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Abstract
In this paper, the impact on fuzzy ARTMAP performance of decisions taken for batch 
supervised learning is assessed through computer simulation. By learning different real-
world and synthetic data, using different learning strategies, training set sizes, and hyper-
parameter  values,  the  generalization  error  and  resources  requirements  of  this  neural 
network are compared. In particular, the degradation of fuzzy ARTMAP performance due 
to overtraining is shown to depend on factors such as the training set size and the number 
of training epochs, and occur for pattern recognition problems in which class distributions 
overlap.  Although  the  hold-out  learning  strategy  is  commonly  employed  to  avoid 
overtraining, results indicate that it is not necessarily justified. As an alternative, a new 
Particle  Swarm Optimization (PSO) learning strategy, based on the concept of neural 
network evolution, has been introduced. It co-jointly determines the weights, architecture 
and  hyper-parameters  such  that  generalization  error  is  minimized.  Through  a 
comprehensive set of simulations, it has been shown that when fuzzy ARTMAP uses this 
strategy,  it  produces  a  significantly  lower  generalization  error,  and  mitigates  the 
degradation of error  due to overtraining. Overall,  the results reveal the importance of 
optimizing  all  fuzzy  ARTMAP  parameters  for  a  given  problem,  using  a  consistent 
objective function.
Keywords: Pattern  Classification,  Supervised  Learning,  Neural  Networks,  Adaptive 
Resonance Theory, Fuzzy ARTMAP, Particle Swarm Optimization, NIST SD19.

1. Introduction
The  fuzzy ARTMAP  neural  network  architecture  [6,  7]  is  capable  of  self-organizing  stable 
recognition categories in response to arbitrary sequences of analog or binary input patterns. It 
provides  a  unique  solution  to  the  stability-plasticity  dilemma faced  by  autonomous  learning 
systems. Since fuzzy ARTMAP can perform fast,  stable,  on-line,  unsupervised or supervised, 
incremental learning, it can learn from novel events encountered in the field, yet overcome the 
problem of  catastrophic  forgetting associated  with  many popular  neural  networks  classifiers. 
Neural  network  classifiers  such  as  the  Multilayer  Perceptron  (MLP)  [46]  and  Radial  Basis 
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Function  (RBF)  [14]  require  off-line  retraining  on  the  whole  data  set,  through a  potentially 
lengthy iterative optimization procedure, to learn new patterns from either known or unknown 
recognition classes. In batch supervised learning mode, fuzzy ARTMAP may also be efficient in 
that  its  asymptotical  generalization  error  can  be  achieved  for  a  moderate  time  and  space 
complexity [20].  As such,  they have been successfully applied in complex real-world pattern 
recognition tasks such as the recognition of radar signals [22, 44], multi-sensor image fusion, 
remote sensing and data mining [10, 43, 50, 53], recognition of handwritten characters [2, 18, 
37], and signature verification [40].

Nonetheless,  a  drawback  of  fuzzy  ARTMAP  is  its  ability  to  learn  decision  boundaries 
between class distributions that consistently yield low generalization error for a wide variety of 
pattern recognition problems. Following batch supervised learning of a finite training data set, 
the capacity to generalize  for  unknown input  patterns  is  a  function of the  network’s  internal 
dynamics,  which  depend  on  mechanisms  such  as  its  prototype  choice  and  class  prediction 
functions, its learning rules, and its representation of categories. The main factors that can limit 
fuzzy  ARTMAP’s  capacity  to  generalize  are  poor  discrimination  (due  to  the  choice  and 
prediction functions, and to the representation of categories with hyper-rectangle) and sequential 
gradient-based learning. Several ARTMAP networks have been proposed, e.g., [1, 9, 12, 19, 52, 
56],  using  variations  of  these  mechanisms,  to  refine  decision  boundaries  created  by  fuzzy 
ARTMAP.

Beyond  the  network’s  internal  dynamics,  decisions  taken  as  to  the  supervised  learning 
process  of  a  data  set  may  significantly  affect  fuzzy  ARTMAP’s  capacity  to  generalize. 
Performance  will  degrade  with  a  poor  choice  of  user-defined  hyper-parameter  values  and 
manipulation of training data. For instance, fuzzy ARTMAP neural networks are known to suffer 
from overtraining, or overfitting, which is directly connected to a category proliferation problem. 
Overtraining generally occurs when a neural network has learned not only the basic mapping 
associated training subset patterns, but also the subtle nuances and even the errors specific to the 
training subset. If too much learning occurs, the network tends to memorize the training subset 
and loses  its  ability to generalize on unknown patterns.  The impact  of  overtraining on fuzzy 
ARTMAP performance is two fold – an increase in the generalization error, and in the resources 
requirements  (i.e.,  the  number  of  internal  category  prototypes,  thus  memory  space  and 
computational  complexity).  The  issue  of  overtraining  may  stem  from  decisions  taken  for 
supervised batch learning [27, 33].

During the fuzzy ARTMAP supervised learning process, one can manipulate neural network 
inputs at his disposal – data set and user-defined hyper-parameter values – to achieve a high level 
of performance. In this  context,  the user’s decisions include choosing the supervised learning 
strategy (and thus,  the  number  of  training epochs),  the  proportion of patterns  in  the  training 
subset  to  those  in  validation  and  test  subsets,  the  parameter  values,  the  data  normalization 
technique, and the data presentation order. The impact of these decisions on generalization error 
are necessarily a function of the data set structure (overlap and dispersion of patterns, etc.), and 
therefore  of  the  type of decision boundary among patterns  belonging to different  recognition 
classes.

Some authors in literature have examined the impact of supervised learning strategy on fuzzy 
ARTMAP performance. The hold-out validation strategy, where learning continues on blocks of 
training patterns until generalization error has been minimized on a validation set, is often used 
to  circumvent  overtraining.  For  instance,  Koufakou  et  al.  [33]  confirm  the  occurrence  of 
overtraining on large synthetic and real data sets, and claim that hold-out validation yields better 
generalization with significantly fewer category prototypes. Furthermore, fuzzy ARTMAP can 
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overtrain  after  as little  as one training epoch of a large training set.  In contrast,  Lerner  and 
Vigdor  [36] state  that  training until  convergence of network weights produces  better  test  set 
generalization  on  real  cytogenetic  data  than  training  with  hold-out  validation,  although both 
learning strategies lead to overtraining. Experimental results presented by Henniges et al. [27] 
indicate a significant degradation in fuzzy ARTMAP performance due to overtraining for data 
with overlapping class distributions. Only modest improvements in performance are observed by 
using  hold-out  strategy  between  training  epochs  on  different  synthetic  pattern  recognition 
problems.

Although fuzzy ARTMAP performance depends on a set of user-defined hyper-parameters, 
and these parameters should normally be fine-tuned to each specific problem [8], the influence of 
hyper-parameter values is rarely addressed in ARTMAP literature. Moreover, the few techniques 
found in this literature for automated hyper-parameter optimization, e.g., [3, 15, 17, 35], focus 
mostly  on  the  vigilance  parameter,  even  though  there  are  four  inter-dependent  parameters 
(vigilance,  learning,  choice,  and match tracking).  A popular  choice  consists  in setting hyper-
parameter  values  such  that  network  resources  (the  number  of  internal  category  neurons,  the 
number of training epochs, etc.) are minimized [11].  This choice of parameters may however 
lead to overtraining, and significantly degrade the capacity to generalize. An effective supervised 
learning strategy could involve co-jointly optimizing both network (weights and architecture) and 
all its hyper-parameter values for a given problem, based on a consistent performance objective.

This paper introduces an alternate learning strategy for batch supervised learning of fuzzy 
ARTMAP neural networks. This approach is based on the concept of neural network evolution in 
that,  during  learning,  weights,  architecture  and  parameters  evolve  simultaneously.  With  this 
strategy,  Particle  Swarm Optimization  (PSO)  [30]  is  employed to  optimize  fuzzy ARTMAP 
hyper-parameter  values  such  that  the  network’s  generalization  error  is  minimized.  Weights, 
architecture (the number of category neurons) and parameters of fuzzy ARTMAP are in effect 
fine-tuned to minimize the same cost function.

An  experimental  protocol  has  been  defined  such  that  the  impact  on  fuzzy  ARTMAP 
performance of decisions related to data set manipulations and to hyper-parameter settings may 
be  observed  for  different  types  of  pattern  recognition  problems.  The  first  type  of  problem 
consists of synthetic data with overlapping class distributions, whereas the second type involves 
synthetic data with complex decision boundaries but no overlap [27]. The last type of problem 
consists  of  real-world  data  –  handwritten  numerical  characters  extracted  from NIST Special 
Database 19 (SD19) [25].  The impact of data set  manipulations is  characterized for different 
learning strategies, and training subset sizes (with respect to those of test subsets), whereas the 
impact  of  hyper-parameter  values  is  characterized  through  the  PSO  learning  strategy.  This 
characterization allows to assess the extent to which performance degradation and overtraining 
are linked to the above decisions, and to show the merits of the new PSO learning strategy.

In  the  next  section,  fuzzy  ARTMAP  is  briefly  reviewed,  along  with  common  learning 
strategies for batch supervised learning. Then, the PSO learning strategy is introduced in Section 
3. The experimental  protocol,  performance measures,  and data sets  used for  proof-of-concept 
computer simulations are described in Section 4. In Sections 5 and 6, the results of simulations 
for  synthetic  data  sets  are  presented  and  discussed.  These  sections  respectively  explore  the 
impact  on  fuzzy  ARTMAP  performance  of  data  set  manipulations,  and  of  hyper-parameter 
optimization. Finally, Section 7 presents simulation results obtained with the NIST SD19 data 
base.
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2. Supervised Training of Fuzzy ARTMAP

2.1 The Fuzzy ARTMAP Neural Network
ARTMAP  refers  to  a  family  of  neural  network  architectures  based  on  Adaptive  Resonance 
Theory (ART) [4] that is capable of fast, stable, on-line, unsupervised or supervised, incremental 
learning, classification,  and prediction [6,  7].  ARTMAP is often applied using the simplified 
version shown in Figure 1. It is obtained by combining an ART unsupervised neural network [4] 
with a map field. The ARTMAP architecture called fuzzy ARTMAP [7] can process both analog 
and binary-valued input patterns by employing fuzzy ART [5] as the ART network.

