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Abstract
Herbaria worldwide have been digitizing their collections to preserve specimens, improve 
research access, and support biodiversity conservation amid environmental changes. This 
recent digitization process has revealed that thousands of plants have yet to be appropri-
ately identified or reviewed because of the complex and time-consuming classification and 
the relatively low number of qualified expert taxonomists. Computer Vision techniques 
could be promising alternatives for supporting plant identification; however, there is a 
lack of criteria for designing reliable and representative datasets needed to develop ro-
bust classification systems. This often occurs because existing datasets aggregate multiple 
taxonomic groups with substantial differences among their species, failing to represent the 
practical realities of plant identification tasks in herbaria. To address this challenge, this 
work introduces a new database of herbarium specimens exclusively from the Piperaceae 
Giseke family, accompanied by a series of experiments conducted on this dataset. The 
Piperaceae, also known as the pepper family, is a large botanical family with many spe-
cies that are intrinsically complex to identify due to their similarities. We selected 10,503 
specimens samples on the speciesLink repository of 236 Piperaceae species across three 
genera, collected in Brazil. A comprehensive set of experiments evaluated segmentation, 
feature extraction, and classification algorithms for the dataset performance as reference 
values. The best performance combined non-handcrafted features (VGG16 and ViT) and 
the Multilayer Perceptron classifier. The difficulty in identifying some Piperaceae species 
is due to their morphological characteristics, which requires that the task be submitted for 
final review by an expert. We hope the database and our experiments described in this 
work will benefit the research community.

Keywords  Machine Learning · Digitized herbarium specimen · Automated 
identification · Piperaceae · Plant species identification · Deep learning
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1  Introduction

Over the last five centuries, herbaria have spread across the world thanks to the hard work 
of scientists. According to the 2021 Index Herbarium, organized by the New York Botanical 
Garden (USA), there are 3,522 active herbaria in the world, which store around 400 mil-
lion plants and fungi [1]. While specimens deposited in herbaria may not always receive 
an immediate species-level identification, all they have documented morphological char-
acteristics and typically include metadata such as the collector’s name, collection date, and 
place of collection [2]. Therefore, these millions of specimens, carefully preserved over the 
centuries, are a unique source of information to help understand how the world’s vegetation 
has changed over time and predict how it will change in the future [3].

Due to the ongoing accelerated destruction of biodiversity, thousands of species are in 
danger of extinction before being discovered, described, and identified. Public policies for 
conservation are fundamentally dependent on efforts to catalog the diversity of plants on 
Earth [4]. Thus, a worldwide effort has begun to document the planet’s biodiversity in the 
last century. Most of the world’s herbaria are currently involved in the process of digitizing 
their collections. Around 81 million specimens have already been digitized [3] and shared 
online through various open data repositories, such as the Global Biodiversity Informa-
tion Facility (GBIF), the world’s largest biodiversity open-data network [5]; and Integrated 
Digitized Biocollections (iDigBio), which makes data and images available from more than 
1,600 US biological collections [6].

In Brazil, the digitization of specimens from herbaria started in 2010, and the images and 
metadata have been available in the Reflora Virtual Herbarium [7] and speciesLink [8]. The 
cooperative and collaborative network speciesLink aims to integrate and openly make avail-
able biological collections from Brazil and abroad [9]. In July 2023, the speciesLink had 
more than 17 million records of primary biodiversity data for more than 12 million botani-
cal specimens, of which at least 4 million included images [8]. Figure 1 shows a digitized 
herbarium specimen used in this work. A dried and pressed plant fixed on a large sheet with 
a label containing information about the specimen, the collector name, date, and collection 
place is also named exsiccatae [10].

Herbarium online collections, including high-quality images and metadata, are relevant 
scientific contributions. However, new uses of this information essentially depend on the 
reliable identification of specimens  [11]. This is still a sore point because thousands of 
plants need to be identified or have incorrect identification and, therefore, must be re-iden-
tified [12]. The large number of specimens deposited in herbaria awaiting identification is 
due to several factors: manual identification and classification workflows, which are slow 
and subject to errors [13]; and a limited number of new taxonomists in recent times [14]. 
Moreover, many current experts devote their careers to interpreting incomplete or imprecise 
descriptions [15]. These difficulties consume a substantial portion of systematic research 
today, redirecting efforts away from advancing the field. As a result, plant identification 
skills are currently confined to a relatively small group of individuals [15].

Computer vision techniques offer potential support in biological research by narrow-
ing the gap in specimen identification. However, the main state-of-the-art contributions 
are often built upon large datasets encompassing species from a wide range of taxonomic 
groups. These species have significant morphological differences, including a high inter-
class diversity within the dataset, which may be easily recognized by specialists and effec-
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tively captured by machine learning algorithms. Furthermore, these datasets often include 
species with many samples, diverging from the practical realities of plant identification 
tasks in herbaria.

The Piperaceae Giseke, commonly known as the pepper family, demands specialized 
expertise due to the vast number of existing species and their subtle distinguishing fea-
tures [16]. Several studies highlight the inherent complexity of identifying Piperaceae spe-
cies, especially within its largest genera: Peperomia Ruiz & Pavon (approximately 1,700 
species) [17, 18] and Piper Linnaeus (around 2,600 species) [19]. The large volume of 
species [20] and high morphological similarity among many pose a significant challenge in 
Piperaceae specimen identification [21]. As far as we know, no efforts have yet addressed the 
task of species-level classification for herbarium specimens within the Piperaceae family.

The main contributions of our work are summarized as follows:

	● A curated dataset of herbarium specimens of Piperaceae Giseke is a botanical fam-
ily with inherently complex identification, comprising hundreds of species. He brings 
together plants collected in several Brazilian regions with 236 species and 10,503 im-
ages. The original database, segmented images, extracted features, and its different sub-
sets are available for download at https://zenodo.org/records/14599766. As commonly 
found in herbarium collections, many species in this dataset have few samples, and few 

Fig. 1  Example of Piper crassinervium from Herbário da Embrapa Recursos Genéticos e Biotecnologia 
(CEN) [8], having the seven artifacts: scale bar, barcode, envelope, specimen, color pallet, stamp, and 
specimen label
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species have many samples;
	● A robust experimental protocol encompassing segmentation, feature extraction, and 

classification. Our protocol evaluates the dataset, focusing on comparing established 
classification models. We explore diverse subsets, handcrafted and non-handcrafted fea-
tures, and different performance metrics. The performance of these experiments estab-
lishes a baseline for future research.

