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Abstract
Predictions of hospitalizations can help in the development of applications for health insurance, hospitals, and medicine. The
data collected by health insurance has potential that is not always explored, and extracting features from it for use in machine
learning applications requires demanding processes and specialized knowledge.With the emergence of large language models
(LLM) there are possibilities to use this data for a wide range of applications requiring little specialized knowledge. To do
this, it is necessary to organize and prepare this data to be used by these models. Therefore, in this work, an approach is
presented for using data from health insurance in LLMs with the objective of predict hospitalizations. As a result, pre-trained
models were generated in Portuguese and English with health insurance data that can be used in several applications. To
prove the effectiveness of the models, tests were carried out to predict hospitalizations in general and due to stroke. For
hospitalizations in general, F1-Score = 87.8 and AUC = 0.955 were achieved, and for hospitalizations due to stroke, the best
model achieved F1-Score = 88.7 and AUC of 0.964. Considering the potential for use, the models were made available to the
scientific community.

Keywords Health insurance · Hospitalization · Strokes · Machine learning · Large language models · BERT · RoBERTa ·
LLaMA

1 Introduction

In recent years, natural language processing (NLP) has
experienced significant advances. One of the most notable
innovations was the emergence of LLMs (large language
models), which have reached the state of the art in several
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tasks in this area. LLMs use a neural network architec-
ture called transformer that was introduced in 2017 by
Vaswani [1], being highly scalable and efficient, allowing
LLMs to be trained on large amounts of data.

In the health area, in its most diverse subareas, data accu-
mulates in large quantities, much of which is non-textual,
which theoretically would make its use with LLMs unfeasi-
ble. However, the relationship between patients and health
service providers, such as health insurance, hospitals, labo-
ratories, among others, allows the recording, through their
systems, in some way, of patients’ health problems over
time. The sequence of these contacts with these services, if
organized chronologically, can closely resemble the textual
structure normally used in LLM training.

Therefore, considering that it is common for health prob-
lems and illnesses to be related to previous illnesses and
occurrences, organizing this data in this way becomes per-
tinent when trying to analyze and predict future situations.
Furthermore, the transformers’ attentionmechanismspresent
in LLMs allow finding these relationships in data organized
in this way, just as they do with common text sentences.
Therefore, generating LLM models from structured health
data, organized chronologically, can serve to solve a signifi-
cant range of health-related problems, opening up the scope
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for solving health problems through LLMs trained with data
of this type.

A practical application for this type of model is hospital-
ization prediction, which can use chronologically organized
sentences as histories for training LLMs. Hospitalizations
represent a significant part of the costs ofBrazilian health sys-
tems. In 2019, if requests for health insurance, payments for
procedures and supplies related to hospitalizations are taken
into account, the value exceeds US$ 10 billion.1 Considering
these values, even a small reduction in the number of hospi-
talizations becomes significant. Furthermore, in many cases,
hospitalizations can represent a complication in the patient’s
health condition. Therefore, when possible, avoiding hospi-
talizations is beneficial, considering monetary aspects, the
quality of life and health of patients.

Predicting hospitalization also allows hospital managers
and health insurance to plan and optimize processes to reduce
costs. In medicine, knowing in advance possible cases of
hospitalization allows preventive actions to be taken in order
to avoid them. The analysis of these predictions proves to
be an important object of study, allowing the discovery of
factors that lead to disease complications, some of which
may be unknown.

In this study, data from Brazilian health insurance was
used to train the models, resulting in descriptions being
in Portuguese. This posed certain challenges, as most pre-
trained models available in the literature are trained in
English. Therefore, considering these aspects of the data,
it was necessary to use pre-trained models in Portuguese.
Another approach to address this issue was to train the model
from scratch using data in Portuguese, without initially rely-
ing on a pre-trained model.

Thus, given all these characteristics and possibilities, this
work aims to answer the following research questions:

i How can we train LLM-type machine learning models
using structured data from health insurance?

ii Does the size of LLM models trained from health
insurance data influence the quality of hospitalization
predictions?

iii How effective is the use of generalist hospitalization
prediction models, based on LLMs, in predicting hos-
pitalizations related to specific problems?

iv Is using trained LLMs for feature extraction as efficient
as using a fully connected layer?

