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In this paper a methodology for feature selection for the handwritten digit string recog-
nition is proposed. Its novelty lies in the use of a multiobjective genetic algorithm where
sensitivity analysis and neural network are employed to allow the use of a representative
database to evaluate fitness and the use of a validation database to identify the subsets of
selected features that provide a good generalization. Some advantages of this approach
include the ability to accommodate multiple criteria such as number of features and
accuracy of the classifier, as well as the capacity to deal with huge databases in order to
adequately represent the pattern recognition problem. Comprehensive experiments on
the NIST SD19 demonstrate the feasibility of the proposed methodology.

1. Introduction

An important issue in constructing classifiers is the selection of the best discrimi-

native features. In many applications, it is not unusual to find problems involving

hundreds of features. However, it has been observed that beyond a certain point,

the inclusion of additional features leads to a worse rather than better performance.

Moreover, the choice of features to represent the patterns affects several aspects of

the pattern recognition problem such as accuracy, required learning time, and the

necessary number of samples.
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This apparent paradox presents us with a feature selection problem in automatic

design of pattern classifiers. Such a problem refers to the task of identifying and

selecting an effective subset of features to represent patterns from a larger set of

often mutually redundant or even irrelevant features. This is not a trivial problem

since features are seldom entirely independent. There may be redundancy, where

certain features are correlated so that it is not necessary to include all of them in

modeling, and interdependence, where two or more features between them convey

important information that is obscure if any of them is included on its own.

In the context of practical applications such as handwriting recognition, feature

selection presents a multicriterion optimization function, e.g. number of features

and accuracy of classification. Genetic algorithms offer a particularly attractive ap-

proach to solve this kind of problems since they are generally quite effective in rapid

global search of large, nonlinear and poorly understood spaces. It has been shown

that genetic algorithms can be applied to general NP-complete problems. More-

over, simultaneous allocation of search effort to many regions of the search space

contributes the power of genetic algorithm. It is called implicit parallelism and has

been proved that it can set a lower bound of an N 3 speedup over systematic sequen-

tial search,13 where N is the population size. In the last decade, genetic algorithms

have been largely applied to the feature selection problem.18,30,34,37 The approach

often combines different optimization objectives into a single objective function.

The main drawback of this kind of strategy lies in the difficulty of exploring differ-

ent possibilities of trade-off between classification accuracy and different subsets of

selected features. In order to overcome this kind of problem, Emmanouilidis et al.6

proposed the use of a multiobjective genetic algorithm to perform feature selection.

In this work we discuss the use of multiobjective genetic algorithms as a means to

search for subsets of features, which contain discriminatory information to classify

handwritten digit strings. The proposed strategy takes into account an efficient

multiobjective genetic algorithm35 to generate a set of alternative solutions and the

use of a cross-validation method to indicate the best accuracy/complexity (number

of features) trade-off. We demonstrate that the cross-validation is very important

when working with a set of alternative solutions and it cannot be neglected as

in Ref. 6. The classification accuracy is supplied by multilayer perceptron neural

networks in conjunction with the sensitivity analysis.24 Such an approach makes

it feasible to deal with huge databases in order to better represent the pattern

recognition problem during the fitness evaluation. Some advantages of the proposed

methodology include the ability to accommodate multiple criteria such as number

of features and accuracy of the classifier, as well as the capacity to deal with huge

databases in order to represent well the pattern recognition problem. Moreover,

the use of the multiobjective genetic algorithms help to avoid the phenomenon of

premature convergence presented by simple genetic algorithms. To make this paper

more concise we have chosen to focus our attention on the proposed methodology

rather than comparing it with classical approaches. This is based on the fact that

several studies in the literature have been demonstrated that genetic algorithms
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would be more effective than other methods when dealing with large-scale feature

selection (i.e. more than 50 features). For those readers interested in comparative

studies, please see Refs. 7, 17 and 34.

In order to show the robustness of the proposed strategy, we carry out exper-

iments in two different contexts: isolated digits and string of digits. The latter is

more difficult since we need to deal with problems such as fragmentation, overlap-

ping and effects of segmentation. Finally, we analyze several solutions provided by

the feature selection algorithm and show that there is a relationship between some

discarded features and the strategy of zoning we choose. All experiments reported

in this work use NIST SD19.

This paper is structured as follows. Section 2 summarizes different approaches

to select feature subsets. Section 3 presents the general multiobjective problem

as well as different strategies applied to solve such a problem. Section 4 describes

the real world problem used in our experiments. Section 5 describes the proposed

methodology and Sec. 6 reports the results of experiments carried out and some

discussion as well. Finally, Sec. 7 presents some discussion and Sec. 8 concludes this

paper.

2. Related Works

The preliminary works on feature selection started in the early 1960s. The ap-

proaches at that time were based on probabilistic measures of class separability

and on entropies. In most of the methods the independence of features was as-

sumed and the features were selected on the basis of their individual merits. Since

such methods ignore the interactions among features, they usually produce unsat-

isfactory subsets of features.

In order to perform feature selection taking into account the relationship

between features, three approaches can be found in the literature3: Complete,

Heuristic and Randomized searches. Since complete search over all possible sub-

sets of a feature set (2N where N is the number of features) is not computationally

feasible in practice, several authors have explored the use of heuristics for feature

subset selection, often in conjunction with branch and bound search. Forward selec-

tion and backward elimination are the most common sequential branch and bound

search algorithms used in feature selection.14,25 Most of the current approaches

assume monotonicity of some measure of classification performance. This ensures

that adding features does not worsen the performance. However, many practical

scenarios do not satisfy the monotonicity assumption. Moreover, this kind of search

is not designed to handle multiple selection criteria.