The rest of this paper is organized as follows. Section 2 shows the related work for clas-
sifying and segmenting herbarium specimens. The dataset built and refined for this study 
is presented in Section 3. The proposed approach for segmentation, feature extraction, and 
classification is detailed in Section 4. Section 5 describes the experimental results and dis-
cussion. Section 6 presents the conclusion and future work.

2  Related work

In this section, we discuss some important works described in the literature that have led 
to and contributed to our research. Although numerous studies use leaves collected in the 
field, we specifically concentrated on plants deposited in herbaria. Herbarium plants are 
dried and stored to preserve their characteristics over the years. The drying process alters the 
plant’s cellular structure, causing a loss of color but preserving its essential traits required 
for identification. Plants are typically identified after drying since collection sites are unsuit-
able due to the absence of structure and unfavorable environmental conditions. Recently, we 
have seen works employing a cross-domain approach, using models trained from herbarium 
samples to identify plants collected in the field [22]. A comprehensive systematic review of 
herbaria-related tasks using Computer Vision and Machine Learning is presented in [23].

Given the diversity of proposed datasets covering different taxa, comparing performance 
between different studies is impossible. In this context, the main contribution of this work 
lies in providing a comprehensive database of a botanical family with inherently complex 
identification. Next, we present some of the most relevant herbarium datasets used in the 
literature. Furthermore, we discuss several Machine Learning approaches that have success-
fully segmented and classified herbarium specimens.

Datasets   Previous studies on identification involving herbaria specimens have employed 
datasets with a reduced number of classes and samples  [11, 24–29]. Clark et al.  [24] 
employed four species of the genus Tilia and 516 samples of isolated leaves (129 of each 
species). Wijesinghe and Marikar [25] used 158 isolated leaves from 17 species of trees of 
the genus Stemonoporus (Dipterocarpaceae family). Grimm et al.  [26] classified six fern 
species with 108 samples of isolated leaves. Unger et al. [27] classified 26 species of the 
most common trees in Germany with 260 examples. Kho et al. [28] applied 54 leaf image 
samples of three species of Ficus, one of the largest genera in the plant kingdom. Pryer et 
al. [11] classified 108 samples of three species of horsetails: Equisetum hyemale, E. laev-
igatum, and E. × ferrissii. Finally, Kajihara et al. [29] assembled a dataset with five genera 
of the Piperaceae family represented by 375 examples.
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More recently, some datasets with large numbers of species (classes) and herbarium images 
(samples) have also been proposed and evaluated [12, 30–35]. Wilf et al. [30] assembled 
a dataset comprising 7,597 carefully curated images of cleared leaves (or leaflets for com-
pound leaves), encompassing nearly an equivalent number of species, spanning 2,001 gen-
era. Carranza-Rojas et al.  [12] proposed two datasets: Herbarium255 (255 species with 
approximately 11,071 images) and Herbarium1K (1,204 species with 253,733 images). 
Schuettpelz et al. [31] assembled a dataset with two closely related families: 9,276 club-
mosses (Lycopodiaceae) and 9,113 spikemosses (Selaginellaceae), in which, unlike the oth-
ers, the target class is the family. Younis et al. [32] classified 1,000 species from 830,408 
herbarium images. The Herbarium 2019 dataset proposed in [33] contains 46,469 digitally 
imaged herbarium sheets representing 683 species from the flowering plant. The Herbarium 
2021 dataset is the largest ever proposed, containing 2.5 million images of vascular plant 
specimens representing approximately 64,500 taxa [34]. Shirai et al. [35] assembled a data-
set with 500,554 specimen images of 2,171 plant taxa that grow in Japan.

A common characteristic in these larger datasets is gathering species from different 
botanical families. Consequently, the more significant number of species from many fami-
lies and genera leads to high interclass variability. The only exception is Tan et al.  [33], 
which selected samples of 683 species from the family Melastomataceae.

Machine Learning   Studies on herbarium specimens in the last two decades have employed 
different classifiers. Grimm et al. [26], Kho et al. [28], Unger et al. [27], Wilf et al. [30], 
and Kajihara et al.  [29] used Support Vector Machine (SVM) for classification of speci-
mens. Other classifiers, such as Decision Tree (DT) and k-Nearest Neighbors (k-NN), were 
also used for the classification of herbarium specimens by Pryer et al. [11] and Kajihara et 
al. [29]. Neural Networks also are used in [24, 25, 28, 29]. Clark et al. [24] and Kajihara 
et al.  [29] used Multilayer Perceptrons (MLP). Marikar  [25] used a Probabilistic Neural 
Network (PNN).

Some works began employing Convolutional Neural Networks (CNNs) for specimen clas-
sification. Schuettpelz et al. [31] built a CNN for their study. Carranza-Rojas et al. [12] used 
a modified version of GoogLeNet. Carranza-Rojas et al. [36] extended previous work by 
including three CNNs specially built for the proposed work. Younis et al. [32] used a modi-
fied version of ResNet. Little et al. [2] employed modified ResNet, SeResNeXt, and SENet 
versions. Shirai et al. [35] used versions of Inception-ResNet, Inception, and VGG16. The 
VGG16 was also used by Pryer et al. [11] to classify herbarium specimens. The top-five 
teams used the GENet, ECA-NFNet-L0, and variations of the ResNet and ResNeXt archi-
tectures in the competition described in [37].