The fuzzy ART neural network consists of two fully connected layers of nodes: an M  node 
input  layer,  F1 ,  and  an  N  node  competitive  layer,  F 2 .  A  set  of  real-valued  weights 
W={wij∈[0,1]:i=1,2,... ,M ; j=1,2,. .. , N}  is  associated  with  the  F1 -to- F 2  layer 

connections. Each F 2  node j  represents a recognition category that learns a prototype vector 
w j=w1j ,w2j , ... , wMj . The  F 2  layer of fuzzy ART is connected, through learned associative 

links, to an L  node map field F ab , where L  is the number of classes in the output space. A set 
of binary weights W ab={w jk

ab∈[0,1]: j=1,2,. .. , N ;k=1,2,. .. , L}  is associated with the F 2 -to-
F ab  connections. The vector w j

ab=w j1
ab , w j2

ab , ... ,w jL
ab  links F 2  node j  to one of the L  output 

classes.
In batch supervised training mode, ARTMAP classifiers learn an arbitrary mapping between 

training  set  patterns  a=a1 ,a2 , ... ,am  and  their  corresponding  binary  supervision  patterns 
t=t1 , t2 , ... , t L . These patterns are coded to have unit value  t K=1  if  K  is the target class 

label for a , and zero elsewhere. Algorithm 1 describes fuzzy ARTMAP learning.
Algorithm 1 Fuzzy ARTMAP learning.
1. InitializationAll the F 2  nodes are uncommitted, all weight values w ij  are initialized to 1,  

and all weight values w jk
ab  are set to 0. An F 2  node becomes committed when it is selected  

to code an input vector a , and is then linked to an F ab  node. Values of the learning rate 
∈[0,1] ,  the  choice  0 ,  the  match  tracking  0≪1 ,  and  the  baseline  vigilance 
∈[0,1]  parameters are set.

2. Input  pattern  codingWhen  a  training  pair  a , t   is  presented  to  the  network,  a  
undergoes  a  transformation  called  complement  coding,  which  doubles  its  number  of  
components. The complement-coded input pattern has M=2m  dimensions and is defined by  
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Figure 1: An ARTMAP neural network architecture 
specialized for pattern classification [22].
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A=a , ac=a1 ,a2 , ... ,am ; a1
c ,a2

c , ... ,am
c  , where ai

c=1−ai , and ai∈[0,1 ] . The vigilance 
parameter   is reset to its baseline value  .

3. Prototype selectionPattern  A  activates layer  F1  and is propagated through weighted  
connections W  to layer F 2 . Activation of each node j  in the F 2  layer is determined by 
the Weber law choice function:

T jA=
∣A∧w j∣
∣w j∣

, (1)

where  ∣⋅∣  is  the  L1  norm operator  defined  by  ∣w j∣≡∑i=1

M
∣w ij∣ ,  ∧  is  the  fuzzy  AND 

operator,  A∧w j i≡minA i ,w ij ,  and    is the user-defined choice parameter. The  F 2  
layer produces a binary, winner-take-all  pattern of activity  y= y1 , y 2 , ... , yN  such that  
only  the  node  j=J  with  the  greatest  activation  value  J=argmax{T j : j=1,2,. .. , N }  
remains active; thus y J=1  and y j=0, j≠J . If more than one T j  is maximal, the node j  
with the smallest index is chosen. Node J  propagates its top-down expectation, or prototype  
vector w J , back onto F1  and the vigilance test is performed. This test compares the degree  
of match between wJ  and A  against the dimensionless vigilance parameter ∈[0,1] :

∣A∧w J∣
∣A∣ =

∣A∧wJ∣
M

≥ . (2)

If the test is passed, then node J  remains active and resonance is said to occur. Otherwise,  
the network inhibits the active F 2  node (i.e.,  T J  is set to 0 until the network is presented  
with  the  next  training  pair  a , t  )  and  searches  for  another  node  J  that  passes  the  
vigilance test. If such a node does not exist, an uncommitted F 2  node becomes active and 
undergoes learning (Step 5). The depth of search attained before an uncommitted node is  
selected is determined by the choice parameter  .

4. Class predictionPattern t  is fed directly to the map field F ab , while the F 2  category y  
learns to activate the map field via associative weights  W ab . The  F ab  layer produces a 
binary pattern of activity y ab= y1

ab , y 2
ab , ... , y L

ab=t∧w J
ab  in which the most active F ab  node 

K=argmax{y k
ab: k=1,2,. .. , L}  yields  the  class  prediction  ( K=k  J  ).  If  node  K  

constitutes an incorrect class prediction, then a match tracking signal raises the vigilance  
parameter   just enough:

=
∣A∧wJ∣

M
 , (3)

where =0 , to induce another search among F 2  nodes in Step 3. This search continues  
until either an uncommitted F 2  node becomes active (and learning directly ensues in Step  
5), or a node J  that has previously learned the correct class prediction K  becomes active.

5. LearningLearning  input  a  involves  updating  prototype  vector  w J ,  and,  if  J  
corresponds to a newly-committed node, creating an associative link to F ab . The prototype  
vector of F 2  node J  is updated according to:

w ' J=A∧wJ1−w J , (4)

where   is a fixed learning rate parameter. The algorithm can be set to slow learning with 
01 , or to fast learning with =1 . With complement coding and fast learning, fuzzy  

ARTMAP represents category j  as an m -dimensional hyperrectangle R j  that is just large  
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enough to enclose the cluster of training set patterns a  to which it has been assigned. That  
is,  an  M -dimensional  prototype vector  w j  records  the largest  and smallest  component  
values of training subset patterns  a  assigned to category  j . The vigilance test limits the  
growth of hyperrectangles – a   close to 1 yields small hyperrectangles, while a   close to  
0 allows large hyperrectangles. A new association between F 2  node J  and F ab  node K  
k  J =K   is learned by setting wJk

ab=1  for k=K , where K  is the target class label for 
a , and 0 otherwise. The next training subset pair a , t   is presented to the network in Step  

2.
Batch supervised training ends in accordance with some learning strategy, following one or 

more epochs. An epoch is defined as one complete presentation of all  the patterns of a finite 
training  data  set.  Once  the  weights  W  and  W ab  have  been  found  through  this  process, 
ARTMAP can predict a class label for an input pattern by performing Steps 2, 3 and 4 without 
any vigilance or match tests. During testing, a pattern a  that activates node J  is predicted to 
belong to class  K=k  J  . The time complexity required to process one input pattern, during 
either a training or testing phase, is OMN  .

2.2 Typical Batch Supervised Learning Strategies
Given a large training data set, one of the following four learning strategies are typically used to 
select  e ,  the  total  number  of  epochs  needed  to  end  batch  supervised  learning  by  fuzzy 
ARTMAP:
 One epoch (1EP):

The  learning phase  ends after  one epoch ( e=1 )  of  the  training data  set.  (This  learning 
strategy is mainly used for reference during simulations.)

 Convergence based on training set classifications (CONVp):
The learning phase ends after the epoch e  for which all patterns of the training data set have 
been correctly classified by the network. Convergence occurs when ∑l t l− yl , e

ab =0  over all 
patterns  l  in the training set. Note that this strategy is prone to convergence problems for 
data with overlapping class distributions, as some training patterns in the overlap region may 
never be correctly classified.

 Convergence based on weight values (CONVw):
The learning phase ends after  the epoch  e  for which the weight values have converged. 
Convergence occurs when the sum-squared-fractional-change (SSFC) of weights  W  for a 
two  successive  epochs,  e−1  and  e ,  is  less  than  0.001, 
SSFC=∑ j∑i w ji e−w jie−1 

20.001 .
 Hold-out validation (HV):

The learning phase ends after the epoch e  for which the generalization error is minimized 
on  an  independent  validation  subset.  Learning  is  performed  using  a  holdout  validation 
technique [49], with network training halted for validation after each epoch. In practice, the 
number  of  epochs  that  achieves  the  lowest  generalization  error  should  be  selected  by 
observing several epochs after e  to avoid falling into local minimums. With large data sets 
considered in this paper, the HV an is appropriate learning strategy. If data was limited,  k-
fold cross-validation would be a more suitable validation strategy, at the expense of some 
estimation bias due to crossing.
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3. Supervised Learning with Particle Swarm Optimization

3.1 Evolving neural networks
According to Yao [57],  the concept of evolution has been introduced into neural networks at 
three different levels: connection weights, architectures, and learning rules. Weight training in 
neural  networks  is  usually  formulated  as  minimization  of  an  error  function  by  iteratively 
adjusting the connection weights. Several training methods are based on gradient descent, which 
has been successfully applied in several domains of application. However, its drawback is that it 
can  get  trapped  in  a  local  minima of  the  error  function.  To overcome this  problem,  several 
researchers have formulated the training as the evolution of connection weights, using for that 
genetic algorithms [29, 55].

The first level of evolution assumes that the architecture of the network is fixed, i.e., that the 
network topology is pre-defined and does not change during the evolution of connection weights. 
However, architecture design is crucial for neural networks since it has a significant impact on 
the  generalization  capabilities  of  a  neural  network.  In  light  of  this,  several  authors  have 
formulated the design of the architecture as a search problem [41, 55]. One major problem with 
the  evolution  of architectures  without  connection weights  is  noise  fitness  evaluation  [58].  In 
other words, the evolution of the connection weights depends on the architecture. This has led 
researchers  to  develop  approaches  where  architectures  and  connection  weights  evolve 
simultaneously [34, 39, 59].

Finally, the last level takes into account the evolution of user-defined hyper-parameter values 
and the weight learning rule. The first attempts in this level considered the adjustment of some 
parameters of the backpropagation algorithm, such as learning rate and momentum [32]. Harp et 
al. proposed the simultaneous evolution of both hyper-parameters and architecture [28]. The idea 
is that it facilitates exploration of interactions between the learning algorithm and architectures 
such that a near-optimal combination of the parameters with an architecture can be found.