Randomized algorithms make use of randomized or probabilistic steps or sam-

pling processes. Several researchers have explored the use of such algorithms for

feature selection16,20 while others have explored the use of randomized population-

based heuristic search techniques such as genetic algorithms for feature selection

for decision tree and nearest neighbor classifier15,31,34 or neural networks.37,38 The
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advantage of feature selection techniques that employ genetic algorithms is that

they do not require the restrictive monotonicity assumption. They can also deal

with the use of multiple selection criteria, e.g. classification accuracy, feature mea-

surement cost, etc. This makes them particularly attractive in the design of pat-

tern classifiers in many practical scenarios such as signature verification,28 medical

diagnosis,37 facial modeling12 and handwriting recognition.15

Due to the ability of genetic algorithms to deal with multiobjective optimization,

several authors have explored genetic algorithms for feature selection for handwrit-

ten character recognition.15,21,33 Feature selection using genetic algorithm is often

performed by aggregating different objectives into a single and parameterized ob-

jective, which is achieved through a linear combination of the objectives. The main

drawback of this approach is that it is very difficult to explore different trade-offs

between accuracy and different subsets of selected features.

In order to overcome this kind of problem, Emmanouilidis et al.6 proposed the

use of a multicriteria genetic algorithm to perform feature selection. Notwithstand-

ing that only small databases were considered in this work, they achieved interesting

results.

2.1. Filter and wrapper approaches to feature selection

Feature selection algorithms can also be classified into two categories based on

whether or not feature selection is performed independently of the learning algo-

rithm used to construct the classifier. If feature selection is done independently of

the learning algorithm, the technique is said to follow a filter approach. Otherwise,

it is said to follow a wrapper approach.14 While the filter approach is generally

computationally more efficient than the wrapper approach, its major drawback is

that an optimal selection of features may not be independent of the inductive and

representational biases of the learning algorithm that is used to construct the classi-

fier. On the other hand, the wrapper approach involves the computational overhead

of evaluating candidate feature subsets by executing a given learning algorithm on

the database using each feature subset under consideration.

3. Multiobjective Optimization Using Genetic Algorithms

3.1. Definitions

A general multiobjective optimization problem consists of a number of objectives

and it is associated with a number of inequality and equality constraints. Mathe-

matically, the problem can be written as follows.29

Minimize (or Maximize) fi(x) i = 1, . . . , N

subject to :

{

gj(x) ≤ 0 j = 1, 2, . . . , J

hk(x) = 0 k = 1, 2, . . . , K .
(1)
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The parameter x is a p-dimensional vector having p decision variables. Solu-

tions to a multiobjective optimization problem can be expressed mathematically in

terms of nondominated or superior points. In a minimization problem, a vector x(1)

is partially less than another vector x(2), (x(1) ≺ x(2)), when no value of x(2) is less

than x(1) and at least one value of x(2) is strictly greater than x(1). If x(1) is partially

less than x(2), we say that the solution x(1) dominates x(2). Any member of such

vectors which is not dominated by any other member is said to be nondominated.

The optimal solutions to a multiobjective optimization problem are nondominated

solutions. They are also known as Pareto-optimal solutions.

For example, in the case of minimization for two criteria,
{

Minimize f(x) = (f1(x), f2(x))

such that x ∈ X(the feasible region)

a potential solution x(1) is said to dominate x(2) iff:

∀i ∈ {1, 2} : fi(x
(1)) ≤ fi(x

(2)) ∧
∃j ∈ {1, 2} : fj(x

(1)) < fj(x
(2)) . (2)

3.2. Classical approach

A common difficulty with multiobjective optimization problem is the conflict be-

tween the objectives: in general, none of the feasible solutions allow simultaneous

optimal solutions for all objectives. In other words, individual optimal solutions

of each objective are usually different. Thus, mathematically the most favorable

Pareto-optimum is that solution which offers the least objective conflict. One of

the most classical methods is the weighted sum. In this strategy, multiple objective

functions are combined into one overall objective F (x) such that:

F (x) =
N

∑

i=1

ωifi(x) (3)

where x ∈ X , X is the objective space, the weights ωi are fractional numbers

(0 ≤ ωi ≤ 1), and
∑N

i=1 ωi = 1. However, setting up an appropriate weight vector

also depends on the scaling of each objective function. It is likely that different

objectives take different orders of magnitude. When such objectives are weighted to

form a composite objective function, it would be better to scale them appropriately

so that each has more or less the same order of magnitude.

In this method, the optimal solution is controlled by the weight vector ω. It is

clear from the above equation that the preference of an objective can be changed by

modifying the corresponding weight. In most cases, each objective is first optimized

and all objective function values are computed at each individual optimum solution.

Afterwards, depending on the importance of objectives, a suitable weight vector is

chosen and the single-objective problem given in Eq. (3) is used to find the desired

solution.
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Fig. 1. Illustration of the weighted sum approach on a convex Pareto-optimal front.

Figure 1 shows an example of this approach where a two-objective problem

is considered.4 Once the weight vector is defined we can calculate the composite

function F . Its contour surface can then be visualized in the objective space, as

shown by lines “a”, “b”, “c” and “d”. Since F is a linear combination of both

objectives f1 and f2, we would expect a straight line as the contour line of F on

the objective space. This is because any solution on the contour line will have the

same F value. If considered carefully, this contour line is not an arbitrary one. Its

slope is related to the choice of the weight vector. In fact, for two objectives, its

slope is −w1/w2. The location of the line depends on the value of F on any point of

the line. The effect of lowering the contour line from “a” to “b” is in effect jumping

from solutions of higher F values to a lower one.