Thus, in seeking to answer our research questions, the
main objective of thiswork is to evaluateLLMs for predicting
general and stroke hospitalizations, with a particular focus
on the latter due to its predictive difficulty. To achieve this,

1 Calculation carried out based on public data from ANS (National
Supplementary Health Agency) [2]

we introduce a preprocessing technique to make structured
health insurance data suitable for training LLMs. Addition-
ally, we explore different strategies, ranging from using
pre-trained models to training models from scratch.

In addition to themodels built for general hospitalizations,
as in our previous work [3], tests were conducted on a dataset
of stroke hospitalizations to assess the models’ efficiency in
specific cases. Stroke hospitalizations were chosen due to
their supposed unpredictability, in contrast to childbirth hos-
pitalizations, where prior prenatal care events are directly
associated with hospitalization. In tests conducted for both
general and stroke hospitalizations, we observed AUCs of
0.955 and 0.964, respectively. The best results in both exper-
iments were achieved by combining the three LLM models.

The contribution of this work is threefold, as follows:
(i) the proposal of a preprocessing technique for preparing
structured health insurance data for training LLMs, offering
an alternative for scenarios where related structured events
occur over time; (ii) the evaluation of LLMs trained on pre-
processed health insurance data for predicting general and
stroke-related hospitalizations; and (iii) making prediction
models represented by pre-trained LLMs available to the sci-
entific community.

2 Materials andmethods

In this work, three different LLMswere used. The first model
was trained using the robustly optimized BERT approach
(RoBERTa) [4] structure, a variation of bidirectional encoder
representations from transformers (BERT) [5] that enhances
performance and reduces training time.

The second LLM was trained using a variation of BERT,
called BERTimbau [6]. The third LLM, Open-Cabrita3b [7],
is a variation of Large Language Model Meta AI (LLaMA)
released byMeta AI [8]. Unlike RoBERTa and BERT, Open-
Cabrita3b allows training and predictionwith sentences of up
to 2048 tokens. Due to the large size of LLaMA structures,
extensive computational resources are required. Therefore,
we used parameter-efficient fine-tuning (PEFT) to reduce the
computational demands. PEFT involves adding a subset of
parameters to themodelwhile keeping the pre-trained param-
eters fixed, significantly reducing computational costs and
achieving performance comparable to traditional fine-tuning.
Specifically, we employed LoRA PEFT [9] to fine-tune the
pre-trained Open-Cabrita3b model [7].

In addition to the LLMs, the ensemble method random
forest (RF) [10], trained on embeddings extracted using the
Sentence Transformers framework [11], was used to pre-
dict hospitalizations. Sentence Transformers is a Python
framework that can be used to facilitate the extraction of
embeddings from pre-trained LLMs. Another approach used
in this work for predicting hospitalizations involved adding a
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fully connected layer (FC) to the LLM. This layer is termed
“fully connected” because it establishes complete linkage
within the network. FC layers, typically found at the end of
a neural network architecture, are responsible for producing
output predictions. In this work, a FC layer was connected
to the output embedding of the LLM token classification
token ([CLS]) [5] to classify sentences as indicating hos-
pitalization or not. The [CLS] token provides an aggregated
representation of the entire sequence, containing a high-level,
contextualized representation, making it an ideal candidate
for sequence classification. Figure1 exemplifies the FC con-
nection in an LLM.

It is important to highlight that the fine-tuning step is car-
ried out with a fully connected layer coupled to the network,
in which weight adjustments, both in the fully connected
layer and in the rest of the network, are carried out based on
the errors and successes of hospitalization predictions.

In addition to fine-tuning, another important training car-
ried out in the LLMs of this work was the self-supervised
training known as masked language model (MLM) method
[12], in which a random number of tokens from the input
sequence is selected and replaced by the special token
[MASK] where the goal of the network is then to predict
the masked tokens.

Regarding the metrics, we have used the Area under
the ROC Curve (AUC) [13], sensitivity (Eq. 1), specificity
(Eq. 2), and F1-Score (Eq. 3), where TP is true positive, TN
is true negative, FP is false positive and FN is false negative
rate.

