition rate by the classifier number 
73 for the digit class 8. The best result in the rank is 96.1% 
of accuracy for the class 0 provided by the classifier  
number 12. 

The best results in terms of recognition rates when using 
the KNORA-Eliminate and KNORA-Union schemes were 
97.48% (K = 8) and 97.17% (K = 1), respectively. As one 
can see in Table 1, these results do not contribute to 
improve the performance of the KNORA method. In fact, 
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the experiments have shown that the information obtained 
from the created rank of classifiers is not appropriate to 
define the importance of a specific classifier inside of the 
selected ensemble. The reason is that the classifiers in the 
pool are weak, and then, it is not possible to observe a clear 
contribution of each classifier for specific classes and also a 
significant difference in terms of class accuracy among 
them. 

Table 3 The worst and best recognition accuracies (in %) per 
class and the corresponding classifier number 

Digit class Worst result Best result 

0 85.0(29) 96.1(12) 
1 69.5(73) 94.0(91) 
2 73.5(96) 93.4(45) 
3 80.8(85) 92.5(87) 
4 79.7(52) 94.8(81) 
5 74.4(70) 92,8(8) 
6 83.2(24) 97.1(49) 
7 77.7(95) 94.9(40) 
8 62.8(73) 88.0(91) 
9 71.9(73) 91.8(7) 

4.5 Experiments using clustering 

The clustering process of the validation set was done by 
using the U-means method, implemented in the Weka tool 
(Hall et al., 2009). The U value, i.e., the number of clusters 
was evaluated from 2 to 30. Table 4 shows the class 
distribution at each cluster when using U = 10. The rows 
indicate the class of the samples in the validation set, and 
the columns show the cluster (from 0 to 9). For instance, in 
the first column (cluster 0) of Table 4, the predominant class 
is 2 with 460 samples; while in the second column (cluster 
1), the predominant class is 6 with 937 samples. Note that in 
clusters 7 and 8, despite the existence of a dominant class, 
the difference is not significant for the second option. 
Cluster 8 has only seven samples of the predominant class. 
Probably this cluster contains more difficult samples for 
classification. 

The cluster of the test sample is defined by using the 
Euclidian distance. The class frequency is used as weight 
for the votes of the KNORA-Eliminate and KNORA-Union 
schemes. Table 5 presents the best recognition rates (and the 
respective K value) for some values of the U parameter. For 
KNORA-Eliminate, the best recognition rate was 96.46%, 
obtained with U = 2 and with K = 10, while for the 
KNORA-Union, the best recognition rate was 95.56%, 
obtained with U = 2 and with K = 1. 

In Table 5, it is possible to see that for KNORA-Union 
the best recognition rate was always obtained with K = 1. 
The KNORA-Union considers one vote per classifier for 
each well-recognised neighbour. Thus, when the K value 
increases, some classifiers may provide more votes (one for 
each recognised neighbour), and it can, probably, be the 
reason of the worst recognition results. With K = 1, the 

neighbour selected is more similar to the test sample and the 
classifier can give more accurate votes. 

Table 4 The absolute class frequencies considering ten 
clusters 

Cluster 
Class 

0 1 2 3 4 5 6 7 8 9 

0 3 30 0 7 922 8 1 0 0 29 
1 24 25 4 40 0 29 6 55 3 814
2 460 43 2 0 0 471 7 4 2 11 
3 371 2 0 15 4 535 21 34 4 14 
4 0 16 861 47 0 4 13 21 4 34 
5 151 16 2 742 0 74 1 1 7 6 
6 1 937 5 24 1 2 0 0 5 25 
7 3 0 0 8 0 2 624 342 3 18 
8 5 29 17 403 244 7 112 63 2 118
9 3 0 56 20 6 1 532 377 0 5 

Table 5 The best recognition rates (%) by KNORA-Eliminate 
and KNORA-Union for some U values and the 
corresponding K values 

U value KNORA-Eliminate(K) KNORA-Union(K) 

2 96.46(10) 95.56(1) 

3 95.30(21) 93.92(1) 

4 95.64(26, 27) 94.14(1) 

5 94.62(30) 92.42(1) 

6 94.17(29, 30) 91.59(1) 

7 94.17(29, 30) 90.04(1) 

8 92.90(30) 89.60(1) 

9 92.89(30) 89.62(1) 

10 92.03(29, 30) 88.16(1) 

15 90.25(30) 85.66(1) 

20 89.18(30) 84.22(1) 

30 88.05(30) 83.23(1) 

The best recognition rates was obtained with U = 2. The 
reason for this can be that some classes have their weights 
with low values in the cluster. Then, when U = 2 we had an 
interesting frequency distribution between classes in the 
clusters. 