In a minimization problem, the task is to find the contour line with the minimum

F value. This happens with the contour line which is tangential to the search space

and also lies in the bottom-left corner of this space. In Fig. 1, this line is represented

by “d”. The tangent point “A” is the minimum solution of F , and is consequently

the Pareto-optimal solution corresponding to the weight vector.

The only advantage of using this technique is the emphasis of one objective over

the other. As we have seen, the optimization of the single objective may guaran-

tee a Pareto-optimal solution but results in a single point solution. However, in

real world situations we usually need different alternatives in order to make a deci-

sion. Moreover, if some of the objectives are noisy or have a discontinuous variable

space, this method may not work properly. The main drawback of this approach

is its sensitivity towards weights, i.e. the solution obtained largely depends on the

underlying weight vector.

Deb in Ref. 4 mentioned further potential problems with these approaches,

i.e. application areas where their use is restricted. Moreover, this kind of method

requires several optimization runs to obtain an approximation of the Pareto-optimal

set. As the runs are performed independently from each other, usually synergies

cannot be exploited which, in turn, may create a high computation overhead.
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Fig. 2. Ranking of a population by fronts.

3.3. Pareto-based approach

In order to overcome the difficulties mentioned above, Pareto-based evolutionary

optimization has become an alternative to classical techniques such as weighted

sum method. This approach was first proposed by Goldberg in Ref. 9 and it ex-

plicitly uses Pareto dominance to determine the reproduction probability of each

individual. Basically, it consists of assigning rank 1 to the nondominated indivi-

duals and removing them from contention, then finding a new set of nondominated

individuals, ranked 2, and so forth. Figure 2 depicts the ranking by fronts.

Pareto-based ranking correctly assigns all nondominated individuals the same

fitness, however, this does not guarantee that the Pareto set is uniformly sampled.

When presented with multiple equivalent optima, finite populations tend to con-

verge to only one of them, due to stochastic errors in the selection process. This

phenomenon, known as genetic drift, has been observed in natural as well as in

artificial evolution, and can also occur in Pareto-based evolutionary optimization.

In order to avoid such a problem, Goldberg and Richardson in Ref. 10 proposed

the additional use of fitness sharing. The main idea behind this is that individuals

in a particular niche have to share the available resources. The more individuals

are located in the neighborhood of a certain individual, the more its fitness value

is degraded. In the following section we present the Pareto-based algorithm we have

used as well as an implementation of the sharing function.

3.3.1. Nondominated sorting genetic algorithm (NSGA)

Over the past decade, a number of multiobjective evolutionary algorithms have

been proposed. Zitzler et al. in Ref. 39 provided a systematic comparison of various

evolutionary approaches to multiobjective optimization using six carefully chosen

test functions. In this work, they found that NSGA (with elitism) proposed by

Srinivas and Deb in Ref. 35 surpasses several other methods. Besides, such a method

has been applied to solve various problems.23,36 For these reasons, we opted to use

such an algorithm in our study.
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The idea behind the NSGA is that a ranking selection method is used to em-

phasize good points and a niche method is used to maintain stable subpopulations

of good points. It differs from simple genetic algorithm only in the way the selection

operator works. The crossover and mutation remain as usual. Before the selection is

performed, the population is ranked based on an individual’s nondomination. The

nondominated individuals present in the population are first identified from the

current population. Then, all these individuals are assumed to constitute the first

nondominated front in the population and assigned a large dummy fitness value.

The same fitness value is assigned to give an equal reproductive potential to all

these nondominated individuals.

In order to maintain the diversity in the population, these classified individuals

are then shared with their dummy fitness values. Sharing is achieved by performing

selection operation using degraded fitness values obtained by dividing the original

fitness value of an individual by a quantity proportional to the number of individuals

around it. After sharing, these nondominated individuals are ignored temporarily

to process the remaining population in the same way to identify individuals for

the second nondominated front. These new sets of points are then assigned a new

dummy fitness which is kept smaller than the minimum shared dummy fitness of

the previous front. This process is continued until the entire population is classified

into several fronts. It is illustrated in Fig. 3. We can observe from this figure that

the individuals “1” and “3” had their fitness shared because they are close to each

other. In this case, their fitness was reduced from 6.00 to 4.22. Then, the dummy

fitness is assigned to the individuals of the second front by multiplying the lowest

value of the first front by a constant k (let us say k = 0.95 for this example).

Therefore, the individuals of the second front will receive a dummy fitness of 4.00

(4.22 × 0.95). Since the two individuals of the second front are not close to each

other, their dummy fitness is maintained and a dummy fitness is assigned to the

individual of the last front (4.00 × 0.95 = 3.80).

f1

Front 1

Front 2

Front 3

f 2

3

1

5

2

6

4

6.00

6.00

6.00

(a)

f1

f 2

4.22

4.22

6.00

4.00

4.00

3.80

Pareto-optimal
front

(b)

Fig. 3. Sorting population: (a) The population is classified into three nondominated fronts and
(b) shared fitness values of six solutions.
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Fig. 4. Flow chart of NSGA.

The population is then reproduced according to the dummy fitness values. Since

individuals in the first front have the maximum fitness value, they get more copies

than the rest of the population. This was intended to search for the nondominated

regions of Pareto-optimal fronts. The efficiency of NSGA lies in the way multiple

objectives are reduced to a dummy fitness function using nondominated sorting

procedures.