Sensitivity = T P
T P + FN

(1)

Specificity = T N
T N + FP

(2)

F1-Score = T P

T P + 1
2 (FP + FN )

(3)

It is important to note that, due to data privacy consid-
erations, all pre-trained models utilized in this study are
open-source, and training takes place locally on the insti-
tution’s servers.

3 Health insurance data preprocessing

The dataset utilized in this study is an expanded version of
the database introduced by Baro [3], comprising 89,339,526
records associated with 445,199 beneficiaries spanning from
January 1990 to December 2021.

To generate the historical sentences, we employed the
method outlined in [3], albeit with a modification: only
the event descriptions were utilized this time. The Interna-
tional Classification of Diseases (ICD) and specialties were
excluded from the process, as the data we are currently using
contains less frequent occurrences of this information.

3.1 Organization in historical data

As outlined in the introduction, events associated with ben-
eficiaries registered by health insurance can, when linked
chronologically, form a type of historical narrative. Given
the textual nature of these events, they can serve as inputs
for training LLM models. In the context of this study, to
construct these narratives from the database records, the fol-
lowing steps were undertaken: (1) merging the data into a
single table; (2) removing noise; (3) aggregating the data;
and (4) chaining the data.

In the first step, the data was joined into a single table to
simplify the narrative creation. This consolidation involved
selecting the event description, gender, beneficiary ID, date
of event occurrence, care regime, and ICD.The description of
each selected characteristic in this consolidation is outlined
in Table 1. It is worth noting that the beneficiary ID is a
fictitious identifier created during the anonymization process
of the dataset.

During the noise removal process, samples exhibiting
inconsistencies in either the date of birth or event occurrence
were eliminated. The third step involves aggregating the data.
Frequently, when a beneficiary interacts with health services,
multiple records of occurrences and procedures are gener-
ated on the same date. This scenario is evident in numerous
examples from the database. Upon analyzing these instances,
it becomes apparent that the fields for care regimen and
ICD share identical values, as does the gender, for obvious

Fig. 1 FC layer example linked
to the [CLS] token output
embedding of an LLM
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Table 1 Features available in
the dataset

Feature Description

Beneficiary ID Identifier code of the examples of a beneficiary

Gender Beneficiary’s gender identification

Date Date of occurrence of the procedure

Event Description Description of the procedure performed

Care Regimen Whether the care was on an outpatient basis, inpatient, inpatient - day hospital
or home care

ICD Beneficiary ICD-10 code at the time of generating the procedure

reasons. The only variable that differs is the event descrip-
tion, which documents the procedures and inputs related to
the beneficiary during a service encounter.

Therefore, in an effort to simplify the process of generating
beneficiary event narratives, we restricted each beneficiary to
having only one record per date. Achieving this outcome
without sacrificing data integrity necessitated aggregating
data from event descriptions. Figure2 provides a concrete
example of this aggregation process.

After noise removal and aggregation, the number of
records was reduced from 89,339,526 to 20,721,377. After
these steps, each example begins to represent the benefi-
ciary’s service on a given day in which all descriptions of
all events on that day are aggregated into a single example.

Finally, the last step involves chaining the data. Fol-
lowing data aggregation, each beneficiary now possesses a
maximum of one sample per day. This data organization
allows for the chronological arrangement of each benefi-
ciary’s event descriptions, thereby constructing a historical
narrative detailing the events they experienced while utiliz-
ing the health insurance. Given that one of the objectives
of this work is to forecast hospitalizations, these historical
sentences were organized by including events up to the day
preceding a hospitalization event. Since a beneficiary may
have experiencedmultiple hospitalizations, several examples
can be generated for a single beneficiary. In instances where

the beneficiary is hospitalized, the example is labeled with
the value 1; otherwise, it is labeled with 0.

To illustrate the data-chaining process, Fig. 3 provides
examples of historical data with either two hospitalizations
or none.

As a result of this pre-processing stage, 880,193 historical
sentenceswere formatted, ofwhich 451,649were for cases of
hospitalization and 428,544 for cases of non-hospitalization.
To exemplify the result of organizing the data into historical
sentences, the Appendix A presents a concrete example of a
generated historical sentence, with the gender of the benefi-
ciary added at the end.