The observed 96.46% of recognition rate of the 
KNORA-Eliminate (U = 2, K = 10) and 95.56% of the 
KNORA-Union (U = 2, K = 1) were both better results  
than 93.34% obtained by the 132-feature-based 1-NN.  
In addition, the recognition rate of 96.46% of the  
KNORA-Eliminate (U = 2, K = 10) was better than 96.28% 
observed when all classifiers of the pool were combined 
(100 elements) by simple majority voting. However, 
KNORA-Eliminate using additional information about the 
class frequency in the clustering provided worst results than 
the original KNORA-Eliminate. The same was observed for 
the KNORA-Union. 
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Another way of using the clustering information was 
evaluated as described in Section 3.3. It was implemented 
only for U = 10. It does not use directly the frequency 
distribution of classes in the cluster as weight, but one of the 
four possible values: 0.25, 0.5, 0.75 or 1. The weight 0.25 
would be assigned to all classes that have relative frequency 
of 0.25 or less than that in the cluster. Similarly, the weight 
0.5 would be assigned to all classes that have relative 
frequency from 0.26 to 0.5 in the cluster, and so on. Table 6 
presents the best performances obtained considering U = 10. 
Special attention was given to U = 10, since the digit 
recognition is a 10-class problem. The best recognition rate 
for the KNORA-Eliminate in this scheme was 96.51% (with 
K = 10) and it outperforms the KNORA-Eliminate using 
normal weight (second line in Table 6) and every test 
showed in Table 5. For the KNORA-Union, the recognition 
rate was 95.56% (K = 1), the same observed as the best 
result to KNORA-Union in Table 5. The best results were 
obtained when the class frequency was quantised. Thus, we 
may conclude that some classes had very low frequency 
values and as weights they become insignificant. 

Table 6 Best recognition rates by using the class frequency in 
the clusters for U = 10 and the corresponding K 
values 

Scheme KNORA-Eliminate(K) KNORA-Union(K)

Normal weight 92.03(29, 30) 88.16(1) 
Four values of weight 96.51(10) 95.56(1) 

As one can see, by using statistics about the class frequency 
at each cluster as additional information in the KNORA 
method, we did not observe any improvement in the results 
of the original KNORA method. In fact, even when inside 
of the cluster where the test pattern belongs to, there is a 
significant predominance of certain class. This is not 
evidence that the test pattern has high probability of being 
of the same class. 

4.6 Evaluation of the fusion strategies 

The Y parameter for the combination schemes proposed in 
this paper was evaluated from 10% to 100%. Figures 8 to 16 
present the recognition rates obtained by considering 
different K and Y values, for each fusion strategy compared 
to the original KNORA-Eliminate scheme. Table 7 
summarises these experimental results. The following 
considerations may be done for each strategy: 

• KNORA CU: Figure 8 shows the recognition rates 
using the KNORA-Eliminate CU strategy. It was 
observed that KNORA-Eliminate CU strategy with 
high values of Y provided better results than the original 
KNORA-Eliminate. Similar results were observed for 
the KNORA-Union CU strategy (Figure 9). The best 
recognition rates are 97.66% (with Y > = 80%) when 
using KNORA-Eliminate, and 97.54% (with  
Y > = 70%) when using KNORA-Union (see Table 7). 
As we can observe, both cases provided better results 

than the original KNORA (eliminate 97.52% and union 
97.25%) or even than the KNN (see Table 1). 

• KNN + KNORA CF: in this scheme we have also 
observed better results than using the original  
KNORA-Eliminate and KNORA-Union.  
Figure 10 shows the recognition rates using the  
KNN + KNORA-Eliminate CF strategy. It was 
observed that KNN + KNORA-Eliminate CF strategy 
with high values of Y obtained better results than 
KNORA-Eliminate. In KNN + KNORA-Union CF 
strategy (Figure 11), we observed better  
recognition rates than that obtained by the original 
KNORA-Eliminate, but only for few values of K. The 
best recognition rates are 97.73% (with Y> = 80%) 
when using KNORA-Eliminate, and 97.54% (with  
Y> = 70%) when using KNORA-Union (see Table 7). 