As one could observe, most of the approaches reviewed here exploit genetic algorithms or 
other  evolutionary  strategies  to  evolve  a  neural  network.  After  the  development  of  Particle 
Swarm Optimization in 1995 [30],  several  comparisons  between genetic  algorithms and PSO 
have been published in literature [16, 26, 48]. Most of them point out the advantages of PSO over 
genetic algorithms, and stress the fact that the basic PSO algorithm is quite simple and easy to 
understand. Based on all these, researchers have applied PSO to evolve neural networks at all the 
aforementioned levels with considerable success [13, 23, 24, 60]. However, to the best of our 
knowledge, no research has been published on evolving Fuzzy ARTMAP with PSO.

The rest of this section introduces an alternative to typical learning strategies – called the 
PSO learning strategy – for batch supervised learning of fuzzy ARTMAP neural networks. It is 
based on PSO, and allows to optimize weight and hyper-parameter values such that the network’s 
generalization error is minimized. The architecture, weights, and parameters are in effect selected 
to  minimize  generalization  error  by  virtue  of  ARTMAP  training,  which  allows  to  grow the 
network architecture (i.e., the number of F 2  nodes) based on the complexity of the problem.

3.2 The PSO learning strategy
PSO is a population-based stochastic optimization technique that was inspired by social behavior 
of bird flocking or fish schooling [30]. It shares many similarities with evolutionary computation 
techniques such as genetic algorithms (GAs), yet has no evolution operators such as crossover 
and mutation. PSO belongs to the class of evolutionary algorithm techniques that does not utilize 
the “survival of the fittest” concept, nor a direct selection function. A solution with lower fitness 
values can therefore survive during the optimization and potentially visit any point of the search 
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space [16]. Finally, while GAs were conceived to deal with binary coding, PSO was designed, 
and proved very effective, in solving real valued global optimization problems, which makes it 
suitable for this large scale study.

With  PSO,  each  particle corresponds  to  a  single  solution  in  the  search  space,  and  the 
population of particles is called a  swarm. All particles are assigned position values which are 
evaluated according to the fitness function being optimized, and velocities values which direct 
their movement. Particles move through the search space by following the particles with the best 
fitness. Assuming a d-dimensional search space, the position of particle i in an P-particle swarm 
is represented by a  d-dimensional vector  si=si1 , si2 , ... , sid  , for  i=1,2,. .. , P . The velocity of 
this particle is denoted by vector vi=vi1 , vi2 , ... ,v id , while the best previously-visited position 
of this particle is denoted as  pi= pi1 , pi2 , ... , pid  . For each new iteration  q1 , the velocity 
and position of particle i  are updated according to:

vi
q1=wq vi

qc1r1 pi
q−si

qc2r2  pg
q−si

q (5)

si
q1=si

qvi
q1 (6)

where  pg  represents the global best particle position in the swarm,  wq  is the particle inertia 
weight,  c1  and  c2  are  two  positive  constants  called  cognitive  and  social  parameters, 
respectively, and r 1  and r 2  are random numbers uniformly distributed in the range [0,1] .

The  role  of  wq  in  Equation  5  is  to  regulate  the  trade-off  between  exploration  and 
exploitation.  A large inertia  weight  facilitates  global  search  (exploration),  while  a  small  one 
tends to facilitate fine-tuning the current search area (exploitation). This is why inertia weight 
values are defined by some monotonically decreasing function of  q . Proper fine-tuning of c1  
and  c2  may result in faster convergence of the algorithm and alleviation of the local minima. 
Kennedy and Eberhart propose that the cognitive and social scaling parameters be selected such 
that c1=c2=2  [31]. Finally, the parameters r1  and r 2  are used to maintain the diversity of the 
population. Figure 2 depicts the update by PSO of a particle’s position from si

q  to si
q1 .

Algorithm 2  shows  the  pseudo-code  of  the  PSO learning  strategy  applied  to  supervised 
training of fuzzy ARTMAP neural networks. It seeks to minimize fuzzy ARTMAP generalization 
error  E si

q  in  the  4-dimensional  space  of  user-defined  hyper-parameter  values, 
si
q=i

q ,i
q , i

q ,i
q .  Measurement  of  any  fitness  values  E si

q  in  this  algorithm  involves 
computing the generalization error on a validation subset for the fuzzy ARTMAP network which 
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Figure 2: PSO update of a particle’s position s q  to s q1  
in a 2-dimensional space during iteration q1 .
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has been learned using a training subset and using the parameter values at particle position si
q . 

When selecting pi
q  or pg

q , if the two fitness values being compared are equal, then the particle 
requiring fewer  resources.  Following the  last  iteration  of  Algorithm 2,  overall  generalization 
error is computed on a test set for the network corresponding to particle position pg

q .
For  enhanced  computational  throughput  and  global  search  capabilities,  Algorithm  2  is 

inspired by the synchronous parallel version of PSO [47]. It utilizes a basic type of neighborhood 
called global best or gbest, which is based on a sociometric principle that conceptually connects 
all the members of the swarm to one another. Accordingly, each particle is influenced by the very 
best performance of any member of the entire swarm. Exchange of information only takes place 
among the  particle’s  own experience  (the  location  of  its  personal  best  pi

q  ,  lbest),  and  the 
experience of the best particle in the swarm (the location of the global best pg

q , gbest), instead 
of being carried from fitness dependent selected parents to descendants as in GAs.

Note  that  this  strategy is  somewhat  similar  to  HV in  that  a  validation  subset  is  used to 
converge on the best solutions. At the same time, any one of the typical learning strategies (1EP, 
CONVp, CONVw, HV) may be embedded into the PSO strategy, to train fuzzy ARTMAP based 
on  si

q .  If the HV strategy is embedded, the same validation subset can be used to select the 
number of epochs the minimizes generalization error as to compute fitness values. The basic PSO 
learning strategy is equivalent to embedding 1EP.
Algorithm 2 PSO Learning Strategy for Fuzzy ARTMAP.
A. InitializationSelect the internal learning strategy: 1EP, CONVp, CONVw or HV

Set the maximum number of iteration qmax  and/or fitness objective E∗

Set PSO parameters P , vmax , w0 , c1 , c2 , r 1  and r2  
Initialize particle positions at random such that si

0  and pi
0∈[0,1]d , for i=1,2,. .. , P

Initialize particle velocities at random such that 0≤vi
0≤vmax , for i=1,2,. .. , P

B. Iterative processSet iteration counter q=0  
while q≤qmax  or E  pg

q ≥E∗  do
for i=1,2,. .. , P  do

Train fuzzy ARTMAP according to internal learning strategy, using si
q

Compute fitness value E si
q  of resulting network

if E si
qE  pi

q   then Update particle’s best personal position: pi
q=si

q

end
Select the particle with best global fitness: g=argmin{E siq:i=1,2,. ..P}
for i=1,2,. .. , P  do

Update velocity: vi
q1=wq vi

qc1r1 pi
q−si

qc2r 2  pg
q−si

q

Update position: si
q1=si

qvi
q1

end
q=q1

Update particle inertia wq

end
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4. Experimental Methodology
In order to observe the influence on fuzzy ARTMAP performance of data set manipulations and 
parameter settings from a perspective of different data structures, several data sets were selected 
for  computer  simulations.  Four  synthetic  data  sets  are  representative  of  pattern  recognition 
problems that involve either (1) simple decision boundaries with overlapping class distributions, 
or  (2)  complex  decision  boundaries,  were  class  distributions  do  not  overlap  on  decision 
boundaries.  A  set  of  handwritten  numerical  characters  from  the  NIST  SD19  database  is 
representative of complex real-world pattern recognition problems. Prior to a simulation trial, 
these data sets were normalized according to the minmax technique [45], and partitioned into 
three parts – the training subset, the validation subset, and the test subset. Previous results have 
shown that  no significant  differences in performance were achieved by fuzzy ARTMAP as a 
result of using the Gaussian normalization technique on the same synthetic data sets as this paper 
[27]. In addition, Gaussian normalization is not applicable to the NIST SD19 data, as the features 
extracted  from  isolated  numbers  have  multi-modal  distribution,  and  some  modes  are  not 
Gaussian.

During  each  simulation  trial,  the  performance  of  fuzzy  ARTMAP  is  compared  from  a 
perspective of different training subset size, learning strategies, and parameter settings. In order 
to assess the effect on performance of training subset size, the number of training subset patterns 
used for supervised learning was progressively increased, while corresponding validation and test 
subsets were held fixed. To assess the impact of typical learning strategies, the performance was 
compared for fuzzy ARTMAP neural networks where supervised learning was ended (1) after 
one complete epoch (1EP), (2) once no training set patterns are misclassified during an epoch 
(CONVp), (3) once weight values remain constant for two successive epochs (CONVw), and (4) 
once performance is  maximized on a validation set,  through holdout  validation based on the 
number of epochs (HV). In either case, the number of epochs was limited to 1000, and pattern 
presentation orders were always randomized from one epoch to the next. Since the HV strategy 
does not suffer from overtraining due to the number of training epochs, the impact of the number 
of training epochs on performance may also be assessed. Finally, to assess the impact of hyper-
parameter  settings,  fuzzy  ARTMAP  performance  was  first  measured  when  using  parameter 
settings  that  yield  minimum  network  resources  (internal  categories,  epochs,  etc.):  =1 , 
=0.001 , =0 , and either =−0.001  or =0.001 .

It  is  worth  noting  that  a  convergence  problem occurs  when  learning  inconsistent  cases, 
whenever  the  training subset  contains  identical  patterns  that  belong to  different  classes.  The 
consequence  is  a  failure  to  converge,  as  identical  prototypes  linked  to  inconsistent  cases 
proliferate. This problem may be circumvented by using the feature of ARTMAP-IC [11] called 
negative match tracking (denoted MT-), with ≤0 . Both the original MT+ ( =0.001 ) and MT- 
( =−0.001 ) were considered during simulations. Then, performance was compared to fuzzy 
ARTMAP using the PSO learning strategy, when parameter values were selected to minimize 
generalization error.