In this study, we examined models capable of process-
ing sentences with a maximum of 512 tokens (RoBERTa and
BERTimbau) and 2048 tokens (Open-Cabrita3B). It is crucial
that our dataset includes sentences surpassing the maximum
token limit of the smaller models (512 tokens). This enables
us to assess the relevance of longer sentences for this partic-
ular application. In the dataset employed in this study, based
on the number of tokens generated by the BERTimbau tok-
enizer, over 50% of the historical sentences comprise more
than 1854 tokens. In LLM training, sentences that exceed
the model’s maximum limit are truncated from the left. This
approach ensures that themost recent events prior to hospital-
ization are preserved, preventing the generation of identical
sentences for different hospitalization cases. Additionally, to

Fig. 2 Example of data
aggregation
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Fig. 3 Example of generating historical sentences per beneficiary for cases of two and no hospitalizations

gain insights into the dataset’s profile, Fig. 4a illustrates the
distribution histograms of service data by age, portraying the
beneficiaries’ age profile, and Fig. 4b the temporal distribu-
tion of data. It is notable that the volume of data before 2014
is negligible. Moreover, the dataset has 8399 distinct ICDs,
with 6913 associated with hospitalization events, including
the stroke ICD among them.

3.2 Splitting data for training and testing

The 880,193 historical sentences were divided into three
parts. The largest portion was used for training and fine-
tuning LLMs. The remaining portions were used for testing
and for training a RF model with features extracted from the
LLMs. Figure5 illustrates this data split.

4 Training LLMs in health insurance data

To address research questions on training LLMs with health
insurance data, specifically examining the impact of model
size on hospitalization prediction quality and the capability
of these models to predict hospitalizations for specific con-
ditions, four models were trained. The first model was based
on the RoBERTa structure; the second and third were derived
from the pre-trained BERTimbau model; and the fourth was
derived from the pre-trained OpenCabrita3Bmodel. Figure6
summarizes the training sequence.

4.1 RoBERTa

For the experiment involving training from scratch, we used
RoBERTadue to its optimized structure andmodest hardware
requirements. In this case, all model weights were adjusted
based on historical health insurance data that constitute the
corpus of this work. We generated our own tokenizer for this
experiment, trained on aggregated data from event descrip-
tions, ensuring it is strongly tailored to this domain.

The model was pre-trained using the self-supervised
MLM method on the historical data of beneficiaries. We
used 837,159 examples (dataset I) over two epochs, result-
ing in a model we call RoBERTa-MLM. Fine-tuning was
then performed over two epochs for the NLP task sequence
for classification, using 10% of the historical data (10% of
dataset I) labeled for predicting hospitalization one day in
advance. This final model is referred to as RoBERTa-MLM-
FT. Both training sessions used sequences with a maximum
of 512 tokens. Figure7a summarizes the training sequence
used to develop the model.

4.2 BERTimbau

BERTimbau is a BERTmodel trained in Portuguese. Accord-
ing to Souza et al. (2023) [14], it has achieved state-of-the-art
performance in several NLP tasks, surpassing multilingual
models for Portuguese. Given that our work uses Portuguese
data, BERTimbau was chosen for training to compare the
effectiveness of using domain-specific data.

Fig. 4 Histogram with data distribution by age of beneficiaries
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Fig. 5 Splitting data for training and testing

Three training sessionswere conducted. The first was self-
supervised MLM training using the BERTimbau pre-trained
model, resulting in what we call BERTimbau-MLM. The
second and third sessions involved fine-tuning for the NLP
classification task: one on the original BERTimbau model,
resulting in BERTimbau-FT, and the other on BERTimbau-
MLM, resulting in BERTimbau-MLM-FT.

The MLM training was performed over one epoch using
the same 837,159 examples (dataset I) as in the RoBERTa
training. The fine-tuning sessions were also conducted over
one epoch, utilizing 10% of dataset I, which consists of his-
torical data labeled for predicting hospitalization one day in
advance. All training was performed with sequences of up
to 512 tokens. Figure7c summarizes the training sequences
used to develop the models.