• KNN CU: Figure 12 shows the recognition rates by 
using the KNN CU after KNORA-Eliminate. It was 
observed that KNN CU after KNORA-Eliminate with  
Y = 50% and Y = 60% provided better results than the 
original KNORA-Eliminate. However, for KNN CU 
after KNORA-Union (Figure 13), we observed  
worst recognition rates than that of the original 
KNORA-Eliminate. The best recognition rate is 
97.58% (with Y = 50%) when using KNN (after 
KNORA-Eliminate) CU, which is better than  
KNORA-Eliminate alone (97.52%). The best 
recognition rate is 97.48% (with Y = 60%) when using 
KNN (after KNORA-Union) CU, which is better than  
KNORA-Union alone (97.25%). 

• KNORA + KNN CF: Figure 14 shows the recognition 
rates using the KNORA (eliminate) + KNN CF. It was 
observed that KNORA (eliminate) + KNN (CF) in the 
most of the cases obtained equal or better results than 
KNORA-Eliminate. In KNORA (union) + KNN (CF) 
(Figure 15), we observed worst recognition rates than 
that of the original KNORA-Eliminate. The best 
recognition rates are 97.70% (with Y> = 70%) when 
using KNORA-Eliminate, and 97.30% (with Y> = 60%) 
when using KNORA-Union. 

• KNN + KNORA UF: in this scheme, we always 
combine the KNN with KNORA (eliminate or union) 
for all samples to be classified. Thus, there is no Y 
parameter to evaluate. The best recognition rate  
(Table 8) observed for KNN + KNORA (eliminate) UF 
was 97.74% (K = 6), while for the KNN + KNORA 
(union) UF was 97.30% (K = 1). Figure 16 presents the 
recognition rate obtained for each value of the 
parameter K (of 1 up to 30) in this scheme, as well as 
the recognition rates obtained for KNORA-Eliminate 
and KNORA-Union in the work of Ko et al. (2008). It 
is observed that KNN + KNORA-Union UF reached 
better results than KNORA-Union of Ko et al. (2008), 
and that KNN + KNORA-Eliminate UF reached better 
results than KNORA-Eliminate of Ko et al. (2008). 
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Figure 8 Recognition rates using the KNORA-Eliminate CU strategy (see online version for colours) 

 

Figure 9 Recognition rates using the KNORA-Union CU strategy (see online version for colours) 
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Figure 10 Recognition rates using the KNN + KNORA-Eliminate CF strategy (see online version for colours) 

 

Figure 11 Recognition rates using the KNN + KNORA-Union CF strategy (see online version for colours) 
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Figure 12 Recognition rates using the KNN CU after KNORA-Eliminate (see online version for colours) 

 

Figure 13 Recognition rates using the KNN CU after KNORA-Union (see online version for colours) 
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Figure 14 Recognition rates using the KNORA (eliminate) + KNN CF (see online version for colours) 

 

Figure 15 Recognition rates using the KNORA (union) + KNN CF (see online version for colours) 
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Figure 16 Recognition rates for KNORA-Union, KNORA-Eliminate, KNN + KNORA (U) UF and KNN + KNORA (E) UF (see online 
version for colours) 

 

Table 7 Recognition rates by using the fusion of KNN and KNORA considering different Y and (K) values 

Y% 
Fusion scheme 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

KNORA(E) CU 97.40(3) 97.40(3) 97.40(3) 97.42(3) 97.40(3) 97.64(2) 97.64(3) 97.66(4) 97.66(4) 97.66(4) 
KNORA(U) CU 97.40(3) 97.40(3) 97.40(3) 97.42(3) 97.42(3) 97.48(4) 97.54(2) 97.54(2) 97.54(2) 97.54(2) 
KNN + KNORA(E) CF 97.40(3) 97.40(3) 97.40(3) 97.42(3) 97.42(3) 97.65(2) 97.70(3) 97.73(4) 97.73(6,7) 97.73(6,7)
KNN + KNORA(U) CF 97.40(3) 97.40(3) 97.40(3) 97.42(3) 97.42(3) 97.48(4) 97.54(2) 97.54(2) 97.54(2) 97.54(2) 
KNN (After KE) CU 97.52(7, 8) 97.52(7, 8) 97.53(8) 97.53(8) 97.58(7) 97.55(3, 5) 97.46(3) 97.43(1) 97.40(1, 3) 97.38(3) 
KNN(After KU) CU 97.25(1) 97.25(1) 97.27(1) 97.34(1) 97.39(1) 97.48(1) 97.43(1) 97.43(3) 97.41(3) 97.40(3) 
KNORA(E) + KNN CF 97.52(7, 8) 97.52(7, 8) 97.53(8) 97.56(4) 97.62(6) 97.69(5) 97.70(7) 97.70(7) 97.70(7) 97.70(7) 
KNORA(U) + KNN CF 97.25(1) 97.25(1) 97.26(1) 97.28(1) 97.29(1) 97.30(1) 97.30(1) 97.30(1) 97.30(1) 97.30(1) 