Segmentation   Herbarium images typically feature various artifacts, such as stamps, labels, 
color palettes, envelopes, etc. In order to mitigate the impact of these artifacts on classifi-
cation, it is essential to remove them. In smaller datasets [24–29], artifacts were manually 
removed, leaving only the plant or its leaves isolated. These artifacts were manually blurred 
in [33] and disregarded in [31, 35]. All images were uniformly cropped to remove the bar-
codes and notes on the specimen in [12, 32, 36]. It is worth noting that Shirai et al. [35] 
clarified that the presence of a label, color bar, scale, or stamp in the image did not signifi-
cantly affect the identification accuracy in their dataset. On the other hand, some works have 
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been dedicated exclusively to segmenting herbarium specimens. White et al. [38] employed 
a modified version of U-Net to segment plant tissue in exsiccata. Triki et al. [39] proposed 
a network structure inspired in VGG16 for segmenting leaves and exsiccata artifacts. A 
combination of YOLO-V8 and U-Net++ for segmentation is addressed in [40]. Milleville 
et al. [41] proposed a pipeline utilizing YOLO-V8 and Mask R-CNN for detection and seg-
mentation in exsiccata containing multiple specimens. Others works have dedicated efforts 
for component detection on digitized herbarium specimens. Younis et al. [42] detect plant 
organs with Faster R-CNN. The original YOLO-V3 and improved YOLO-V3 models were 
used by Triki et al. [43] for detection of components in specimens. Tompson et al. [44] used 
YOLO-V5 for detection of herbarium specimen sheet components.

Piperaceae-related works   The only work for the identification task of herbarium specimens 
using the Piperaceae Giseke family was conducted by Kajihara et al. [29]. This study gener-
ated a pre-processed and balanced subset of data from the speciesLink repository. Its per-
formance in identifying specimens from this family at the genus level was evaluated using 
375 images. To evaluate which combination of descriptor and classifier would produce the 
best accuracy in the identification task, after pre-processing, Kajihara et al. [29] extracted 
features using Local Binary Pattern (LBP), Speed Up Robust Features (SURF), VGG16, 
ResNet50V2, and MobileNetV2. The data were used to train SVM, MLP, k-NN, and DT 
classifiers. The best accuracy was 80.53%, obtained with the combination of MobileNetV2 
and SVM.

Unlike the works cited above, Pravin and Deepa  [45] classified living plants in nature. 
Despite this, the work deserves attention because it dealt with species from the largest genus 
of the Piperaceae family called Piper L. Their dataset has 1,607 images of 15 Piper L. 
species, with approximately 100 samples for each species. Among their experiments, they 
achieved an F1-Score of 0.87 by combining the Random Forest (RF) classifier with features 
extracted by representation learning.

2.1  Critical review

The recent digitization process of specimen collections from herbaria allowed the introduc-
tion of Computer Vision and Machine Learning techniques to help herbaria curators classify 
specimens, mitigating dependence on specialists. On the other hand, the identification of 
herbarium specimens is still a challenging task. These challenges usually concern the inher-
ent characteristics of the dataset, as discussed below.

Most datasets  [11, 24–29] are balanced. However, herbarium collections are typically 
unbalanced due to several factors: some species are more readily found in nature than oth-
ers [36]; in certain species, a particular plant organ, such as the fruit, is essential for pre-
cise species identification may be unavailable for collection during certain seasons of the 
year [28]; and older herbaria tend to have more samples of certain species due to their earlier 
start in collecting and storing specimens [28]. Imbalanced datasets [12, 30, 33–35] better 
represent herbaria but often exhibit a long-tailed data distribution, which may potentially 
affect overall classification performance.

The studies [12, 32, 35, 37] are among the main contributions to the identification of her-
barium specimens. Their datasets have been incorporating an ever-greater number of spe-
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cies to increase the number of samples. Consequently, they often include distantly related 
species with distinct morphological traits, which simplifies classification tasks for special-
ists in the real world. In contrast, our work focuses on a single taxonomic group, known 
among taxonomists for its complex identification due to the morphological similarity shared 
by many of its species.

As the automatic identification task is still new, there is no consensus on metrics to mea-
sure the performance of identification of herbarium specimens, making it challenging to 
compare new approaches with state-of-the-art works and build new benchmarks. As pointed 
out in [23], many studies use accuracy or mean reciprocal rank for species identification and 
average precision for segmentation tasks.

Digitized specimen images have substantial variations ranging from the position of the 
artifacts (such as scale bar, stamp, color pallet, and so on) to how the plant is fixed on the 
sheet. A challenging task is removing irrelevant parts of the image, keeping only the plant 
specimen in order not to bias the identification. Few works have dealt with the segmentation 
of digitized specimen images, but their training dataset is relatively small, with a limited set 
of species [23, 46].

3  Dataset

There are several herbarium plant specimen databases [11, 12, 24–28, 30–32, 34–36]. How-
ever, these databases usually include either samples of a limited number of species within 
a specific family or many samples of diverse families. Classification models trained on a 
variety of species but from different botanical families do not effectively support botanists 
and experts. This is because classifying specimens from different families is a relatively 
straightforward task. Taxonomists highlight that the real challenge in identification arises 
when dealing with species from the same family.

Labeling samples of dried plants (exsiccata) requires botanists’ expertise in the respec-
tive plant families. For certain species, these experts, also known as taxonomists, must have 
physical samples (exsiccata) on hand to perform the classification. Consequently, transport-
ing these physical samples, necessary for conducting evaluations, leads to associated costs 
and delays in the identification process. These practices underscore the importance of data-
bases labeled by experts in the automated classification process.

In this paper, we selected from speciesLink [8] the digitized herbarium specimen images 
of the Piperaceae family, their metadata, such as the species name in Latin, identifiers, and 
the information contained in the labels of the specimens. In 2021, speciesLink had 52,606 
records of Piperaceae. These specimens were collected in different Brazilian regions. Brazil 
has a vast territory with diverse climatic zones, varying altitudes and landforms, as well as 
distinct soil properties. This diversity contributes significantly to the wide variety of Pipera-
ceae species found within its territory.