4.3 Open-Cabrita3B

Considering that 50%of the historical sentences in the dataset
exceed the 512-token limit of both BERT and RoBERTa,
a significant portion of the sentences are discarded during
hospitalization inference. This limitation suggests the need
for models that can handle longer sentences to determine if
older data are important for inferring hospitalizations.

An alternative for longer sentences would be to use larger
models like the LLaMAmodel, which in its first version sup-
ports sequences of up to 2048 tokens but is primarily trained

on English data. Therefore, as a Portuguese alternative, we
adopted Open-Cabrita3B [7] in this work. Open-Cabrita3B,
derived fromOpenLLaMA [15], supports sequences of up to
2048 tokens and has 3 billion parameters.

Due to the high computational cost of pre-training the
model, only fine-tuning was performed for the NLP classifi-
cation task. This was done using the LoRA PEFT technique
with sequences of up to 2048 tokens and 10% of the labeled
historical data (10% of dataset I). The resulting model is
called Open-Cabrita3B-FT. The fine-tuning was completed
in one epoch. Figure7b presents a summary of the training
sequence used to obtain this model.

5 Experiments

In this section, we present the experiments and results related
to hospitalization predictions in general and for stroke tested
from trained models presented in Section 4.

5.1 General hospitalization prediction

To assess the quality and identify the best method for predict-
ing hospitalizations, experiments were conducted with the
models described in Section4. Models based on RoBERTa
and BERTimbau were evaluated with embeddings extracted
using the Sentence Transformers framework and applied to
RF. Additionally, direct inference was performed by incor-
porating a fully connected layer for sequence classification.
However, the Open-Cabrita3B model was solely assessed
using the fully connected layer due to the challenges in
extracting embeddings through the Sentence Transformers
framework caused by its PEFT training method. Figure8
summarizes the sequence of steps performed.

Additionally, two types of classifier combinations were
conducted as illustrated in Fig. 9. The first approach (Fig. 9a)
involves combining the RF classifier with one of the mod-
els utilizing the fully connected layer. The second approach

Fig. 6 LLM training sequences
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Fig. 7 LLMs training sequences

Fig. 8 Sequence of steps for
experiments

Fig. 9 Combination methods
used in experiments

Table 2 Results of the
classifiers trained with
RoBERTa structure from scratch

Model Metric FC RF CB

RoBERTa-MLM-FT F1-Score 86.4±0.5 86.5±0.6 87.1±0.4

Sensitivity 84.5±0.7 89.8±0.6 87.7±0.4

Specificity 89.0±0.8 82.9±1.3 86.7±0.9

AUC 94.8±0.4 94.2±0.3 95.0±0.3

Bold shows the best results
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(Fig. 9b) combines all three classifiers using the fully con-
nected layer. Both approaches employ the average of the
inference probabilities as the fusion method.

The data used for pre-training and fine-tuning, along
with the training methodologies, were outlined in Sections2,
3, and 4. Additionally, a distinct subset of examples was
selected, not employed in either LLM training or fine-tuning.
This subset, denoted as dataset I in Fig. 5, was partitioned
into 15% for testing, totaling 3287 examples. For caseswhere
LLMs were utilized solely as feature extractors, the remain-
ing 85%, equivalent to 18,626 examples, were employed for
this extraction and subsequent RF training.

The implementations relied on PyTorch [16], Transform-
ers [17], andScikit-learn [18] as the primary libraries, utilized
for bothmodel training and testing. For classification, RF and
the FC layer for sequence classification tasks were employed
from theTransformers library implementation. InRF, default
hyperparameters of Scikit-learn were used, with the excep-
tion of the number of estimators, which was set to 200.

5.1.1 RoBERTa results

Table 2 presents the results of the experiments for the
RoBERTa-MLM-FT model using RF and FC as prediction
methods in addition to the combination (CB)of both as shown
in Fig. 9a.

While both F1-Score and AUC yield similar results, an
interesting observation emerges regarding the inversion of
values between sensitivity and specificity for RF and FC. RF
tends to achieve higher values for sensitivity, whereas FC
excels in specificity. Moreover, the CB of both methods bal-
ances these metrics, enhancing both the F1-Score and AUC.