In all simulations involving the PSO learning strategy, the 4-dimensional search space was 
set  to  the  following range  of  fuzzy ARTMAP hyper-parameters:  ∈[0,1] ,  ∈[0.00001,1 ] , 
∈[0,1] , and ∈[−1,1 ] . Each simulation trial was performed with P=15  particles, and ended 

after  qmax=100  iterations  (although none of our  simulations  has  ever attained  this  limit).  A 
fitness objective E∗  was not considered to end training, but a trial was also ended if E  pg

q   is 
constant  for  10  consecutive  iterations.  All  but  one  of  the  particle  vectors  were  initialized 
randomly, according to a uniform distribution in the search space. The initial position s1

0  of one 
particle  was set  with the  hyper-parameters  that  yield minimum resources  ( =1 ,  =0.001 , 
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=0 , and =0.001 ). During preliminary simulations with the PSO strategy, the authors have 
observed very little sensitivity of results to fuzzy ARTMAP’s initial parameter values. However, 
restraining  the  PSO  search  space  to  useful  ranges  of  parameter  values  limits  the  resource 
(number of PSO iterations and number of particles) needed to minimize PSO’s cost function. The 
PSO parameters were set as follows:  c1=c2=2 ;  r1  and  r2  were random numbers uniformly 
distributed in [0,1];  wq  was decreased linearly from 0.9 to 0.4 over the  qmax  iterations;  the 
components of vmax  were set to 0.1 for  ,  , and  , and to 0.2 for  . At the end of a trial, 
the fuzzy ARTMAP network with the best global fitness value pg

q  was retained. Independently 
trials were repeated 4 times with different initializations of particle vectors, and the network with 
greatest pg

q  of the four was retained. From previous study with our data sets, it was determined 
that performing 4 independent trials of the PSO learning strategy with only 15 particles leads to 
better optimization results than performing 1 trial with 60 particles.

Since fuzzy ARTMAP performance is sensitive to the presentation order of the training data, 
each simulation trial was repeated 10 times with either 10 different randomly generated data sets 
(synthetic data), or 10 different randomly selected data presentation orders (NIST SD19 data). 
The average performance of fuzzy ARTMAP was assessed in terms of resources required during 
training, and its generalization error on the test sets. The amount of resources required during 
training is measured by compression and convergence time.  Compression refers to the average 
number of training patterns per category prototype created in the F 2  layer. Convergence time is 
the number of epochs required to complete learning for a learning strategy. It does not include 
presentations of the validation subset used to perform hold-out validation. Generalization error 
is estimated as the ratio of incorrectly classified test subset patterns over all test  set patterns. 
Given that compression indicates the number of F 2  nodes, the combination of compression and 
convergence  time  provides  useful  insight  into  the  amount  of  processing  required  by  fuzzy 
ARTMAP during training to produce its best asymptotic generalization error. Average results, 
with  corresponding  standard  error,  are  always  obtained,  as  a  result  of  the  10  independent 
simulation trials.

The  Quadratic  Bayes  and  k-Nearest-Neighbor  with  Euclidean  distance  (k-NN)  classifiers 
were included for reference with generalization error results. These are classic parametric and 
non-parametric classification techniques from statistical pattern recognition, which are immune 
to the effects of overtraining. For each computer simulation, the value of k employed with k-NN 
was selected among k = 1, 3, 5, 7, and 9, using hold-out validation.

The rest of this section gives some additional details on the synthetic and real data sets and 
data normalization technique employed during computer simulations.

4.1 Synthetic data sets
All  four  synthetic  data  sets  described  below  are  composed  of  a  total  of  30,000  randomly-
generated  patterns,  with  10,000  patterns  for  the  training,  validation,  and  test  subsets.  They 
correspond to 2 class problems, with a 2 dimensional input feature space. Each data subset is 
composed of an equal number of 5,000 patterns per class. In addition, the area occupied by each 
class is equal. During simulation trials, the number of training subset patterns used for supervised 
learning was progressively increased from 10 to 10,000 patterns according to a logarithmic rule: 
5, 6, 8, 10, 12, 16, 20, 26, 33, 42, 54, 68, 87, 110, 140, 178, 226, 286, 363, 461, 586, 743, 943, 
1197, 1519, 1928, 2446, 3105, 3940, 5000 patterns per class. This corresponds to 30 different 
simulation trials over the entire 10,000 pattern training subset.

The  four  synthetic  data  sets  have  been  selected  to  facilitate  the  observation  of  fuzzy 
ARTMAP behavior  on different  tractable  problems.  Of the  four sets,  two have simple linear 
decision boundaries with overlapping class distributions,  Dtot   and Dtot  , and two have 
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complex non-linear decision boundaries without overlap,  DCIS  and  DP2 . The total theoretical 
probability of error associated with D  and D  is denoted by tot . Note that with DCIS  and 
DP2 , the length of decision boundaries between class distributions is longer, and fewer training 

patterns are available in the neighborhood of these boundaries than with Dtot   and Dtot  . 
In addition, note that the total theoretical probability of error with  DCIS  and  DP2  is 0, since 
class distributions do not overlap on decision boundaries. The four synthetic data sets are now 
described:
Dtot  : As represented in Figure 3(a), this data consists of two classes, each one defined by a 

multivariate normal distribution in a two dimensional input feature space. It is assumed that 
data  is  randomly  generated  by  sources  with  the  same Gaussian  noise.  Both  sources  are 
described  by  variables  that  are  independent  and  have  equal  variance  2 ,  therefore 
distributions are hyperspherical. In fact, Dtot   refers to 13 data sets, where the degree of 
overlap,  and thus  the  total  probability  of  error  between classes  differs  for  each  set.  The 
degree of overlap is varied from a total probability of error,  tot=1%  to  tot=25% , with 
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Figure 3: Representation of the synthetic data sets used for computer simulations.
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2% increments, by adjusting the mean vector 2  of class 2. The reader is referred to Table 3 
(Appendix A) for the specific parameters employed to create the 13 data sets of Dtot  .

Dtot  : As represented in Figure 3(b), this data is identical to Dtot  , except that the degree 
of  overlap  between classes  is  varied  by adjusting  the  variance  2

2  of  both  classes.  The 
parameters  employed  to  create  the  13  data  sets  of  Dtot   are  presented  in  Table  4 
(Appendix A).  Note  that  for  a same degree  of  overlap,  Dtot   data  sets  have a larger 
overlap boundary than Dtot   yet they are not as dense.

DCIS : As represented in  Figure 3(c), the Circle-in-Square problem [6] requires a classifier to 
identify the points of a square that lie inside a circle, and those that lie outside a circle. The 
circle’s area equals half of the square. It consists of one non-linear decision boundary where 
classes do not overlap.

DP2 : As represented in  Figure 3(d), each decision region of the  DP2  problem is delimited by 
one or more of the four following polynomial and trigonometric functions:

f 1 x =2sin x 5 (7)

f 2 x = x−2
21 (8)

f 3x =−0.1 x
20.6sin 4 x 8 (9)

f 4x =0.5 x−10
27.902 (10)

and belongs to one of the two classes,  indicated by the Roman numbers I and II [51].  It 
consists  of  four  non-linear  boundaries,  and  class  definitions  do  not  overlap.  Note  that 
equation f 4x   was slightly modified from the original equation such that the area occupied 
by each class is approximately equal.

4.2 NIST Special Database 19
The NIST Special Database 19 (SD19) [25] data set has been selected due to the great variability 
and difficulty of such handwriting recognition problems (see Figure 4). It consists of images of 
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Figure 4: Some images of handwritten digits extracted from 
the NIST SD19 data set.
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handwritten sample forms (hsf) organized into eight series, hsf-{0,1,2,3,4,6,7,8}. SD19 is divided 
in 3 sections which contains samples representing isolated handwritten digits (’0’, ’1’, ..., ’9’) 
extracted  from hsf-{0123},  hsf-7 and hsf-4.  Table  5 (Appendix  A) shows the distribution of 
samples among the 10 digit classes according to this division.

For  our  simulations,  the  data  in  hsf-{0123} has been further  divided  into training subset 
(150,000 samples), validation subset 1 (15,000 samples), validation subset 2 (15,000 samples) 
and validation subset 3 (15,000 samples). The training and validation subsets contain an equal 
number of samples per class. Data in hsf-7 and hsf-4 have been used as a standard test subset (all 
60,089 samples) and a noisy test subset (all 58,647 samples), respectively. The distribution of 
samples per class in test sets is approximately equal.

The  set  features  extracted  for  samples  is  a  mixture  of  concavity,  contour,  and  surface 
characteristics [42]. Accordingly, 78 features are used to describe concavity, 48 features are used 
to  describe  contour,  and  6  features  are  used  to  describe  surface.  Each  sample  is  therefore 
composed of 132 features that are normalized between 0 and 1 by summing up their respective 
feature values, and then dividing each one by its  summation. With this  feature set,  the NIST 
SD19 data  base  exhibits  complex  decision  boundaries,  with  moderate  overlap  between  digit 
classes. Table 2 reports some experimental results obtained with Multi-Layer Perceptron (MLP), 
Support Vector Machine (SVM), and k-NN classifiers.

During simulations, the number of training subset patterns used for supervised learning was 
progressively increased as from 100 to 150,000 patterns, according to a logarithmic rule. The 16 
different training subset consist of the first 10, 16, 28, 47, 80, 136, 229, 387, 652, 1100, 1856, 
3129, 5276, 8896, and all 15000 patterns per class.

5. Impact of Data Set Manipulations with Synthetic Data
Figures 5-7 show the average performance achieved by fuzzy ARTMAP as a function of the 

training subset size for  Dtot=9% . The error bars on these and other figures are standard 
error of the sample mean. Parameter values were set to minimize resources, with =0 , =1 , 
=0.001  and either  =0.001  (MT+) or  =−0.001  (MT-). These results are shown for the 

1EP, CONVw, CONVp, and HV learning strategies. The generalization errors for the Quadratic 
Bayes and k-NN classifiers, as well as the theoretical probability of error ( tot ), are also shown 
for reference.