Figure 4 shows a flow chart of NSGA. The algorithm is similar to a simple ge-

netic algorithm except for the classification of nondominated fronts and the sharing

operation. The sharing in each front is achieved by calculating a sharing function

value between two individuals in the same front as:

Sh(d(i, j)) =











1 −
(

d(i, j)

σshare

)2

if d(i, j) < σshare

0 otherwise

(4)

where d(i, j) is the distance between two individuals i and j in the current front

and σshare is the maximum distance allowed between any two individuals to be-

come members of a niche. In any application of sharing, we can implement either

genotypic sharing, since we always have a genotype (the encoding), or phenotypic

sharing. However, Deb and Goldberg in Ref. 5 indicated that in general, phenotypic

sharing is superior to genotypic sharing. Thus, we have used a phenotypic sharing

which is calculated from the normalized Euclidean distance between the objective

functions.

The parameter σshare can be calculated as follows5:

σshare ≈
0.5
p
√

q
(5)

where q is the desired number of distinct Pareto-optimal solutions and p is the

number of decision variables. Although the calculation of σshare depends on this

parameter q, it has been shown in Ref. 35 that the use of the above equation with

q ≈ 10 works in many test problems.
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4. Handwritten Digit String Recognition System

In order to evaluate the effect of the proposed feature selection scheme, we have used

a handwritten string digit recognition system. Basically, the recognition module

of this system is composed of one general-purpose recognizer, which is devoted to

recognize ten numerical classes, and two verifiers devoted to detect over- and under-

segmentation. All classifiers are neural networks (multilayer perceptron) trained

with the backpropagation algorithm.32 Figure 5 shows the block diagram of the

system used in this work. The database considered in our work is the NIST SD19.

Component
Detection

Segmentation Conc&Cont

Multi-level
Concaviity
Analysis

Concavity

Over-Seg.
Verifier (v o)

Under-Seg.
Verifier (v u)

I
M
A
G
E

Component Detection
and Segmentation

Feature
Extraction

Recognition and Verification

General-purpose
recognizer

Fig. 5. Block diagram of the handwritten digit string recognition system.

Regarding the general-purpose recognizer, the training and validation sets con-

tained 195,000 and 28,000 samples from the hsf {0,1,2,3} series respectively while

the test set contained 30,089 samples from the hsf 7 series. The recognition rates

(zero-rejection level) achieved by the general-purpose recognizer were 99.66%,

99.45% and 99.13% on the training, validation and test sets, respectively. The

feature vector used by this classifier is described in Sec. 4.1.

The over-segmentation verifier vo has two outputs: isolated characters and over-

segmentation. In order to train this verifier, we have used the following data: 8000

correctly segmented characters, 8000 naturally isolated characters and 12,000 over-

segmented parts, which were generated automatically by the segmentation algo-

rithm through the segmentation of the isolated and touching characters. The first

two parts are devoted to train the first class of the verifier, while the third one

is devoted to train the second class. Therefore, the training set used by vo has

28,000 samples. The validation and test sets were built in the same manner, and

they have 14,000 samples each. This verifier reached a recognition rate of 99.40%

on the test set.

The under-segmentation verifier vu is devoted to detect under-segmented charac-

ters. Thus, it considers two classes: isolated characters and under-segmentation. The

database used in this case contains 9000 samples, which are divided into 5000 im-

ages of isolated characters and 4000 images of touching characters. The validation

and test sets were built considering the same distribution of samples and they have
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4000 samples each. This verifier reached a recognition rate of 99.17% on the test

set.

The feature vector that feeds the first verifier is based on different levels of

concavity while the second one is based on the same measurements of concavities

used by the general-purpose recognizer. The difference lies in the kind of zoning

used. Both feature vectors have 42 components. More details about this system can

be found in Ref. 27.

4.1. Feature set

Since the focus of most of our experiments is the optimization of the feature set

used by the general-purpose recognizer, we will describe it in this section. Such a

feature vector is composed of a mixture of concavity and contour information. The

basic idea of concavity measurements is the following: for each white pixel in the

component, we search in 4-Freeman directions [Fig. 6(d)], the number of black pixels

that it can reach as well as which directions the black pixel is not reached. When

black pixels are reached in all directions [e.g. point x1 in Fig. 6(b)], we branch out

in four auxiliary directions [s1 to s4 in Fig. 6(c)] in order to confirm if the current

white pixel is really inside a closed contour. Those pixels that reach just one black

pixel are discarded.

1 1
0,1 1,2 2,3 3,0 0 1 2 3 -- s1 s2 s3 s4

  0      1      2      3      4      5      6      7      8      9    10     11   12

2 2 2 2 3 3 3 3 4 4 4 4 4

x2

x1

s1 s2

s3 s4

0

2

3 1

(b)

(a)

(c) (d)

Fig. 6. Concavity measurements: (a) feature vector, (b) concavities, (c) auxiliary directions and
(d) 4-Freeman directions.
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Fig. 7. Contour measurements: (a) contour image of the upper right corner zone, (b) feature
vector and (c) 8-Freeman directions.

Thereafter, we increment the position in the feature vector that fits with results

returned by the search [Figs. 6(a) and 6(b)]. In Fig. 6(a), we represent the feature

vector where each component has two labels. The superior label means the number

of black pixels found during the search while the inferior label means the directions

where the black pixels were not reached. For example, the pixel x2 [Fig. 6(b)] reaches

the black pixel in all directions except in direction 3. Therefore, the position 7 of the

feature vector is incremented. For pixel x1, the position 9 is incremented because it

reaches the black pixel in four directions. However, using the auxiliary direction s1,

we confirm that it is not inside a closed contour. When the pixel is inside a closed

contour, the position incremented is the eighth.