5.1.2 BERTimbau results

Table 3 presents the results of the experiments for the
BERTimbau-FT and BERTimbau-MLM-FT models using
RF and FC as prediction methods in addition to the CB of
both as shown in Fig. 9a.

Table 4 Results of the classifier trained with OpenCabrita3B

F1-Score Sensitivity Specificity AUC

87.8±0.7 92.4±0.4 82.6±1.3 95.4±0.3

These experiments also reveal an almost inversion of sen-
sitivity and specificity values. Moreover, the BERTimbau-
MLM-FTmodel achieved slightly superior results, indicating
that MLM training contributed to improvements in the final
outcome.

Considering the findings from the last two Sections 5.1.1
and 5.1.2, research question iv is addressed. Utilizing LLMs
as feature extractors from historical sentences for subsequent
RF training yielded marginally better results in predicting
hospitalization cases, as evidenced by the sensitivity metric.
It is important to note that sensitivity is closely linked to
positive cases for hospitalizations.

5.1.3 Open-Cabrita3B results

Table 4 presents the results of the experiments for the
OpenCabrita3B-FT model using FC as a prediction method.

Open-Cabrita3B-FT attained comparable F1-Score and
AUC results compared to the other models examined in
this study. However, it demonstrated the highest sensitivity
among all the models tested. This observation suggests that
the inclusion of longer sentences can have a positive impact
on predicting hospitalizations.

5.1.4 Combination results

Table 5 presents the performance obtained from combining
the three models: RoBERTa-MLM-FT, BERTimbau-MLM-
FT, and OpenCabrita3B-FT with the fully connected layer,
as illustrated in Fig. 9b.

The results in Table 5 indicate that combining the three
models produces a more balanced model, as evidenced by
the close proximity of sensitivity and specificity values.

Table 3 Results of the
classifiers trained with
BERTimbau

Model Metric FC RF CB

BERTimbau-FT F1-Score 85.2±0.6 85.6±0.6 86.0±0.6

Sensitivity 81.8±0.9 87.9±0.7 85.0±0.8

Specificity 89.6±1.0 83.2±0.9 87.6±0.9

AUC 94.1±0.4 93.9±0.5 94.3±0.4

BERTimbau-MLM-FT F1-Score 85.7±0.5 86.2±0.9 86.4±0.6

Sensitivity 82.4±0.7 89.1±0.8 86.2±0.8

Specificity 90.0±0.8 83.1±1.2 86.9±0.7

AUC 94.4±0.4 94.2±0.4 94.7±0.4

Bold shows the best results
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Table 5 Results from combining the classifiers

F1-Score Sensitivity Specificity AUC

87.5±0.8 87.8±0.9 87.5±0.9 95.5±0.3

Additionally, this combination enables us to achieve the best
overall performance among the generalist models.

5.2 Stroke hospitalization prediction

To assess how well the models perform for a specific prob-
lem,we examineddatasets II and III,which consist of data not
utilized inmodel training, to identify instances of hospitaliza-
tions related to stroke (ICD I64). This type of hospitalization
was chosen because it plays a critical role in delivering timely
and effective care to individuals who have experienced a
stroke, with the aim of minimizing brain damage, maximiz-
ing recovery, and preventing future strokes.

From this data, we selected 134 beneficiaries who were
hospitalized due to stroke and had records dating back at least
360 days before hospitalization. Using event descriptions,
we constructed historical sentences for these beneficiaries,
generating 200 examples of stroke-related hospitalizations
occurring one day in advance. The difference between the
number of examples and beneficiaries suggests instances of
beneficiaries being readmitted for the same problem. Addi-
tionally, from the same test data, we randomly selected 200
examples of non-hospitalizations to compose the test dataset,
resulting in a total of 400 test examples. These tests were
conducted on previously trained LLMs without specific fine-
tuning for stroke. It is worth noting that the number of
tokens generated by the BERTimbau tokenizer exceeds 3214
tokens for more than 50% of the examples in this dataset.
Consequently, a significant number of examples exceed the
maximum token limit of the largest model tested, Open-
Cabrita3B.