40

Figure 5: Average generalization error of fuzzy ARTMAP 
(with the 1EP, CONVw, CONVp, and HV) versus training 
subset size for Dtot=9%  using =1 , =0.001 , 
=0 , and =±0.001 .
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These results  on these figures clearly show the impact  on performance of the number of 
epochs  and  of  the  training  subset  size.  Fuzzy  ARTMAP  achieves  a  slightly  lower  average 
generalization error if it is trained with HV (using MT+ or MT-) rather than with CONVw or 
CONVp. The lowest average generalization error (about 12%) is achieved when training fuzzy 
ARTMAP with HV (MT+) and 10 training patterns per class. In this case, compression is on 
average about 6.5 patterns per F 2  node, amounting to about 3.1 F 2  nodes total, and an average 
convergence time of about 1 epoch. This advantage over CONVw and CONVp tends to diminish 
as the training set size grows. In addition, HV yields an average compression and convergence 
time between that obtained by 1EP and by CONVw or CONVp learning strategies. Since the HV 
strategy is immune to the effects of overtraining from the number of epochs, the relatively higher 
generalization  error  and  lower  compression  obtained  with  CONVw  and  CONVp  are  an 
indication that these learning strategies can in fact lead to overtraining based on the number of 
epochs.

The larger the training data set, the lower the impact of overtraining due to the number of 
training  epochs.  However,  beyond  a  training  set  size  of  as  little  as  40  patterns  per  class, 
significant  degradation  in  performance  occurs,  regardless  of  the  learning  strategy  –  the 
compression tends to stabilize or decrease, while the generalization error and convergence time 
tend  to  increase  significantly.  (Compression  and convergence  time do not  degrade  for  1EP.) 
Although  the  compression  and  convergence  time  does  not  degrade  as  sharply  when  fuzzy 
ARTMAP uses MT-, generalization error grows progressively beyond 20% with the training set 
size.  Meanwhile,  the  generalization  error  of  reference  classifiers  tend asymptotically  towards 
their  minimum  value.  Fuzzy  ARTMAP’s  behavior  highlights  the  significant  effect  of 
overtraining  related  to  the  training  set  size.  For  data  with  overlapping  class  distributions, 
increasing  the  amount  of  training  data  beyond  a  certain  point  requires  significantly  more 
resources, while yielding a higher generalization error.

Very similar  tendencies  are found in  simulation results  where  fuzzy ARTMAP is trained 
using the other  Dtot   and  Dtot   data sets. However, as  tot  increases, the performance 
degradation due to training subset size tends to become more pronounced, and occurs for fewer 
training set patterns. As a result, the generalization error attained by fuzzy ARTMAP on these 
data  sets  may only  approach  those  obtained  by  reference  classifiers  for  very  small  training 
subset.
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Figure 7: Average convergence time of fuzzy ARTMAP 
(with the 1EP, CONVw, CONVp, and HV) versus training 
subset size for Dtot=9%  using =1 , =0.001 , 
=0 , and =±0.001 .

Figure 6: Average compression of fuzzy ARTMAP (with 
the 1EP, CONVw, CONVp, and HV) versus training 
subset size for Dtot=9%  using =1 , =0.001 , 
=0 , and =±0.001 .
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Recall that in this paper, HV has been applied such that training is halted based on validation 
after each training epoch. This eliminates the generalization error due to overtraining caused by 
the number of training epochs. Note that applying HV within epochs (by halting network training 
for fewer patterns than in one epoch) could reduce overtraining from training set size, but the 
computational  overhead would become very costly. Let us define the overtraining error from 
training subset  size as the difference between the  maximum generalization error obtained by 
using  all  the  training  data  (5,000  patterns  per  class)  and  the  minimum generalization  error 
obtained for some training subset size.  Figure 8 displays the average trial-by-trial overtraining 
error from the training subset  size for  Dtot   as  a function of  tot  for  the 1EP, CONVw, 
CONVp,  and  HV strategies.  For  instance,  with  the  Dtot=9%  data  set,  the  size  of  the 
training subset increases generalization error by about 4.5% for CONVp. The impact of training 
subset size on generalization error grows with tot , and is about twice as great for HV with Mtas 
with MT+.
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Figure 9: Average generalization error of fuzzy ARTMAP 
(with the 1EP, CONVw, CONVp, and HV strategies) 
versus training subset size for DCIS  using =1 , 
=0.001 , =0 , and =±0.001 .

Figure 10: Average compression of fuzzy ARTMAP (with 
the 1EP, CONVw, CONVp, and HV strategies) versus 
training subset size for DCIS  using =1 , =0.001 , 
=0 , and =±0.001 .

Figure 11: Average convergence time of fuzzy ARTMAP 
(with the 1EP, CONVw, CONVp, and HV) versus training 
subset size for DCIS  using =1 , =0.001 , =0 , and 
=±0.001 .

Figure 8: Average overtraining error from the training set 
size as a function tot  on all Dtot  data sets, using 
=1 , =0.001 , =0 , and =±0.001 .

10
1

10
2

10
3

0

50

100

150

200

Number of Training Patterns per Class

C
om

pr
es

si
on

 (
N

um
be

r 
T

ra
in

in
g 

T
at

te
rn

s 
pe

r 
F

2 
N

od
e)

FAM 1EP w/ MT+
FAM CONVp w/ MT+
FAM CONVw w/ MT+
FAM HV w/ MT+
FAM HV w/ MT−

10
1

10
2

10
3

0

5

10

15

20

25

30

35

Number of Training Patterns per Class

E
st

im
at

e 
of

 G
en

er
al

iz
at

io
n 

E
rr

or
 (

%
)

k−NN
FAM 1EP w/ MT+
FAM CONVp w/ MT+
FAM CONVw w/ MT+
FAM HV w/ MT+
FAM HV w/ MT−

10
1

10
2

10
3

10
0

10
1

Number of Training Patterns per Class

C
on

ve
rg

en
ce

 T
im

e 
(N

um
be

r 
of

 E
po

ch
s)

FAM 1EP w/ MT+
FAM CONVp w/ MT+
FAM CONVw w/ MT+
FAM HV w/ MT+
FAM HV w/ MT−

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

Degree of Overlap

O
ve

rt
ra

in
in

g 
E

rr
or

 fr
om

 th
e 

T
ra

in
in

g 
S

et
 S

iz
e 

(%
)

FAM 1EP w/ MT+

FAM CONVp w/ MT+

FAM CONVw w/ MT+

FAM HV w/ MT+

FAM HV w/ MT−

FAM w/ PSO(1EP)



SUPERVISED LEARNING OF FUZZY ARTMAP NN’S THROUGH PSO

Figures 9-11 present the average performance achieved by fuzzy ARTMAP as a function of 
the training subset size for DCIS . Here again, parameter values were set to minimize resources, 
with =0 , =1 , =0.001  and either =0.001  (MT+) or =−0.001  (MT-). These results 
are displayed for  the 1EP, CONVw, CONVp, and HV learning strategies.  The generalization 
error for the k-NN classifier is also shown for reference. For segmented data sets with complex 
decision bounds like  DCIS  and DP2 ,  k-NN generally has the lowest generalization error when 
k=1 . The tot=0%  with DCIS  and DP2 . 

A degradation of performance indicative of the effects of overtraining are not apparent from 
results on these figures. As would be expected, when training set size increases, the compression 
and convergence time also  increase.  Meanwhile,  the  generalization  error  of  fuzzy ARTMAP 
decreases asymptotically towards its minimum. Results are comparable for CONVw, CONVp, 
and  HV  learning  strategies.  The  best  average  generalization  error  on  DCIS  (about  2%)  is 
achieved  when  training  fuzzy ARTMAP with  CONVw,  CONVp,  or  HV and  5,000  training 
patterns per class. In this case, compression is about 100 patterns per F 2  node, and convergence 
time ranges from 8 (CONVw) to 16 (CONVp) epochs.

Similar tendencies are found in simulation results where fuzzy ARTMAP is trained using the 
DP2  data set. However, since the decision boundaries are more complex with  DP2 , a greater 

number of training patterns are required for fuzzy ARTMAP to asymptotically start reaching its 
minimum generalization  error.  The  best  average  generalization  error  on  DP2 (about  4%)  is 
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Figure 12: An Example of decision boundaries formed by fuzzy ARTMAP in the input space. Training is performed 
(a) with HV and MT+ on the first 10 training patterns per class (for the lowest generalization error), (b) with HV and 
MT+ on 5,000 training patterns per class, (c) with HV and MT- on 5,000 training patterns per class, and (d) with 
PSO(1EP) on 5,000 training patterns per class and parameters =0.47 , =0.77 , =0.45  and =−0.56 . The 
optimal decision boundary for Dtot=9%  is also shown for reference. Note that virtually no training, validation or 
test subset patterns are located in the upper-left and lower-right corners of these figures

(a) HV and MT+ (20 patterns). (b) HV and MT+ (10,000 patterns).

(c) HV and MT- (10,000 patterns). (d) PSO(1EP) (10,000 patterns).
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achieved  when  training  fuzzy ARTMAP with  CONVw,  CONVp,  or  HV and  5,000  training 
patterns per class. In this case, compression is about 45 patterns per F 2  node, and convergence 
time is from about 8 to 10 epochs. Although the generalization error of fuzzy ARTMAP on DCIS  
and DP2  data sets is never lower that of reference classifiers, their behavior is similar.