Despite the wide variety of records, many of them have missing images or just images of 
plants photographed in a natural environment instead of being dehydrated, missing data on 
the collection’s origin, and incomplete or unreliable identification. To solve these inconsis-
tencies, we perform extensive pre-processing to remove records without metadata about the 
identifier name, collection location, and complete botanical taxonomy (family, genus, and 
species). We also kept samples that contained herbarium images of dried plants.
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The quality of species determinations is a weakness in the records maintained by species-
Link. To mitigate bias in classification due to mislabeled samples, we have chosen images 
of plants identified by 11 botanists recognized as specialists in the Piperaceae family. This 
task was supervised by a researcher dedicated to studying Piperaceae at the Rio de Janeiro 
Botanical Garden Research Institute (Brazil).

Figure 2 illustrates all steps made to build the dataset. We also only selected species that 
had at least five samples. As a result, our dataset contains 10,503 images of specimens of 
236 species of Piperaceae collected in Brazil. More details about the dataset produced can 
be found at Zenodo1.

Figure  3 illustrates the specimens’ taxonomic distribution by family, genus, and spe-
cies. Among 10,503 images of Piperaceae, 7,678 (73.10%) are of the genus Piper L., 2,806 
(26.72%) of the genus Peperomia Ruiz & Pav., and 19 (0.18%) of the genus Manekia 
Trelease. There are 156 species of Piper L., 79 of Peperomia Ruiz & Pav., and only one 
species of Manekia Trel.

Figure 4 illustrates the distribution of the 10,503 collected samples (specimens) across 
the 236 classes of interest (species). The distribution reveals a set with long-tailed data, 
where few samples represent some species, while others have a large number of samples. 
Among these, there are 60 majority classes and 176 minority classes. A class is considered 
a majority when its number of samples exceeds the number of samples in a class in a bal-
anced dataset [48].

The chosen samples comprise plants collected from various regions of Brazil. They are 
presently housed in 35 Brazilian herbaria and three herbaria located in the USA. Notably, 
The New York Botanical Garden (NY) herbarium holds the largest collection, consisting of 

1 https://doi.org/10.5281/zenodo.14599766

Fig. 2  Illustrative workflow to assemble the dataset of digitized images of specimens of the Piperaceae 
family from Brazilian herbaria
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3,757 samples. Figure 5 depicts the distribution of the 10,503 samples across these diverse 
herbaria. The complete list of herbarium names is available on Zenodo2.

In order to explore the dataset according to the collection areas, we propose a subset 
containing Piperaceae exsiccatae collected in the Paraná state. Figure 6(a) depicts the dis-
tribution of samples throughout the Brazilian states. Paraná has the highest average rate of 
images per species. We also divided the dataset into five Brazilian regions (North, North-
east, Midwest, South, and Southeast), as shown in Fig. 6(b). We can note that the Southeast 
region and Paraná state have the highest number of images for each species.

As previously mentioned, each class contains a minimum of 5 samples. However, there 
is a significant disparity in the number of images between minority and majority classes. 
To address this imbalance within the dataset, we divided the subsets into smaller fragments 
based on the minimum number of images per species. Consequently, we generated new 
subsets comprising species with a minimum of 5, 10, and 20 images.

2 https://doi.org/10.5281/zenodo.14599766

Fig. 3  A stacked pie chart made with Krona Tools [47] depicting the dataset taxonomic distribution by 
family, genus, and species
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Table 1 summarizes the number of images, the number of species, and the average rate 
of images per species for each new subset (5, 10, and 20) of the Paraná dataset. Similarly, 
Table 2 describes the same fragmentation for each region of Brazil. Moreover, we incorpo-
rate the imbalance degree for each subset, which illustrates the disparity between a hypo-
thetical balanced distribution and the actual imbalanced subset. Imbalance degree is single 

Fig. 5  Distribution of samples by 
herbaria. Each herbarium is repre-
sented by its acronym

 

Fig. 4  Distribution of classes (species)
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Regional 
subsets

# 
Minimum 
samples

Samples Species/classes Imbal-
ance 
Degree

North 5 2,634 107 73.16
10 2,351 68 41.17
20 2,015 41 27.15

Northeast 5 1,062 48 30.18
10 974 35 20.18
20 776 21 12.16

Midwest 5 1,136 42 31.28
10 1,044 29 20.29
20 888 17 11.31

South 5 2,457 72 52.20
10 2,309 49 32.20
20 2,109 33 20.20

Southeast 5 2,756 102 66.17
10 2,524 67 46.15
20 2,211 42 25.16

Table 2  Regional subsets accord-
ing to the minimum number of 
samples per species

 

# Minimum samples Samples Species/classes Imbalance Degree
5 1,354 55 35.20
10 1,235 36 22.19
20 1,065 23 13.18

Table 1  Paraná subsets accord-
ing to the minimum number of 
samples per species

 

Fig. 6  Geographical distribution of herbarium specimens of the Piperaceae family: (a) average of images 
per species in the states and (b) average of images per species in the regions
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real value in the range [0, K), where K is the number of classes. The closer the imbalance 
degree value is to zero, the closer the dataset is to a balanced distribution. This measure 
effectively distinguishes class distributions and exhibits a stronger correlation with the chal-
lenges posed by skewed class distributions in supervised algorithms [48]. A reduction in 
the degree of imbalance is observed when we restrict the minimum number of samples per 
class.

Table  3 describes the number of species, the number of samples, and the imbalance 
degree of the fragments produced for the complete dataset. It is worth noting that some 
images and species are only in the complete dataset but absent in the regional subsets. This 
absence occurs because the number of available images of a given species is insufficient for 
its inclusion in a regional subset. For example, there are five images of the species Piper 
cunninghamii, four of which originated in the North region and one in the Northeast region. 
These images are insufficient to include this species in the regional sets but are enough to 
compose the Brazilian dataset.

This section provided a detailed description of the curated dataset assembled from 
Piperaceae specimens collected in Brazil. Although there are species with only one or two 
collected samples, we adopted a minimum sample threshold of five to accommodate the 
five-fold cross-validation scheme. This strategy enabled the selection of 236 classes with 
10,503 samples, which are available for download from the Zenodo repository3.

4  Proposed method

The pipeline for identification of Piperaceae family specimens consists of three main steps: 
segmentation, feature extraction, and classification, as illustrated in Fig. 7. The source code 
is available on GitHub4. We describe below the details of each of them.