Since we are dividing the image into six zones, we consider six feature vectors

with 13 components each. Therefore, in the example presented above, the pixel x2

will update the second vector while the pixel x1 will update the fifth vector. Finally,

the overall concavity feature vector is composed of (13 × 6) 78 components which

are normalized between 0 and 1 by summing up their values and then dividing each

one by this summation.

The contour information is extracted from a histogram of contour directions.

For each zone, the contour line segments between neighboring pixels are grouped

regarding 8-Freeman directions [Fig. 7(c)]. The number of line segments of each

orientation is counted [Fig. 7(b)]. Therefore, the contour feature vector is composed

of (8× 6) 48 components normalized between 0 and 1. Finally, the last part of the

feature vector is related to the surface of the character. We simply count the number

of black pixels in each zone and normalize these values between 0 and 1. Thus, the

final feature vector, which feeds e10 and e3 has (78 + 48 + 6) 132 components.

5. Methodology

Basically the proposed methodology works as follows: NSGA produces a set of

solutions, called Pareto-optimal, which are validated through a second validation

set not used during the learning of the classifier. Based on the validation curve,

we pick one solution and thereafter train it to obtain a new optimized classifier. In

the following subsection, we describe in detail the proposed methodology, which is

depicted in Fig. 8.
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Fig. 8. Flow chart of the proposed methodology.

5.1. Implementation of NSGA

In our experiments, NSGA is based on bit representation, one-point crossover, bit-

flip mutation, roulette wheel selection, and elitism which is implemented using a

generational procedure. The following parameter settings were employed:

• Population size: 128.

• Number of generations: 1000.

• Probability of crossover (Pc): 0.8.

• Probability of mutation (Pm): 0.007.

• Niche Distance (σshare): 0.45.

In order to define the probabilities of crossover and mutation, we have used

the one-max problem, which is probably the most frequently-used test function in

research on genetic algorithms because of its simplicity.1 This function measures

the fitness of an individual as the number of bits set to one on the chromosome.
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We have used a standard genetic algorithm with a single-point crossover and the

maximum generations of 1000. The fixed crossover and mutation rates are used in

a run, and the combination of the crossover rates 0.0, 0.4, 0.6, 0.8 and 1.0 and the

mutation rates of 0.1/L, 1/L and 10/L, where L is the length of the chromosome.

The best results were achieved with Pc = 0.8 and Pm = 1/L. Such results confirmed

the values reported by Miki et al.22 The population size was determined through

experimentation. The parameter σshare was first defined using Eq. (5), and then

tuned empirically.

As discussed elsewhere, our goal is to find the best accuracy/complexity

trade-off for the classifier. This means that two objectives must be considered:

minimization of the number of features and minimization of the error rate of the

classifier. Computing the first one is simple, i.e. the number of selected features (bit

= 1). The problem lies in computing the second one, i.e. the error rate supplied

by the classifier. Regarding a wrapper approach, in each generation, evaluation of

a chromosome (a feature subset) requires training the corresponding neural net-

work and computing its accuracy. This evaluation has to be performed for each of

the chromosomes in the population. Since such a strategy is not feasible due to

the limits imposed by the learning time of the huge training set considered in this

work, we have adopted the strategy proposed by Moody and Utans,24 who used the

sensitivity of the network to estimate the relationship between the input features

and the network performance.

The sensitivity of the network model to variable i is defined as:

Si =
1

N

∑

j

Sij (6)

where Sij is the sensitivity computed for exemplar xj

Sij = SE(x̄i) − SE(xij) (7)

with

x̄i =
1

N

N
∑

j=1

xij . (8)

Si measures the effect on the training squared error (SE) of replacing the ith

input xi by its average x̄i for all N exemplars. Moody and Utans showed that when

variables with small sensitivity values (Si) with respect to the network outputs are

removed, they do not influence the final classification. In light of this, to evaluate

a given feature subset we replace all unselected inputs xi of the test set by their

respective averages x̄i computed on the training set. In this way, we avoid training

the neural network and hence turn the wrapper approach feasible for our problem.

We call this strategy modified-wrapper. Such scheme was also employed by Yuan

et al.38
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Fig. 9. Example of the Pareto-optimal front and its respective validation curve.

5.2. Validating the Pareto-optimal front

As depicted in Fig. 8, the last step of the strategy consists of choosing the best

solution from the Pareto-optimal front. After several experiments, we realized that

the Pareto-optimal front by itself does not provide enough information to select the

best solution. Often, the best solution found in the Pareto-optimal front does not

have good generalization power on a different database. In order to overcome this

kind of problem, we propose the use of a validation database, which is not used

during the feature selection procedure, to verify the generalization power of the

Pareto-optimal front. This scheme is exemplified in Fig. 9.

If we analyze just the Pareto-front, the best trade-off between the number of

features and the error rate is the solution S1, which produces an error rate of

0.36% for 75 selected features. However, by analyzing the validation curve, we

can observe that such a solution supplies a poor generalization on an unknown

database and hence an error rate of about 1.7%. We can also observe that the

accuracy/complexity trade-off that has the best generalization on the validation

set is the solution S2.