One can conclude from these results  that  overtraining in fuzzy ARTMAP is linked to its 
sequential learning of training patterns from overlapping class distributions. Figure 12(a) and (b) 
present an example of a decision boundary obtained when fuzzy ARTMAP with MT+ is trained 
through  HV  on  20  and  then  on  10,000  training  patterns  of  the  Dtot=9%  data  set, 
respectively. Figure 12(a) corresponds to lowest generalization error of about 12% using 3 F 2  
nodes, while Figure 12(b) corresponds to generalization error of about 15% using 916 F 2  nodes. 
Figure 12(c) presents a decision boundary obtained when fuzzy ARTMAP with MT- is trained 
through HV on 10,000 training patterns. It corresponds to generalization error of about 21%, but 
uses  only using 199  F 2  nodes.  In an attempt to learn overlapping class distributions,  fuzzy 
ARTMAP  with  MT+  or  MT-  tends  to  create  a  growing  number  of  small  category  hyper-
rectangles,  which leads  to  granular  decision boundaries.  However,  as  the  number of  training 
patterns  increases,  the  amount  of  resources  needed  to  learn  overlapping  data  grows,  and 
generally produces poor generalization.

Although HV is commonly-used to avoid overtraining, it does not appear justified given the 
resulting level of performance in the present experiments. It does not prevent overtraining from 
the training set size, and involves a considerable computational cost. To minimize generalization 
error, a training set size would need to be selected. Overtraining is not an issue for data from 
non-overlapping class  distribution,  even when complex  decision  boundaries  must  be  formed. 
Performance tends to either increase or remain stable with a growing amount of training data.

6. Impact of Parameter Settings with Synthetic Data
Figures  13-15 show an example of the average performance achieved by fuzzy ARTMAP with 
the PSO learning strategy as a function of the training subset size for Dtot=9% . Error bars 
are  standard  error  of  the  sample  mean.  These  results  are  shown  for  the  cases  where  1EP, 
CONVw, CONVp, and HV are embedded into the PSO strategy as internal learning strategies (to 
compute the E si

q  values). The performance of fuzzy ARTMAP with HV learning strategy and 
MT+ is reproduced from Figure 5 for comparison. The generalization errors for the Quadratic 
Bayes and k-NN classifiers, as well as the theoretical probability of error ( tot ), are also shown 
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Figure 13: Average generalization error of fuzzy 
ARTMAP (with the PSO strategy) versus training subset 
size for D tot=9% .
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for reference. Very similar tendencies are found in simulation results where fuzzy ARTMAP is 
trained using the other Dtot   and Dtot   data sets.

The  results  shown  in  Figure  13 indicate  that  the  PSO  learning  strategy  produces  a 
generalization error which is just above the theoretical probability of error (9%), and which is 
always  lower  than  or  comparable  to  that  of  reference  classifiers.  A  generalization  error  of 
between 9% and 10% is achieved regardless learning strategy used to  compute fitness  (1EP, 
CONVw, CONVp or HV), thus the number of epochs, and of the training subset size. Therefore, 
the PSO strategy allows to efficiently learn data from very small and very large training subsets. 
Compared to the HV learning strategy alone,  the generalization error is reduced by a rate of 
about 25% to 45% depending on the training subset size.

The low generalization is accompanied by a very high level  of compression that  tends to 
grow exponentially with the number of training patterns. For example, when the training subset 
contains 1000 patterns per class, the compression obtained with the PSO strategy with 1EP is 
about  900  patterns  per  F 2  node.  This  amounts  to  about  2.2  F 2  nodes  total.  In  this  case, 
compression with PSO(1EP) is about 25 times greater than that of the HV learning strategy with 
MT+ alone. To minimize generalization error, the PSO strategy selects parameters that limit the 
number  of  small  category hyper-rectangles  created  to  define  areas  with  overlapping decision 
bounds.  As  an  example,  Figure  12(d)  presents  a  decision  boundary  obtained  when  fuzzy 
ARTMAP  is  trained  using  the  PSO  strategy  on  10,000  training  patterns  Dtot=9% .  It 
corresponds to generalization error of about 9% using only 2 F 2  nodes.

Improvements  to  generalization  error  and  compression  are  produced  at  the  expense  of  a 
longer  convergence  time.  In  the  best-case  scenario,  the  PSO  strategy  with  1EP  requires  a 
maximum convergence time of 6000 epochs (100 iterations × 4 independent trials × 15 particles) 
assuming that validation subset presentations are not counted. When CONVw, CONVp or HV 
are embedded, this time is multiplied by the usual number of epochs each one needs to end batch 
supervised training (when computing fitness values).  However, there is no clear  advantage to 
embedding  the  CONVw,  CONVp  or  HV as  internal  learning  strategies  to  compute  E si

q  
values. Parameter optimization appears to compensate for the single training epoch of PSO(1EP).

Overall, the PSO learning strategy leads to a very high level of performance, and eliminates 
the effects of overtraining for data with overlapping class distributions. Regardless of the  tot  
value, increasing the training subset size or the number of training epochs never degrades fuzzy 
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Figure 15: Average convergence time of fuzzy ARTMAP 
(with the PSO strategy) versus training subset size for 
D tot=9% .

Figure 14: Average compression of fuzzy ARTMAP (with 
the PSO strategy) versus training subset size for 
D tot=9% .
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ARTMAP’s generalization error or compression (refer to Figure 8). As shown in Figures 23-26 
(Appendix  C),  simulation  results  are  obtained  with  fuzzy  ARTMAP  parameters  that  vary 
significantly for different training subset sizes and number of epochs. Nonetheless, the hyper-
parameters  found  through  the  PSO  strategy  remain  on  average  in  the  following  ranges: 
∈[0.3 ,0.55 ] , ∈[0.6,0 .9] , ∈[0.35,0.7 ]  and ∈[−0.65,−0.2] , which differs considerably 

from those employed in Section 5. Note that using negative    values is an important factor in 
limiting the excessive creation of categories to represent areas with overlapping decision bounds.

Figures  16-18 present the average performance achieved by fuzzy ARTMAP with the PSO 
strategy as a function of the training subset size for DCIS . These results are shown for the cases 
where 1EP, CONVw, CONVp, and HV learning strategies are embedded into the PSO strategy. 
The performance of fuzzy ARTMAP with HV learning strategy and MT+ is reproduced from 
Figures 9-11 for comparison. In addition, the generalization errors for the k-NN classifier is also 
shown for reference. Recall that tot=0%  with DCIS  and DP2 . Similar tendencies are found in 
simulation results where fuzzy ARTMAP is trained using the DP2  data set.

As shown in these figures, when the training set size increases, the generalization error of all 
classifiers  decreases  asymptotically  towards  their  minimum.  Compared  to  the  HV  learning 
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Figure 18: Average convergence time of fuzzy ARTMAP 
(with the PSO strategy) for DCIS .

Figure 17: Average compression of fuzzy ARTMAP (with 
the PSO strategy) for DCIS .

Figures 16: Average generalization error of fuzzy 
ARTMAP (with the PSO strategy) for DCIS .
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strategy alone, the generalization error is reduced by a rate of about 40% to 60% depending on 
the  training  subset  size  and  the  internal  learning  strategy.  For  a  training  subset  size  of  100 
patterns or less, the generalization error obtained using fuzzy ARTMAP with PSO strategy is 
significantly lower than that of  k-NN. With small amounts of training patterns, embedding HV 
into the PSO strategy always yields the lowest generalization error. Beyond about 100 patterns 
per class, the generalization error using fuzzy ARTMAP with PSO strategy is comparable to that 
of  k-NN,  regardless  of  the  strategy  used  to  compute  E si

q  values.  The  lowest  average 
generalization error on DCIS (about 1%) is achieved when the training subset contains 5,000 
patterns per class.

The level of compression associated with fuzzy ARTMAP is however low, and does not tend 
to grow with the number of training patterns. For example, when the training subset contains 
1000 patterns per class, the compression obtained using the PSO strategy with 1EP is about 3 
patterns  per  F 2  node.  This  amounts  to  about  667  F 2  nodes  total.  In  this  specific  case, 
compression  of  the  HV  learning  strategy  alone  is  about  16  times  greater.  To  minimize 
generalization error,  the PSO strategy selects  parameters that encourage the creation of many 
small category hyper-rectangles to define areas with complex decision bounds. Indeed, the level 
of compression obtained when using PSO is linked to the geometry of the decision boundaries 
among classes. With simple boundaries, fewer large F 2  nodes are be defined, and with complex 
boundaries, a greater number of F 2  nodes are be defined. In the latter case, the PSO strategy can 
be  expensive,  as  a  training  time increases  with  the  number  of  F 2  nodes.  The  overhead  in 
convergence  time is  once  again  several  orders  of  magnitude  greater  with PSO. Furthermore, 
embedding CONVw, CONVp or HV into the PSO strategy requires about 2 to 10 times as many 
epochs to end batch supervised  learning (when computing  E si

q  values)  as  with respective 
strategies alone (see Figure 11).

The PSO learning strategy globally leads to a very low generalization error for data with 
complex decision boundaries without overlap. The effects of overtraining are never perceived in 
results on Figures  16-18. In contrast, the level of compression is low and convergence time is 
high. With the  PSO strategy,  the  amount  of  resources  grow with  the  complexity of  decision 
bounds that must be implicitly defined to achieve a low generalization error. As shown in Figures 
30-27 (Appendix C), simulation results are obtained with fuzzy ARTMAP hyper-parameters that 
remain  on  average  in  the  following ranges:  ∈[0.4,1] ,  ∈[0.45,0 .95] ,  ∈[0.25,0 .6]  and 
∈[−0.5,0 .4] ,  which differs considerably from those in Section 5. Note that the positive    

values  favor  the  creation  of  many  small  categories  to  define  complex  non-linear  decision 
boundaries.

Table  1 shows  the  generalization  error  obtained  by  reference  classifiers  and  the  fuzzy 
ARTMAP neural network using different learning strategies on some synthetic data sets. Tables 
6 and  7 respectively  present  these  results  for  all  other  Dtot   and  Dtot   data  sets 
(Appendix B).  When using PSO(1EP),  the  generalization error of  fuzzy ARTMAP is always 
significantly lower than when using typical learning strategies,  and is even comparable to the 
Quadratic Bayes and k-NN classifiers on Dtot   and Dtot   data sets. Although outside the 
scope of this paper, the PSO strategy also appears to reduce the effect on generalization error of 
presentation order, as observed by the small standard error values in results. (Pattern presentation 
order during the learning phase of ARTMAP networks are known to have a significant impact on 
the network’s ability to generalize.)
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Table 1: Average generalization error of reference and fuzzy ARTMAP classifiers on synthetic data sets. Training was 
performed on 5,000 patterns per class. Values in parenthesis are standard error of the sample mean.