This datawas then applied to the threemodels trainedwith
the fully connected layer. These three classifiers were also
combined as shown in Fig. 9b. Table 6 presents the results
achieved.

Table 6 Results of test with Stroke hospitalizations

Metric a b c d

F1-Score 84.8 88.4 88.7 88.7

Sensitivity 93.5 89.0 88.5 90.5

Specificity 76.5 88.0 89.0 87.0

AUC 96.4 96.4 95.6 96.5

Bold shows the best results
(a) OpenCabrita3B-FT, (b) RoBERTa-MLM-FT, (c) BERTimbau-
MLM-FT, (d) Combination

The same pattern observed between specificity and sen-
sitivity in Section 5.1 is reiterated for stroke-related hospi-
talizations. Specifically, Open-Cabrita3B-FT exhibits higher
sensitivity and lower specificity compared to the other mod-
els. The combination of classifiers yields an F1-Score of
88.7%.

Anticipating stroke-related hospitalizations, even if only
a few cases, can be beneficial for various applications,
including implementing preventive measures by adjusting
treatments or providing increased patient care. To explore
these potential applications, tests were conducted for stroke-
related hospitalizations at different advance periods: 5, 15,
30, and 60 days. We aimed to assess how the model performs
across these advanced prediction periods. Figure10 displays
the results for the three models examined in this study, as
well as the combination of classifiers.

Considering the findings depicted in Fig. 10, the supe-
riority of Open-Cabrita3B-FT over other models becomes
evident.While it initially achieves a similarAUC to the others
for predictions a few days in advance, it notably outperforms
them as the prediction period extends. This model excels par-
ticularly in identifyinghospitalization cases, as reflected in its
sensitivity values. Given that Open-Cabrita3B-FT is a larger
model than the others, capable of handling 2048 tokens, the
results presented in this section address research question ii,
as the model size positively influences the outcomes.

Furthermore, to address research question iii, fine-tuning
of Open-Cabrita3Bwas exclusively conducted with data per-
taining to stroke-related hospitalizations. The training dataset
was extracted from dataset I and comprised 7808 examples,
consisting of 3904 cases of stroke-related hospitalizations
and 3904 cases of non-hospitalizations. The training con-
figurations mirrored those detailed in subsection 4.3, except
for the training data. For testing, data on stroke-related hos-
pitalizations occurring 60 days in advance were employed.
Table 7 presents the results obtained from this test.

The results presented in Table 7 show the efficacy of the
generalist models trained in this study in predicting hospi-
talizations for specific issues, thereby addressing research
question iii. Additionally, it is noteworthy that research ques-
tion i is also answered by considering the results of all
experiments in this study. The approach employed to prepare
structured health insurance data has proven to be effective for
training LLMs.

6 Discussion

While Open-Cabrita3B outperforms other models, its supe-
riority does not render the results of the other models
insignificant. Given the higher hardware demands for train-
ing and inferencewithOpen-Cabrita3B, the othermodels still
yield noteworthy results while requiring less computational
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Fig. 10 Predictions of stroke hospitalizations for different periods in advance

power. Moreover, RoBERTa-MLM is tailored specifically to
the health insurance data domain, featuring its own tokenizer
for this vocabulary. These models, including RoBERTa-
MLM and others, hold potential effectiveness in various
applications with similar data structures, such as cost pre-
dictions, days in hospital, disease and health complication
forecasting, analysis of factors related to health complica-
tions, treatment evaluations, and more.

Therefore, recognizing the potential utility of these mod-
els, they have been made accessible to the scientific com-
munity. Additionally, several other models were trained in
English, employing translations of the health insurance data
utilized in this study. The data translation was facilitated
by the translation-pt-en-t5 model detailed in the work by
Lopes et al. (2020) [19]. These models in English and
Portuguese, along with the test data and hyperparameters
used in training, are accessible through the link https://
huggingface.co/efbaro, thus allowing the reproducibility of
results. Furthermore, it is important to highlight that data
privacy and security are guaranteed through anonymization
and strict access controls, so only test data is made available.