5.3. Parallel processing

The approach of parallel processing used in this work is based on a single-population

master-slave genetic algorithm. In this strategy, one master node executes the

genetic operators (selection, crossover and mutation), and the evaluation of fitness

is distributed among several slave processors. In order to execute our experiments,

we have used a Beowulf cluster with 17 (one master and 16 slaves) PCs (1.1Ghz
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CPU, 512Mb RAM). Such a strategy, which is a low cost parallel computing based

on a cluster of personal computers, makes the proposed approach tractable on short

term.

In order to execute 1000 generations of NSGA, this architecture takes about

8 hours. The same process in a SUN Ultra 1 (167Mhz CPU, with 128Mb RAM)

takes more than 20 days.

6. Experiments and Results

In order to test the effectiveness of the proposed methodology we have applied it to

optimize the system described in Sec. 4. As mentioned before, we have performed

experiments in two different contexts: isolated digits and strings of digits. For all

reported results we used the following definitions of the recognition rate, error rate,

rejection rate and reliability rate. Let B be a test set with NB string images. If

the recognition system rejects Nrej, classifies correctly Nrec and misclassifies the

remaining Nerr, then

Recognition Rate =
Nrec

NB

× 100 (9)

Error Rate =
Nerr

NB

× 100 (10)

Rejection Rate =
Nrej

NB

× 100 (11)

Reliability =
Nrec

Nrec + Nerr
. (12)

Therefore, the recognition rate, error rate and rejection rate sum up to 100%.

In general, the recognition rate is a valid rate, but to characterize the quality of

the classifier for practical issues, this rate is not appropriate. A more suitable rate

for classifier examination in real applications is the reliability rate, which gives an

impression of the classifier behavior in several different situations. Such a rate takes

not only the error rate, but also the reject rate into consideration. Therefore, for all

experiments presented in this work we report the recognition rate at zero-rejection

level, 0.5% error level and reliability rate. We have used the rejection mechanism

proposed by Fumera et al.8 In all experiments we do not consider the knowledge of

the number of digits in the string.

6.1. Experiments on isolated digits

The database used to assess the impact of different subsets of inputs during the

feature selection was the same as employed for validation during training of the

classifier (28,000 samples from hsf 0123).

In order to show the limitations of the weighted-sum approach, we first tried to

optimize the classifier using it. As expected, the results achieved by the weighted-

sum approach presented a premature convergence to a specific region of the search
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Fig. 10. Proposed methodology using the weighted-sum approach: (a) evolution of the population
in the objectives plane (one trial) and (b) Pareto-optimal solutions found by the classical approach
after several trials.

space instead of maintaining a diverse population. This kind of behavior can be ex-

plained by the sensitivity towards weight presented by the weighted-sum approach.

Since we have chosen weights to favor solutions with a small error rate rather than

a small number of features, the selection pressure drove the search to the region

where the error rates are smaller. Thus, after several trials using different weights

we did not succeed in finding the Pareto-optimal front but rather an approximation

of the Pareto-optimal solutions (Fig. 10).

As we have discussed in Sec. 3.3, the Pareto-based approach was designed to

overcome this kind of problem. Since NSGA uses a niching technique to preserve

the diversity in the population, this algorithm is able to deal with the problem of

converging prematurely to a specific region of the search space. Therefore, it can

guide the search towards the Pareto-optimal set. Figure 11(a) depicts the evolution

of the population in the objectives plane from the first generation to the last one.

This plot demonstrates the efficacy of NSGA in converging close to the Pareto-

optimal front with a wide variety of solutions.

As discussed in Sec. 5, after finding the Pareto-optimal front the next step is to

find a solution. In order to perform this task we have used a new validation database,

which consists of 30,000 samples (from hsf 7) not used so far. Figure 11(b) shows

the Pareto-optimal front as well as its correspondent validation curve, which depicts

the performance of the entire Pareto-optimal front on this new validation set. After

analyzing the validation curve plotted in Fig. 11(b), we selected a solution with

100 features [solution S4 in Fig. 11(b)] and error rate on the new validation set

smaller than 1% to retrain the general-purpose recognizer.

Thereafter, we trained a new classifier using such a solution using the same

databases presented in Sec. 4. The recognition rates achieved by this new classifier

at zero rejection level were 99.66%, 99.63%, 99.16% on training, validation and

test sets, respectively. Table 1 summarizes the results obtained by the optimized
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Fig. 11. Feature selection using a Pareto-based approach: (a) evolution of the population in the
objective plane, (b) Pareto-optimal front found by NSGA and its correspondent validation curve.

Table 1. Comparison between the original and optimized classifiers. Error rate
fixed at 0.5%.

Original System Optimized System

Number of Rates (%) Number of Rates (%)

Features Recog. Rej. Reliab. Features Recog. Rej. Reliab.

132 98.50 1.00 99.49 100 98.54 0.96 99.50

classifier on the test set at 0.5% error level. As we can observe, the optimized system

uses about 25% less features and keeps the reliability rate at the same level. Such

results confirm the efficiency of the proposed methodology in selecting a powerful

subset of features. In order to show the importance of the validation set to select a

good solution, we retrained the best trade-off of the Pareto-front without regarding

the validation curve [solution S3 in Fig. 11(b)]. The recognition rate (zero-rejection

level) and reliability rate reached by this solution on the test set were 96.8% and

98.5%, respectively.

6.2. Experiments on strings of digits (1)

The experiments using numeral strings are based on 12,802 numeral strings ex-

tracted from the hsf 7 series and distributed into six classes: 2 digit (2370), 3 digit

(2385) 4 digit (2345), 5 digit (2316), 6 digit (2316) and 10 digit (1217) strings, re-

spectively. These data exhibit different problems such as touching and fragmenta-

tion. Figure 12 shows some examples of the variability found in the NIST database.