Classifier Averaged generalization error (%)
D1% D9% D25% D9% DCIS DP2

Theoretical tot

Quadratic Bayes
k -NN

1-NN

1.00
1.00(0.04)
1.08(0.03)
1.54(0.03)

9.00
9.12(0.08)
9.88(0.08)
13.35(0.10)

25.00
25.11(0.10)
27.23(0.12)
33.49(0.17)

9.00
9.04(0.07)
9.66(0.07)
13.04(0.14)

0.00
N/A

0.86(0.03)
0.84(0.02)

0.00
N/A

1.65(0.05)
1.61(0.04)

FAM 1EP (MT+)
FAM CONVp (MT+)
FAM CONVw (MT+)
FAM HV (MT+)
FAM HV (MT-)

2.51(0.14)
1.90(0.07)
1.97(0.09)
1.88(0.05)
2.17(0.08)

18.78(0.38)
15.44(0.15)
15.30(0.16)
15.17(0.13)
20.80(0.56)

38.81(0.36)
36.14(0.20)
35.94(0.15)
36.10(0.20)
39.83(0.31)

17.98(0.29)
14.90(0.06)
14.79(0.10)
14.99(0.12)
20.13(0.43)

3.98(0.21)
1.47(0.05)
1.64(0.05)
1.58(0.05)
1.69(0.07)

7.33(0.34)
3.61(0.08)
3.66(0.08)
3.68(0.08)
4.26(0.16)

FAM PSO (1EP) 1.04(0.03) 9.35(0.08) 25.50(0.09) 9.18(0.06) 1.35(0.12) 2.05(0.10)
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Figure 19: Fuzzy ARTMAP generalization error versus 
training subset size on hsf-7 for the NIST SD19 data.

Figure 20: Fuzzy ARTMAP generalization error versus 
training subset size on hsf-4 for the NIST SD19 data.

Figure 21: Average compression of fuzzy ARTMAP 
versus training subset size for the NIST SD19 data.

Figure 22: Average convergence time of fuzzy ARTMAP 
versus training subset size for the NIST SD19 data.
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7. Simulation Results with NIST SD19 Data
Figures 19-22 present the average performance of fuzzy ARTMAP as a function of the training 
subset size for the NIST SD19 data. Error bars are standard error of the sample mean. These 
results are shown for the 1EP and HV learning strategies, and for the PSO strategy with 1EP used 
to compute the E si

q  values. In addition, the generalization errors for the 1-NN classifier is also 
shown for  reference.  To  reduce excessive  computational  complexity  associated with PSO on 
large  data  sets,  the  permissible  search  space  for  the  vigilance  parameter  was  limited  to 
∈[0,0.9] .

As shown in these figures, when the training set size increases, the generalization error of all 
classifier tend to decrease asymptotically towards their minimum. For either hsf-7 or hsf-4, the 
generalization  error  produced  by using the  PSO(1EP)  strategy is  significantly  lower  than  by 
using 1EP and HV alone. This difference tends to grow with more that 100 patterns per class. For 
instance, when compared to the HV strategy on the hsf-7 test subset, the PSO strategy reduces 
generalization error by a rate of about 25% (136 patterns per class) to 70% (15,000 patterns per 
class). The lowest average generalization error for hsf-7 (about 2.5%) and for hsf-4 (about 6.0%) 
is  achieved  when  the  training  subset  is  close  to  15,000  patterns  per  class.  No  effects  of 
overtraining are ever observed in results with the NIST data.

The level of compression for 1EP and HV strategies tend to grow exponentially with the 
number  of  training patterns.  In contrast,  it  tends  to  decrease  significantly  beyond about  140 
patterns per class with PSO(1EP). For example, when the training subset contains 1856 patterns 
per class, the compression obtained using the PSO(1EP) strategy is about 15 patterns per  F 2  
node. This amounts to about 1240 F 2  nodes in total (compared to about 100 F 2  nodes for the 
HV strategy).  Finally,  the  PSO strategy  requires  only  about  70  to  100 epochs  to  end  batch 
supervised learning. With the PSO strategy, the amount of resources requirement are high due to 
the complexity of NIST data decision boundaries. 

As  shown in  Figures  34-31 (Appendix  C),  simulation  results  with  the  PSO strategy  are 
obtained with fuzzy ARTMAP hyper-parameters that remain on average in the following ranges: 
∈[0.1,0 .6] ,  ∈[0.75,1] ,  ∈[0,0.55 ]  and  ∈[−0.2,0 .4] ,  which differs considerably from 

those  in  Section  5.  Recall  that  the  NIST  SD19  data  base  exhibits  very  complex  decision 
boundaries, with moderate overlap between classes, and the positive   values favor the creation 
of many small categories to define complex decision boundaries.

Table  2 shows  the  generalization  error  obtained  by  the  k-NN,  MLP,  SVM,  and  fuzzy 
ARTMAP classifiers after learning all the training data (15,000 patterns per class) of the NIST 
SD19  data  set.  When  compared  to  the  HV strategy  with  MT+,  the  PSO strategy  allows  to

Table 2: Generalization error of different classifiers on all on the NIST SD19 data set.

Classifier
Generalization error (%)

hsf-7 hsf-4

1-NN (Euclidean distance) 1.43 3.71

Multi-Layer Perceptron [42] 0.84 2.40

SVM [38] pairwise coupling strategy
SVM [38] one-against-all strategy

0.70
0.63

2.09
1.88

Fuzzy ARTMAP 1EP MT+ ( =1 , =0.001 , =0 , =0.001 )
Fuzzy ARTMAP HV MT+ ( =1 , =0.001 , =0 , =0.001 )
Fuzzy ARTMAP PSO 1EP ( =1 , =0.17 , =0.9 , =0.343 )

6.27
4.86
2.10

10.10
8.44
4.95
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decreased generalization error by a rate of 41% for hsf4, and a rate of 57% for hsf7. However, 
with PSO(1EP), the generalization error of fuzzy ARTMAP is always significantly higher than 
with the other well-known reference classifiers.  Even with PSO(1EP), fuzzy ARTMAP is not 
competitive with these classifiers due to the complex decision bounds in the data.

8. Conclusions
In this paper, the impact on fuzzy ARTMAP neural network performance of practical decisions 
taken for batch supervised learning – data set manipulations and parameter settings – has been 
explored through an extensive set of computer simulations. Performance has been compared in 
term of generalization error and resource requirements when fuzzy ARTMAP exploits different 
learning strategies,  training subset  sizes,  and parameter  values.  An experimental  protocol  has 
been defined such that the contribution of these decisions on performance may be isolated for 
synthetic and real-world pattern recognition problems that exhibit overlapping class distributions 
and complex decision boundaries.

The results presented in this paper indicate the extent to which supervised training of fuzzy 
ARTMAP using typical strategies can lead to overtraining, and thus category proliferation. In 
particular,  significant  degradation  in  performance  due to  overtraining is  observed  for  pattern 
recognition problems with overlapping class distributions, where fuzzy ARTMAP tends to create 
a growing number of small category hyper-rectangles, and defines granular decision boundaries. 
In this context, the overall effects of overtraining tend to increase according to the number of 
training epochs,  and to  the training set  size for  overlapping data.  In all  cases,  training fuzzy 
ARTMAP using hold-out  validation always yields a level of performance that is equal  to,  or 
higher than training it until convergence. Although the hold-out learning strategy is commonly-
employed to avoid overtraining, results indicate that the added computational complexity does 
not necessarily justify its use.

Given that the choice of parameters may lead to overtraining, and significantly degrade the 
capacity to generalize, an alternative Particle Swarm Optimization (PSO) learning strategy has 
been introduced. It is based on the concept of neural network evolution in that it determines the 
set  of  parameters  and  network  (weights  and  architecture)  such  that  generalization  error  is 
minimized. Through a comprehensive set simulations, fuzzy ARTMAP using the PSO learning 
strategy has been shown to produce a significantly lower generalization error than that of fuzzy 
ARTMAP using typical learning strategies. Generalization error is usually above the theoretical 
probability of error, tot , but lower than or comparable to that of reference Quadratic Bayes and 
k-NN classifiers. Furthermore, the PSO learning strategy eliminates degradation of generalization 
error due to overtraining resulting from the number of training epochs, training set size, and data 
set structure. Finally, the PSO learning strategy also appears to reduce the effect on performance 
of pattern learning order.

The  lower  generalization  is  accompanied  by  a  high  level  of  compression  for  data  with 
overlapping decision bounds, but a low level for data with complex decision bounds. The level of 
compression obtained  with PSO depends on the  geometry of  the  decision boundaries  among 
classes. To minimize generalization error,  the PSO strategy selects parameters,  that limits the 
number of category hyperrectangles created to define areas with overlapping decision bounds. In 
contrast, the PSO strategy selects parameters that encourage the creation of many small category 
hyper-rectangles to define areas with complex decision bounds.

All  performance  improvements  with  the  PSO strategy  are  achieved  at  the  expense  of  a 
convergence time that  may be orders of magnitude greater  than with typical  strategies alone. 
Fortunately, parameter optimization appears to compensate for the number of training epochs, 
and no advantage was found by embedding anything but the 1EP strategy inside PSO. The PSO 
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strategy can become very costly for data sets with complex decision bounds, as a training time 
increases with the number of internal categories. Other variants of the PSO scheme may provide 
for  more efficient  implementations  of  the  PSO strategy.  For  instance,  a  multi-objective  PSO 
learning strategy, that optimizes parameters and weights based on both generalization error and 
compression, would yield less expensive solutions in the above case. In addition, asynchronous 
implementations of PSO is more efficient in problems subject to load imbalance, as processing 
would not halt until all particle finish one iteration before proceeding to the next iteration.