4.1  Segmentation

Usually, digitized images of herbarium exsiccatae contain several artifacts. These artifacts 
include stamps, labels, color palettes, envelopes, etc. The presence of these artifacts may 
introduce noise in the classification, and their positions vary from image to image. For this 
reason, the segmentation of dried plants is essential to avoid data unrelated to the plant dur-
ing feature extraction.

In this paper, we use the U-Net architecture for semantic segmentation, which was ini-
tially proposed in [49] to handle biomedical images. The U-Net is a Fully Convolutional 
Network composed of the encoder, the bottleneck module, and the decoder. The U-Net 
has a U-shaped structure combined with context information; fast training speed; and good 

3 https://doi.org/10.5281/zenodo.14599766
4 https://git​hub.com/xaa​aandao/pipe​raceae-i​dentification-paper/tree/multimedia

# Minimum samples Samples Species/classes Imbalance Degree
5 10,503 236 175.14
10 9,977 160 119.14
20 9,237 106 73.15

Table 3  Complete dataset (Bra-
zil) according to the minimum 
number of samples per species
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performance, even with a small amount of data annotated [50]. Such features meet medical 
image segmentation requirements but have also been used for herbarium image segmenta-
tion in [38, 39].

In this paper, we conducted training on the U-Net using a small dataset of Piperaceae 
specimens proposed in [29]. This dataset consists of 375 manually segmented images. We 
also evaluated the network’s performance for image variations, including different color 
modes (RGB and grayscale) and dimensions (256×256, 400×400, and 512×512 pixels). 
These dimensions have also been evaluated to reduce the computational cost spent on train-
ing time and memory consumption in similar works [12, 31, 51].

Table 4 shows the main hyperparameters used in the U-Net. We implemented a Python 
script5 using the scikit-learn6 to split the folds, tensorflow7 to create the model, and PIL8 to 
save the segmented image. All digitized herbarium specimens were resized before perform-

5 https://git​hub.com/xaa​aandao/pipe​raceae-i​dentification-paper/tree/multimedia
6 https://scikit-learn.org/stable/index.html
7 https:​​​//w​ww.tensorf​low​.or​g/ap​i_docs​​/python/tf
8 https://pillow.readthedocs.io/en/stable/

Hyperparameter Value
Batch 4
Epoch 75
Learning rate 0.001

Table 4  Main hyperparameters 
used in the U-Net
 

Fig. 7  Proposed method general scheme
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ing the inference with the trained U-Net model. Then, having the dataset segmented by the 
U-Net, the feature extraction can be started as described below.

4.2  Feature extraction

The features of the Piperaceae family specimens were extracted using both handcrafted and 
learned feature descriptors. As handcrafted approaches, we employed the LBP and SURF 
descriptors; the other three CNNs (MobileNetV2, ResNet50, and VGG16) and ViT as non-
handcrafted descriptors. Table 5 presents the parameters used and the sizes of the feature 
vectors generated by each extractor.

We included the image zoning method when we applied the feature extractors based on 
Representation Learning - MobileNetV2, ResNet50V2, VGG16, and ViT - on our dataset. 
We opted for the horizontal orientation and the division into three regions following previ-
ous results [29]. An example of this zoning is illustrated in Fig. 8.

Local Binary Patterns (LBP) [56] is a robust descriptor that effectively captures binary 
patterns in a texture. It is known for its ease of implementation and low computational 
complexity [57]. It compares the intensity of the central pixel with its eight neighboring 
pixels and assigns 0 to the neighbor when its value is less than that of the central pixel, and 
1, otherwise [58]. These binary values are then multiplied by the weights given to the cor-
responding pixels. Afterward, the values of the eight pixels in the neighborhood are added, 
and the result is the number of that texture unit [56].

Fig. 8  Image split horizontally 
into three regions. Original ex-
siccata from [8]

 

Descriptor Hyperparameter Dimension
SURF SurfSize = 64 257
LBP P = 8 and R = 2 × 11 − 8bit 59
VGG16 As done by Simonyan and Zisserman [52] 512
ResNet50 As done by He et al. [53] 2048
MobileNet As done by Howard et al. [54] 1280
ViT As done by Dosovitskiy et al. [55] 1024

Table 5  List of hyperparameters 
for each extractor of features
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The Speeded Up Robust Features (SURF) [59] is a point-of-interest detector and descrip-
tor for images with good run-time performance and speed, allowing real-time applications. 
Its main characteristic is the repeatability that permits finding the same points of interest in 
different visualization conditions [59].

To our knowledge, no studies have used LBP and SURF for feature extraction from dried 
herbarium plants. Despite this, the efficiency and robustness of LBP and SURF have been 
applied in [60, 61] with images of live leaves (photographed in a natural environment) to 
identify plants.

In addition to handcrafted features, this work extracted deep features through CNNs. 
The option for this type of neural network is because they have provided a notable advance 
in automated identification [23]. The three CNN models used in this work to extract deep 
features were MobileNet, ResNet50, and VGG16.

The MobileNet neural network [54] is designed for mobile applications and embedded 
systems such as object detection, face recognition, and large-scale geolocation. Unlike tra-
ditional CNN, where the convolution layer filters and combines the inputs into a new set of 
outputs, the MobileNet uses depth-wise separable convolutions in which one layer filters 
and another later combines the outputs. This reduces the network size and its computational 
complexity [54].

ResNet is a CNN developed by He et al. [53] to solve a problem observed in deep neural 
networks of accuracy saturation, followed by rapid degradation, which occurs with increas-
ing network depth. To address this issue, the ResNet is built with residual blocks to send the 
gradients directly to the deeper layers [62]. A residual block consists of two or three sequen-
tial convolutional layers and a shortcut (or skip) connection, which connects the input of the 
first layer with the output of the last [63]. This network has only one fully connected layer 
for performing the classification. The ResNet can have different depths, such as 34, 50, 101, 
or 152 layers [53].

The VGGNet [52] is still one of the most popular image recognition architectures serv-
ing as the basis of ground-breaking object recognition models. The main contribution of the 
VGG project was to demonstrate that the depth of a network is a critical component in CNN 
for obtaining good results in recognition or classification [64].