Table 7 Results of the test with hospitalizations for stroke 60 days in
advance, of the Open-Cabrita3B model trained only with hospitaliza-
tions and with all data

Metric OpenCabrita3B
only Stroke data

OpenCabrita3B all data

F1-Score 70.7 76.7

Sensitivity 56.0 77.0

Specificity 87.0 76.5

AUC 81.2 87.4

Bold shows the best results

6.1 Limitations

The models trained from scratch, RoBERTa-MLM and
RoBERTa-MLM-EN (model trained with English data),
exclusively with data from health insurance beneficiary his-
torical sentences, were not evaluated using traditional data
sentences. Since they were not exposed to examples of tradi-
tional text sentences during training, it is not anticipated that
these models would perform well on this type of data.

7 Conclusion

Given the intended objectives, this study determined that
LLMs are effective for predicting hospitalizations using
chronologically organized health insurance data. Tests con-
ducted with models based on BERT, RoBERTa, and LLaMA
yielded significant results, with the combination of models
achieving F1-Score percentages of 87.5

For predictions of hospitalizations due to stroke, Open-
Cabrita3B-FT demonstrated superior performance, accu-
rately predicting hospitalizations with a significant lead time
and high probability for a considerable portion of cases. This
highlights the effectiveness of the methodology employed in
this study for predicting hospitalizations related to specific
health issues. Furthermore, the results attained underscore
the potential of utilizing thesemodels to predict other types of
hospitalizations, thereby opening up a wide array of research
possibilities.

It is important to note that among the pre-trained mod-
els investigated in this research, analyses of the results
focused on applications of the RoBERTa, BERTimbau, and
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Open-Cabrita3B models. Both these analyzed models and
others trained in English are accessible via a link provided
in this paper, facilitating their utilization in future research
endeavors.

Appendix A: Example of a generated
historical sentence

‘vitamina d 25 hidroxi pesquisa e/ou dosagem vitamina d3
ácido úrico - pesquisa e/ou dosagem colesterol hdl - pesquisa
e/ou dosagem colesterol ldl - pesquisa e/ou dosagem coles-
terol total - pesquisa e/ou dosagemgama-glutamil transferase
- pesquisa e/ou dosagem glicose - pesquisa e/ou dosagem
hemoglobina glicada a1 total - pesquisa e/ou dosagem
triglicerídeos - pesquisa e/ou dosagem colesterol vldl -
pesquisa e/ou dosagem creatinina - pesquisa e/ou dosagem
uréia - pesquisa e/ou dosagem hemograma com contagem de
plaquetas ou frações eritrograma leucograma plaquetas tire-
oestimulante hormônio tsh - pesquisa e/ou dosagem tiroxina
t4 - pesquisa e/ou dosagem triiodotironina t3 - pesquisa e/ou
dosagem taxas de alugueis de equipamentos sódio - pesquisa
e/ou dosagem transaminase oxalacética amino transferase
aspartato - pesquisa e/ou dosagem transaminase pirúvica
amino transferase de alanina - pesquisa e/ou dosagem cre-
atinina - pesquisa e/ou dosagem potássio - pesquisa e/ou
dosagem uréia - pesquisa e/ou dosagem hemograma com
contagem de plaquetas ou frações eritrograma leucograma
plaquetas hemograma com contagem de plaquetas ou frações
eritrograma leucograma plaquetas medicamentos em geral
dengue - igg e igm cada - pesquisa e/ou dosagem dengue
- igg e igm cada - pesquisa e/ou dosagem proteína c reativa
quantitativa - pesquisa e/ou dosagem consulta em consultório
no horário normal ou preestabelecido consulta em con-
sultório no horário normal ou preestabelecido consulta em
consultório no horário normal ou preestabelecido consulta
em consultório no horário normal ou preestabelecido con-
sulta em consultório no horário normal ou preestabelecido
mapeamento de retina oftalmoscopia indireta - monocular
consulta em consultório no horário normal ou preestabele-
cido tc - face ou seios da face us - mamas us - transvaginal
útero ovário anexos e vagina us - abdome superior fígado vias
biliares vesícula pâncreas e baço paquimetria ultrassônica -
monocular campimetria computadorizada - monocular curva
tensional diária - binocular feminino’
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