The recognition rates at zero-rejection level as well as the performance at 0.5%

error level achieved by the original system are reported in Table 2.

In the first experiment with strings of digits we just replaced the original classi-

fier by the optimized one presented in the previous section. The idea here is to find

out whether the optimized classifier is good enough to recognize strings of digits.
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92771 13210 892 73169

79293 8963 690411 5827

40059 23976 56 01 12701

226440 7883 75434 5649

71329 43733 87251 552

838303976293444507

Fig. 12. Examples of digit strings (NIST SD19).

Table 2. Performance of the original system on strings of digits.

String Number of Rec. Rec. Rate Reliability
Length Strings Rate (Error = 0.5%) Rate

2 2370 96.88 93.88 99.47
3 2385 95.38 89.84 99.44
4 2345 93.38 84.36 99.41
5 2316 92.40 82.44 99.40
6 2169 93.12 84.03 99.41
10 1217 90.24 75.20 99.34

As discussed before, such a problem is much more complicated than the problem

of naturally isolated digits since the system must face complications such as noise,

fragmentation and touching digits. In order to answer the above question, we have

applied the optimized classifier to recognize strings of digits. It is worthy of remark

that both verifiers remain the same. The results of these experiments are presented

in Table 3.

Table 3. Performance of the system on strings of digits using the
general-purpose classifier optimized with isolated digits.

String Number of Rec. Rec. Rate Reliability
Length Strings Rate (Error = 0.5%) Rate

2 2370 97.21 94.00 99.47
3 2385 94.62 89.72 99.44
4 2345 93.34 84.38 99.41
5 2316 92.36 82.67 99.40
6 2169 92.60 83.70 99.40
10 1217 89.19 74.77 99.33
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Table 4. Performance of the system on strings of digits using the

general-purpose classifier optimized with strings of digits.

String Number of Rec. Rate Rec. Rate Reliability
Length Strings (Error = 0.0%) (Error = 0.5%) Rate

2 2370 96.91 93.90 99.47
4 2345 93.33 84.36 99.41
5 2316 92.40 82.44 99.40
6 2169 92.35 83.95 99.40

At the second time, we carried out the feature selection for both verifiers and

used them in the system afterwards. To perform this task, we have used the pro-

posed methodology where the databases used to validate the Pareto-front (called

second validation set, so far) for the over-segmentation and under-segmentation

verifiers have 7000 and 2000 samples, respectively. They were built in the same

way we have described in Sec. 4. After running the feature selection we found the

solution with 30 and 38 features for the over-segmentation and under-segmentation

verifiers, respectively.

After training these optimized verifiers, we applied them together with the op-

timized classifier to recognize the strings of digits. The reliability rates were kept at

the same level as presented in Table 3. Considering the three optimized classifiers

in this experiment, the total features used by the system were reduced from 216

(132+42+42) to 168 (100+30+38), i.e. about 22% less features.

In spite of the fact that the optimized classifier succeeded in keeping the re-

liability rate at the same levels as the original system, such a classifier produced

better recognition rates for strings composed of naturally isolated digits and worse

performance for strings that showed problems of touching digits, fragmentation

and noise. Therefore, the improvement found in the former case compensates the

problems found in the latter.

6.3. Experiments on strings of digits (2)

In order to improve the performance of the classifier globally, i.e. for naturally

isolated digits as well as digits with problems of fragmentation, touching and so

forth, we have performed a new series of experiments. The goal was to select a subset

of features suitable for the problem of strings of digits rather than the problem

of naturally isolated digits. Thus, instead of using a database of isolated digits

to assess the fitness during the feature selection procedure, we used the 3-digit

string database which is composed of 2385 images. In this manner, problems such

as overlapping, fragmentation and effects of segmentation are tackled during the

optimization process and hence relevant features for those problems will not be

discarded. The validation set used to find the best solution in the Pareto-optimal

front is the 10-digit string database which contains 1217 images.

After performing the feature selection for the general-purpose recognizer taking

into account such databases, the best solution we found had 124 selected features,
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i.e. it is considerably greater than that presented in the previous section (100

features). After training such a classifier and using it to classify strings of digits we

performed an error analysis in order to find out whether the optimized classifier

got better results for strings with problems of touching digits, fragmentation and

noise. We verified that it succeeded in improving the rates for strings with such

problems, however, the rates for strings composed of naturally isolated digits was

slightly lower than those shown in the previous section. Since most of the strings

of the NIST database are composed of naturally isolated digits (about 75%), the

slightly worse rates obtained in this case neutralized the improvement reached for

strings with problems. Hence, the reliability rates of this experiment are almost the

same as those of the previous experiment. Table 4 reports the performance (0.5%

error level) of the classifier optimized in the context of strings of digits. The results

for 3- and 10-digit strings were omitted here since we have used such subsets during

the optimization process.

7. Discussion

In spite of the fact that the Pareto-based approach presents several advantages

over the classical one, we have seen through the experiments that both strategies

found similar solutions [see Figs. 10(b) and 11(b)]. In our first experiment, we

observed that the classical approach converged the search to the space where the

most probable solutions are located due to the weights we have chosen. However,

for problems where the solutions are located along the Pareto-front, the classical

approach does not work properly. Moreover, to achieve part of the Pareto-front, the

weighted-sum method was run several times with different weight vectors.