The Vision Transformer (ViT) [55] is a deep learning model based on the Transformer 
architecture, originally designed for natural language processing and later adapted for 
computer vision tasks. It segments images into small patches, treating them as tokens in a 
sequence, enabling the model to capture global relationships between different parts of an 
image. Leveraging the attention mechanism, ViT efficiently learns visual representations 
by highlighting relevant patterns at various scales. In addition to being highly competitive 
in image classification tasks, ViT can serve as a backbone for feature extraction in vari-
ous computer vision applications, offering flexibility and high performance in large-scale 
scenarios [65].

ResNet was used in [32] to recognize morphological characteristics of herbarium speci-
mens; it was also one of the models used by the four best-performing teams in the Herbar-
ium 2019 competition for classifying herbarium plants of the Melastomataceae family [2]. 
VGG16 has also been used in studies with specimens from herbaria in [11, 39]. As far as we 
know, ViT has never been used to extract features from herbarium species but has shown 
competitive results in various computer vision applications [65, 66]
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4.3  Classification

Four well-known classifiers were used to classify Piperaceae specimens: DT, k-NN, MLP, 
and SVM. The hyperparameters were optimized through a grid search [67]. The obtained 
values are shown in Table 6.

4.4  Evaluation metrics

The segmentation and classification experiments employed the cross-validation technique 
(5-fold). At the end of each execution, we computed the appropriate metric, and after the 
five executions, we calculated their respective average and standard deviation.

The Sørensen-Dice Coefficient [68, 69] was used to evaluate the image segmentation. It 
assesses the similarity between two regions through their spatial overlap [70]. The Sørensen-
Dice Coefficient SDC is computed by (1):

	
SDC = 2 ∗ |a ∩ b|

|a| + |b|
,� (1)

where a is predicted area and b is ground truth [71]. The SDC ranges from 0 to 1, where 
SDC = 1 represents that the predicted segmentation area equals the ground truth.

F1-Score and Top-k accuracy are used to evaluate classification experiments. F1-Score 
consists of the harmonic mean between precision and recall as computed by (2).

	
F1- Score = 2 ∗ precision ∗ recall

precision + recall
,� (2)

where precision measures the fraction of true positives in the set of identified positives, and 
recall measures the fraction of true positives identified among all the positives in the data-
set [72]. The highest possible value of an F1-score is 1, showing perfect precision and recall, 
while the lowest possible value is 0 when either precision or recall is zero.

Top-k accuracy is a metric for evaluating multi-class classifiers, which counts the fre-
quency of the true class among the highest-ranked predicted classes (Top-k). If f̂i,j  is the 
predicted class of the ith sample corresponding to the jth highest predicted score, and yi 
is the corresponding ground truth, then the fraction of correct predictions on nsamples is 
defined by (3) [73].

Classifier Hyperparameter Value
DT max_depth 10
k-NN n_neighbors 10

weights distance
MLP activation logistic

learning_rate_init 0.01
momentum 0.4

SVM kernel rbf

Table 6  Main hyperparameters 
used in classifiers
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Top- k accuracy (y, f̂) = 1

nsamples

nsamples−1∑
i=0

k∑
j=1

1(f̂i,j = yi).� (3)

When k = 1, we have conventional accuracy. Typical values of k are 3, 5, or 10, but the 
appropriate value is context-dependent.

5  Experiments and discussion

Our experiments are divided into two distinct parts. The first part of our work addresses 
the segmentation, while the second is dedicated to tackling the classification problem. The 
hyperparameters were chosen using 5-fold cross-validation. Segmentation experiments were 
evaluated using the mean Sørensen-Dice coefficient. Mean F1-Score and Top-k describe 
classification experiments. The standard deviation was calculated for all experiments.

The datasets employed in segmentation and classification experiments are different. In 
the first case, the same dataset proposed by Kajihara et al. [29] was used. It includes 375 
images of the Piperaceae family. Classification experiments deal with datasets from the state 
of Paraná, five Brazilian regions, and Brazil, as described in detail in Section 3.

5.1  Herbarium specimen segmentation

Initially, segmentation experiments were performed using U-Net. Two aspects of images 
were evaluated: dimensions (256×256, 400×400, and 512×512 pixels) and color modes 
(grayscale and RGB). We used 75% of the dataset for training, 5% for validation, and the 
20% reminding to test. The 5-fold cross-validation was applied during all experiments and 
the mean Sørensen-Dice coefficient is described in Table 7. The results indicated that differ-
ent color modes and image dimensions did not affect the task. Figure 9 shows two exsiccatae 
and their versions of segmentation: the first using a mask produced by a human and another 
using a predicted mask by U-Net. The segmentation of Piper umbellata was successful, 
while the segmentation of Piper aduncum failed. Failures usually occur when the back-
ground color resembles the dried plant.

To assess the impact of U-Net segmentation on the subsequent classification task, we 
applied the same protocol proposed by Kajihara et al. [29] but now using U-Net segmented 
images. We employed the same database, descriptors, and classifiers. The results of both 
studies were similar, indicating that the utilization of U-Net did not impact the species clas-
sification significantly. The accuracy using U-Net was 80%, while the accuracy for the origi-
nal experiment was 80.53%.

Having established the feasibility of automated segmentation, we applied the U-Net for 
the database of Piperaceae described in Section 3. As image parameters did not significantly 
affect segmentation, we generated six dataset versions combining different image dimen-

Dimension (pixels) Color mode
RGB Grayscale

256×256 98.10 97.72
400×400 98.16 97.81
512×512 97.95 97.57

Table 7  Mean Sørensen-Dice 
coefficients (%) in image seg-
mentation approach
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sions with color mode. This approach allowed us to assess the impact of these parameters 
on the classification process.

The following section describes the results using different datasets, descriptors, and clas-
sifiers used in classifying species of the Piperaceae family.