 
Table 8 Best recognition rates and the corresponding K values 

by using the KNN + KNORA UF 

Scheme Recognition rates (K) 

KNN + KNORA (E) UF 97.74(6) 
KNN + KNORA (U) UF 97.30(1) 

As one can see, the best result of all experiments  
was 97.74% (K = 6), achieved by KNN + KNORA 
(eliminate) UF. We observed better results than 93.34% 
(132-feature-based 1-NN), than 96.28% (combination of all 
32-feature-based 1-NN classifiers available in our pool), 
than 97.25% (KNORA-Union with K = 1) and than 97.52% 

(KNORA-Eliminate with K = 7 and K = 8). However, even 
observing some improvement in the KNORA results, the 
recognition rates still far from the oracle performance 
(99.95%). 

5 Conclusions and future work 

This work evaluated different strategies to improve a 
dynamic ensemble selection method trying to approximate 
its performance to the oracle accuracy. Table 9 summarises 
the best results obtained by each proposed strategy and the 
respective K values. 
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Table 9 Best recognition rates and the corresponding strategies 

Strategy Using KNORA-Eliminate(K) Using KNORA-Union(K) 

Different distance metrics Pearson Cosine and Pearson 
 97.44(4, 5, 7) 97.25(1) 
The use of classifier accuracy 97.48(8) 97.17% (1) 
The use of clustering 10-means with quantised weights 2-means 
 96.51(10) 95.56(1) 

KNN + KNORA (E) UF KNORA(U) CU and KNN + KNORA(U) CF Fusion of KNN and KNORA 
97.74(6) 97.54(2) 

 
The evaluation of different metrics in the KNORA method 
did not provide any improvement in terms of recognition 
rate when compared with the results obtained using the 
original Euclidian distance. From the experiments, we may 
conclude that the change of the distance metric has a small 
impact in the neighbourhood selection, and, consequently, it 
does not provide any significant change in the results. 

Since the classifiers in the KNORA method are selected 
to compose the ensemble for a test pattern based on their 
accuracy in recognising the test neighbourhood, two 
strategies to improve the KNORA method using 
information about class accuracy were evaluated: 

a statistics related to the classifier accuracy (ranking of 
classifiers) for each class 

b statistics related to a clustering scheme, where each test 
sample were addressed to a cluster for which we knew 
the frequency of each class. 

The recognition rates obtained when using the ranking of 
classifiers in the pool by their class accuracy were worst 
than the recognition rates obtained without ranking. It seems 
that the information obtained from the created rank of 
classifiers is not appropriate to define the importance of a 
specific classifier inside of the selected ensemble. The 
reason is that the classifiers in the pool are weak, and then, 
it is not possible to observe a clear contribution of each 
classifier for specific classes and also a significant 
difference in terms of class accuracy among them. Similar 
behaviour was observed during the experiments using the 
clustering strategy. However, here, we observed that even 
when inside of the cluster where the test pattern belongs to, 
there is the predominance of certain class. This is not 
evidence that the test pattern has high probability of being 
of the same class. 

Finally, from the last experiments, we can see some 
recognition improvements. The additional information 
provided by the KNN built in the KNORA method, 
originally used to define the neighbourhood of the test 
pattern, allow us to improve the recognition performance in 
most of the strategies evaluated. The best results were 
achieved when an UF were used. It means that the 
neighbourhood additional information plays an important 
role in the classification process provided by the KNORA 
method. 

As future works, we plan to model the oracle properties, 
aiming to replace the KNN used in the KNORA process by 
a classifier, which the objective will be to select the 
classifiers that will be part of the ensemble for a specific test 
pattern. 
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