For the problem of feature selection for handwriting recognition we can observe

that the main advantage of the Pareto-based approach is the ability of dealing with

different databases without having to deal with problems such as scaling and finding

the suitable values for the weight vector. Moreover, Pareto-based approaches have

the ability of finding the Pareto-optimal front in the first run of the algorithm.

As we have seen, two different optimized classifiers were used to recognize strings

of digits. The former was optimized considering a database composed of naturally

isolated digits only while the latter took into account a database of strings of

digits. Through detailed experiments we have demonstrated that in both cases

the optimized systems attained very similar reliability rates. In the first case, the

classifier obtains slightly better rates for isolated digits and worse rates for strings

with problems such as touching digits, fragmentation and noise while in the second

case we observed the opposite. Since about 75% of the strings of digits of the NIST

database consist of naturally isolated digits, the classifier optimized in this context,

which has about 25% less features than the original classifier, provided the same

reliability rates as those found in the original system.

Table 5 summarizes the recognition rates claimed by different authors on NIST

database. Ha et al.11 used about 5000 strings of the NIST SD3 while Lee and
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Table 5. Recognition rates on NIST databases reported by

other authors.

String Number of Error Rate Error Rate

Authors Length Tested Strings 0% 1% 0,5%

Ref. 11 2 981 96.20 93.50 91.50

4 988 93.20 81.00 70.00

5 988 91.10 77.50 70.50

6 982 90.30 75.50 66.50

Ref. 19 2 1000 95.23 95.20 −

4 1000 80.69 80.50 −

5 1000 78.61 78.40 −

6 1000 70.49 70.20 −

Kim19 used 5000 strings but they did not specify the data used. By comparing

the results reached by our system (Table 4) with those reported by other authors

(Table 5), we can confirm that our system provides very good recognition rates at

zero-recognition level and a very encouraging error-reject trade-off.

Since there is an interdependence between features where two or more features

between them convey important information, it is very difficult to analyze the

unselected features independently. However, analyzing the unselected features of

several runs of the algorithm we could notice the following aspects.

1. In most of the solutions we observed that the unselected features of concav-

ity have a certain symmetry among the zones, e.g. zones 1–6, 2–5 and 3–4

[Fig. 13(a)]. Moreover, we can conclude that for this kind of zoning there is a re-

lationship between the geographic position of the zone and 4-Freeman directions.

For example, in zone 2 (North–East) the unselected concavity configuration is

the one that searches black pixels in directions North–East. We can notice the

same behavior for the other zones.

2. All unselected features of contour are located just on the right side of the zoning

[Fig. 13(b)] in most solutions. In this case we can assume that such features are

correlated so that it is not necessary to include them in the feature set.

3. The information related to the surface of the image was never unselected. This

means that such an information is relevant to the feature vector we have used.

It is worth to remark that such an analysis is valid for the feature vector de-

scribed in Sec. 4.1. However, it can be a very helpful tool to get a better insight for

any kind of feature vector.

Finally, to demonstrate that the methodology can be successfully extended to

different features, we have applied it on two other feature sets, namely, Distances26

and Edge Maps.2 Thus, two classifiers were trained using the same databases and

methodology described in Sec. 4. Table 6 reports the performance achieved by both

classifiers on the test set of isolated digits (30,089 samples of hsf 7). It can be

observed from this table that the optimized feature sets get slightly better results
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Fig. 13. Unselected features for handwritten digit recognition: (a) concavities and (b) contour.

Table 6. Results on two different features (Distances and Edge Maps).

Original Classifiers Optimized Classifiers

Feature No. RR. RR. Rej. No. RR. RR. Rej.

Set Feat. (%) Err = 0.5% (%) Feat. (%) Err = 0.5% (%)

Distances 96 98.17 92.80 6.70 90 98.21 93.05 6.45

Edge Maps 125 97.04 85.10 14.40 105 97.10 86.00 13.50

using less features for zero-rejection level and error rate fixed at 0.5% as well. Such

a table can be read in the following way: the original feature set of Distances is

composed of 96 components, reaches the recognition rate (RR) at zero-rejection

level of 98.17%, and 92.80% at error rate fixed at 0.5% (rejecting 6.70%). After

feature selection, it contains 90 components, reaches the recognition rate (RR) at

zero-rejection level of 98.21%, and 93.05% at error rate fixed at 0.5% (rejecting

6.45%).

8. Conclusion

In this study we have proposed a methodology for feature selection which uses a

Pareto-based approach to generate the Pareto-optimal front where sensitivity analy-

sis and neural network enable the use of a representative database to evaluate fit-

ness. Thereafter, the entire Pareto-front is validated on a different database in order

to provide the solutions that present better generalization on different databases.

Finally, the selected solution is trained and applied to the recognition system.

The use of a Pareto-based approach instead of a classical one is supported by the

theory as well as the experiments carried out. We have also shown the importance

of using a validation set in order to avoid selecting subsets of features with poor
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generalization ability. Through comprehensive experiments on isolated digits and

strings of digits, we have demonstrated that the proposed methodology succeeded

in reducing the complexity of feature set used by the classifier and also that even

using less features such a classifier achieved reliability rates at the same level as

those reached by the original classifier.

We have seen that the classifier optimized in the context of isolated digits pro-

duced reliability rates for the problem of strings of digits at the same level as the

classifier optimized in the context of strings of digits. However, we also pointed

out that such a behavior is closely related to the database we have used, since it

contains about 75% of naturally isolated digits. Finally, we have analyzed several so-

lutions provided by the feature selection algorithm and determined the relationship

between some unselected features and the strategy of zoning we have applied.
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