5.2  Herbarium specimen classification

The classification process is outlined in two sections. The first section details the evalua-
tion of feature descriptors, classifiers, and image parameters. For these experiments, we use 
the subset of the state of Paraná. This subset was chosen because it has the highest average 
rate of images per species in Brazil. The bold entries in tables refer to the best results for 
each experiment. The research institution involved in this study is located in this state. The 
dataset used is described in detail in Table 1. In the second section, we utilized the most 
effective feature descriptors, classifiers, and parameters identified in the previous section to 
evaluate five regions besides the entire Brazilian territory. Details about the datasets used 
can be found in Table 2 and Table 3.

Fig. 9  Example of two exsiccatae: (a) Piper umbellata original sample  [8], (b) segmented by human 
(c) and segmented by U-Net, (d) Piper aduncum original sample [8], (e) segmented by human (f) and 
segmented by U-Net

 

1 3



Multimedia Tools and Applications

5.2.1  Evaluation of image parameters, descriptors, and classifiers

The dataset used in these experiments is unbalanced and contains 55 classes with at least 
five samples per class. The maximum number of samples was unrestricted. The classifier 
hyperparameters were optimized through grid-search with five folds. The mean F1-Score of 
five executions was used to evaluate the performance of experiments.

The first experiment evaluates the robustness of the feature descriptors and classifiers 
used. We evaluated four classifiers and six feature extraction methods, including two hand-
crafted (LBP and SURF) and four based on deep features or representation learning (Mobile-
NetV2, ResNet50, VGG16 and ViT). In this experiment, images were grayscale and had a 
dimension of 256×256 pixels. We can note in Table 8 that the MLP classifier combined 
with ViT showed the best performance. The non-handcrafted features also showed superior 
results to the handcrafted ones. Contour features extracted by pre-trained models showed 
better performance than texture features. Experiments with LBP excluding white/white 
transitions to avoid computing background information from the image were conducted, 
but performance was not improved. Upon detailed evaluation of MLP and SVM classifiers, 
we observed that in cases with few samples, both made mistakes in similar situations.

We conducted a second experiment to explore the impact of varying image dimen-
sions. The results for dimensions 400×400 and 512×512 pixels are described in Tables 9 
and 10, respectively. In most cases, they indicate that larger images yield better rates of 
F1-Score. This may have occurred because details are more perceptible in images with 
larger dimensions, and some extracted features are probably essential to differentiate one 
species from another. Once again, MLP trained on features extracted from ViT delivered the 
best performance.

A third experiment evaluated the impact of the color modes (grayscale and RGB). Only 
non-handcrafted feature extractors were evaluated in the RGB mode since LBP [56] and 
SURF [59] are designed for grayscale images. In addition, the decision to focus on non-
handcrafted methods was supported by their superior performance in the previous experi-

Table 8  Mean F1-Score using images 256×256 pixels - Paraná State Dataset (55 species and at least five 
images per class)
Classifier Feature Descriptor

LBP SURF MobileNetV2 ResNet50 VGG16 ViT
DT 0.13 0.20 0.16 0.16 0.17 0.13
k-NN 0.14 0.24 0.23 0.19 0.20 0.29
MLP 0.19 0.30 0.35 0.35 0.35 0.45
SVM 0.11 0.25 0.31 0.32 0.29 0.37

Table 9  Mean F1-Score using images 400×400 pixels - Paraná State Dataset (55 species and at least five 
images per class)
Classifier Feature Descriptor

LBP SURF MobileNetV2 ResNet50 VGG16 ViT
DT 0.14 0.18 0.18 0.14 0.18 0.14
k-NN 0.14 0.24 0.28 0.21 0.28 0.31
MLP 0.24 0.33 0.41 0.43 0.44 0.48
SVM 0.11 0.27 0.38 0.39 0.40 0.41
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ment. The results are described in Table 11. The most classifiers achieved high rates when 
using RGB images. The highest F1-Score achieved was also obtained by MLP classifier but 
now using features extracted from VGG16 and ViT.

Despite efforts, the F1-Score remains below 0.51 in the best cases. Thus, we decided to 
evaluate the impact by increasing the minimum number of samples per species. Sets with a 
minimum of 10 and 20 images of each species were evaluated. As seen in Tables 12 and 13, 
the results showed that increasing the number of samples per species leads to improved 
model performance. On the other hand, the number of classes was significantly reduced 
since we used only classes with at least 10 and 20 samples. The number of classes using 
a minimum of 10 samples per species was 36, and using 20 examples per species was 23.

The best results were consistently achieved using MLP across all experiments. In most 
cases, ViT was utilized as a feature extractor for these top-performing results. We can also 

Table 10  Mean F1-Score using images 512×512 pixels - Paraná State Dataset (55 species and at least five 
images per class)
Classifier Feature Descriptor

LBP SURF MobileNetV2 ResNet50 VGG16 ViT
DT 0.12 0.21 0.15 0.19 0.21 0.13
k-NN 0.14 0.26 0.32 0.28 0.31 0.31
MLP 0.25 0.35 0.45 0.47 0.48 0.50
SVM 0.10 0.26 0.42 0.45 0.44 0.42

Classifier Feature Descriptor
MobileNetV2 ResNet50 VGG16 ViT

DT 0.21 0.28 0.30 0.23
k-NN 0.45 0.35 0.41 0.44
MLP 0.63 0.60 0.64 0.63
SVM 0.56 0.58 0.60 0.59

Table 13  Mean F1-Score using 
RGB images with 512×512 
pixels - Paraná State Dataset (23 
species and at least 20 images 
per class)

 

Classifier Feature Descriptor
MobileNetV2 ResNet50 VGG16 ViT

DT 0.22 0.23 0.23 0.16
k-NN 0.36 0.30 0.34 0.37
MLP 0.53 0.53 0.56 0.56
SVM 0.48 0.49 0.50 0.51

Table 12  Mean F1-Score using 
RGB images with 512×512 
pixels - Paraná State Dataset (36 
species and at least 10 images 
per class)

 

Classifier Feature Descriptor
MobileNet-V2 ResNet50 VGG16 ViT

DT 0.18 0.16 0.21 0.14
k-NN 0.32 0.26 0.28 0.31
MLP 0.47 0.48 0.51 0.51
SVM 0.42 0.45 0.44 0.45

Table 11  Mean F1-Score using 
RGB images with 512×512 
pixels - Paraná State Dataset (55 
species and at least five images 
per class)
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notice that VGG16 becomes more competitive in subsets with more restrictive sample 
numbers.