Overall, results obtained with the PSO strategy highlight the importance of optimizing fuzzy 
ARTMAP parameters for each different problem, using a consistent objective function. In fact, 
the parameters found using this strategy vary significantly according to, e.g., training set size and 
data set structure, and differ considerably from the popular choice of parameters that minimize 
resources. The PSO strategy is inherently a batch learning mechanism, and as such is not entirely 
consistent  with  the  ARTMAP  philosophy  in  that  parameters  cannot  be  adapted  on-the-fly, 
through on-line, supervised or unsupervised, incremental leaning. ARTMAP parameters should 
be learned progressively through some on-line gradient descent approach. Nonetheless, the PSO 
strategy indicates the extent to which parameter values can improve generalization error of fuzzy 
ARTMAP, and mitigate the performance degradation cause by overtraining.

Learning large data sets where a large validation subset can be afforded for HV corresponds 
to having excellent prior knowledge of the problem, as this subset effectively guides the search 
for an optimum neural model during learning. Future work should include assessing the impact 
of using the PSO strategy to learn small data sets,  and comparing results  to the k-fold cross-
validation strategy. The impact of learning real-world, and possibly imbalanced data sets is also 
relevant.
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Appendix A. Tables for Data Sets

Table 3: Parameters used to generate the Dtot   data sets.

Data sets 1 2 1
2  and 2

2

D tot=1%
D tot=3%
D tot=5%
D tot=7%
D tot=9%
D tot=11%
D tot=13%
D tot=15%
D tot=17%
D tot=19%
D tot=21%
D tot=23%
D tot=25%

(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)

(3.290, 3.290)
(2.660, 2.660)
(2.326, 2.326)
(2.087, 2.087)
(1.896, 1.896)
(1.735, 1.735)
(1.593, 1.593)
(1.466, 1.466)
(1.349, 1.349)
(1.242, 1.242)
(1.141, 1.141)
(1.045, 1.045)
(0.954, 0.954)

(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)
(1.000, 1.000)

Table 4: Parameters used to generate the Dtot   data sets.

Data sets 1 2 1
2  and 2

2

Dtot=1%
Dtot=3%
Dtot=5%
Dtot=7%
Dtot=9%
Dtot=11%
Dtot=13%
Dtot=15%
Dtot=17%
Dtot=19%
Dtot=21%
Dtot=23%
Dtot=25%

(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)
(0.000, 0.000)

(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)
(3.290, 3.290)

(1.000, 1.000)
(1.530, 1.530)
(2.000, 2.000)
(3.485, 2.485)
(3.011, 3.011)
(3.597, 3.597)
(4.266, 4.266)
(5.038, 5.038)
(5.944, 5.944)
(7.022, 7.022)
(8.322, 8.322)
(9.914, 9.914)
(11.90, 11.90)

Table 5: Number of samples in hsf-{0123}, hsf-7 and hsf-4 per digit class in NIST SD19.

Class label hsf-{0123} hsf-7 hsf-4
0
1
2
3
4
5
6
7
8
9

22,971
24,771
22,131
23,172
21,549
19,545
22,128
23,208
22,029
21,619

5,893
6,567
5,967
6,036
5,873
5,684
5,900
6,254
5,889
6,026

5,560
6,655
5,888
5,819
5,722
5,539
5,858
6,097
5,695
5,813

Total 223,123 60,089 58,646
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Appendix B. Simulation Results on Synthetic Data

Table 6: Average generalisation error of reference and fuzzy ARTMAP classifiers using different learning strategies on 
all D tot  data sets. Training was performed on 5,000 patterns per class.

Classifier Average generalization error (%)
D1%  D3% D5% D7% D9% D11% D13%

Theoretical tot

Quadratic Bayes
k-NN
1-NN

1.00
1.00
1.08
 1.54

3.00
3.08
3.31
 4.60

5.00
4.87
5.26
 7.31

7.00
7.00
7.48

 10.36

9.00
9.12
9.88

 13.35

11.00
11.00
11.81
 15.99

13.00
13.17
14.27
 19.07

FAM 1EP (MT+)
FAM CONVp (MT+)
FAM CONVw (MT+)
FAM HV (MT+)
FAM HV (MT-)

2.51
1.90
1.97
1.88
 2.17

7.49
5.49
5.49
5.32
 7.27

10.89
8.59
8.64
8.59

11.10

14.85
12.06
12.05
11.94
 17.02

18.78
15.44
15.30
15.17
 20.80

21.53
18.10
18.16
18.08
 23.89

25.29
21.28
21.23
21.08
 27.31

FAM PSO(1EP) 1.04 3.14 4.99 7.25 9.35 11.16 13.37

Table 6: (Cont.)

Classifier Average generalization error (%)
D15% D17% D19% D21% D23% D25%

Theoretical tot

Quadratic Bayes
k-NN
1-NN

15.00
15.11
16.13
 21.17

17.00
16.97
18.39
 23.80

19.00
19.25
20.71
 26.72

21.00
20.97
22.70
 29.09

23.00
22.99
25.04
 31.32

25.00
25.11
27.23
33.49

FAM 1EP (MT+)
FAM CONVp (MT+)
FAM CONVw (MT+)
FAM HV (MT+)
FAM HV (MT-)

27.34
23.80
23.73
23.61
 29.16

30.11
26.39
26.53
26.28
 32.50

32.19
29.41
29.26
29.16
 34.33

34.77
31.59
31.74
31.54
 36.99

36.93
33.68
33.69
33.81
 37.36

38.81
36.13
35.94
36.10
39.83

FAM PSO(1EP) 15.23 17.33 19.55 21.21 23.21 25.50
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Table 7: Average generalisation error of reference and fuzzy ARTMAP classifiers using different learning strategies on 
all D tot   data sets. Training was performed on 5,000 patterns per class.

Classifier
Average generalization error (%)

D 1% D 3% D 5% D 7% D 9% D 11% D 13%

Theoretical tot

Quadratic Bayes
k-NN
1-NN

1.00
1.01
1.10
 1.61

3.00
2.99
3.23
 4.49

5.00
5.00
5.30
 7.38

7.00
6.98
7.40

 10.33

9.00
9.04
9.66

 13.04

11.00
11.14
11.98
 15.91

13.00
13.07
14.06
 18.65

FAM 1EP (MT+)
FAM CONVp (MT+)
FAM CONVw (MT+)
FAM HV (MT+)
FAM HV (MT-)

2.51
1.86
1.97
1.84
 2.15

7.44
5.51
5.43
5.36
 7.10

11.00
8.67
8.96
8.75

 12.69

14.93
11.89
12.11
11.93
 16.67

17.98
14.90
14.79
14.99
 20.13

21.77
18.03
18.16
18.07
 23.69

24.30
21.13
20.84
20.87
 26.87

FAM PSO(1EP) 1.06 3.03 4.99 7.03 9.18 11.34 13.24

Table 7: (Cont.)

Classifier
Average generalization error (%)

D 15% D 17% D 19% D 21% D 23% D 25%

Theoretical tot

Quadratic Bayes
k-NN
1-NN

15.00
15.13
16.50
 21.67

17.00
17.03
18.44
 23.92

19.00
19.05
20.73
 26.56

21.00
21.17
22.94
 28.96

23.00
23.14
25.08
 31.17

25.00
25.11
27.36
33.86

FAM 1EP (MT+)
FAM CONVp (MT+)
FAM CONVw (MT+)
FAM HV (MT+)
FAM HV (MT-)

28.57
23.85
23.97
23.77
 29.09

30.28
26.30
26.53
26.55
 32.35

32.65
29.11
28.97
28.99
 34.42

35.04
31.60
31.52
31.46
 36.84

36.55
33.68
33.75
33.64
 38.20

38.86
36.33
36.08
36.52
40.06

FAM PSO(1EP) 15.39 17.41 19.39 21.42 23.44 25.55
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Figure 26: Average match tracking parameter (  ) found 
for  fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training  set  size  for  Dtot=9% .  Error  bars  are 
standard error of the sample mean.

Figure  25:  Average  choice  parameter  (  )  found  for 
fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training  set  size  for  Dtot=9% .  Error  bars  are 
standard error of the sample mean.

Figure  24:  Average  baseline  vigilance  parameter  (  ) 
found  for  fuzzy  ARTMAP  (through  the  PSO  strategy) 
versus training set size for  Dtot=9% . Error bars are 
standard error of the sample mean.

Figure  23:  Average  baseline  vigilance  parameter  (  ) 
found  for  fuzzy  ARTMAP  (through  the  PSO  strategy) 
versus training set size for  Dtot=9% . Error bars are 
standard error of the sample mean.
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Figure 30: Average match tracking parameter (  ) found 
for  fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training set size for DCIS . Error bars are standard error of 
the sample mean.

Figure  29:  Average  choice  parameter  (  )  found  for 
fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training set size for DCIS . Error bars are standard error of 
the sample mean.

Figure 28: Average learning rate parameter (  ) found for 
fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training set size for DCIS . Error bars are standard error of 
the sample mean.

Figure  27:  Average  baseline  vigilance  parameter  (  ) 
found  for  fuzzy  ARTMAP  (through  the  PSO  strategy) 
versus training set size for  DCIS . Error bars are standard 
error of the sample mean.
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Figure  33:  Average  choice  parameter  (  )  found  for 
fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training set size for the NIST SD19 data.  Error bars are 
standard error of the sample mean.

Figure 34: Average match tracking parameter (  ) found 
for  fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training set size for the NIST SD19 data.  Error bars are 
standard error of the sample mean.

Figure 32: Average learning rate parameter (  ) found for 
fuzzy  ARTMAP  (through  the  PSO  strategy)  versus 
training set size for the NIST SD19 data.  Error bars are 
standard error of the sample mean.

Figure  31:  Average  baseline  vigilance  parameter  (  ) 
found  for  fuzzy  ARTMAP  (through  the  PSO  strategy) 
versus training set size for the NIST SD19 data. Error bars 
are standard error of the sample mean.
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