The best result using a minimum of five images per species was 0.51 (±0.02), whereas a 
subset with a minimum of 20 images per species yielded a higher F1-Score of 0.64 (±0.03). 
The increase of 0.13 percentage points (in the best case) from five to twenty samples per 
class may have been influenced by the decrease in the number of classes. There was a reduc-
tion of about 41.82% in the number of classes and, at the same time, an improvement of 0.13 
percentage points. Therefore, it is difficult to say that increasing the number of samples can 
improve the performance of species classification.

Finally, we evaluate performance using Top-k, with k = {3, 5}. The main goal of Top-k 
is to collaborate with the taxonomist to show a hit list where there is a greater possibility 
of the sample seeking to be included. Table 14 describes the results achieved for the Paraná 
state subset using a minimum number of images 5, 10, and 20 per species. MLP was trained 
using features extracted from VGG16 and ViT. As expected, the performance improved 
when we used k = 3 and k = 5.

Building a database with many samples of each species is challenging because, in her-
barium collections, some species are represented by few specimens, while others are rep-
resented by many  [2]. Several factors contribute to this situation, such as the process of 
collecting samples, as some species are more abundant in nature than others [36]; difficult 
accessing certain collection sites [25]; and in some species, a particular plant organ, such as 
the fruit, is essential for the accurate identification of the species but may not be available 
year-round or is not easily collected [28].

In short, our experiments with the Paraná State dataset demonstrated that the most suc-
cessful approach for classifying herbarium specimens involved the utilization of an MLP 
classifier in conjunction with features extracted from VGG16 and ViT. This approach uti-
lized RGB images of 512×512 pixels for each Piperaceae species. The following section 
reports the results using this set of features, classifiers, and sizes for other subsets.

5.3  Evaluating five regions from Brazil

This section employed the parameters from experiments on the Paraná State dataset. All the 
following experiments used the MLP classifier and features extracted from VGG16 and ViT. 
We also used RGB images and dimensions of 512×512 pixels. The results of these experi-
ments are described in Table 15.

In Table 15, the experiments indicated that, in most cases, the F1-Score means achieved 
using ViT (12 of 15 tests) was better than VGG16 (two of 15 tests), and in only one situa-
tion, the rate was similar. The variation between the results of the two descriptors was 1% 
to 4%.

We also performed experiments with all species found in the Brazilian territory using 
features extracted from the VGG16 and ViT with the MLP classifier. The F1-Score is shown 
in Table  16. Similar to the previous experiments, the more restrictive subset yields bet-

# Minimum samples Species/classes VGG16 ViT
Top-3 Top-5 Top-3 Top-5

5 55 77.77 85.46 78.36 88.18
10 36 82.35 89.55 82.51 91.09
20 23 86.67 93.33 85.82 92.58

Table 14  Top-k (%) using RGB 
images with 512×512 pixels - 
Paraná State Dataset
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ter performance, but almost all (two of three tests) the cases from features extracted were 
VGG16.

We also evaluated the performance using the Top-k metric for the five regions of Brazil. 
The results in Table 17 show that the ViT (20 of 30 tests) is better than VGG16 (10 of 30 
tests), and even with a large number of classes (minimum number of samples equals five), it 
is possible to achieve rates between 57.90% and 79.37% using the Top-3. When the number 
of classes is more restrictive, the Top-3 rate vary from 72.10% to 88.91%.

Finally, we calculate the Top-k for the experiments conducted on the Brazil dataset, as 
shown in Table 18. Here, ViT achieved a better performance than VGG16 for all subsets. 
Taking into account the Top-3 and Top-5 metrics, we can conclude that the results obtained 
are not only encouraging but also competitive with the leading works in the literature, par-
ticularly when considering a botanical family with intricate identification challenges. We 
achieved 63.60% and 72.17% performance, employing 236 classes (species) to Top-3 and 
Top-5, respectively. These rates are particularly remarkable considering the challenges 
posed by significant interclass similarity and intraclass variation.

We explore various diverse subsets, handcrafted and non-handcrafted features, and dif-
ferent performance metrics. The performance of these experiments establishes a baseline 
for future research.

5.4  Discussion

Upon analyzing the confusion matrix generated and inspecting the species images, we 
observed species with many errors. These species are usually very similar, that is, high 

# Minimum samples Species/classes VGG16 ViT
5 236 0.38 0.37
10 160 0.41 0.40
20 106 0.41 0.45

Table 16  Mean F1-Score, using 
the combination of MLP with 
VGG16 and ViT on 512×
512 pixels RGB images - Brazil 
Dataset

 

Regional 
subsets

# Minimum 
samples

Species/classes VGG16 ViT

North 5 107 0.32 0.34
10 68 0.37 0.40
20 41 0.46 0.50

Northeast 5 48 0.49 0.52
10 35 0.57 0.61
20 21 0.65 0.66

Midwest 5 42 0.55 0.56
10 29 0.60 0.61
20 17 0.68 0.66

South 5 72 0.48 0.51
10 49 0.54 0.56
20 33 0.59 0.58

Southeast 5 102 0.39 0.40
10 67 0.43 0.46
20 42 0.51 0.51

Table 15  Mean F1-Score using 
RGB images with 512×512 pix-
els - Regions of Brazil Dataset
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interclass similarity. In practice, this is common, and often, experts need more information 
to label them correctly. Information such as plant location, collection time, fruits, and other 
details can be considered to increase accuracy in the classification step.

Our models could not correctly identify any samples of the species Peperomia blanda. 
One of the test examples of this species was classified as Peperomia glabella, and the simi-
larities between them can be observed in Fig. 10.

Another factor that may have impacted the predictions is the intraclass variability. For 
example, the Piper abutiloides has four samples as illustrated in Fig. 11.

The experiments revealed that the MLP classifier with non-handcraft features, especially 
ViT or VGG16, performed better for classifying Piperaceae herbarium specimens. In most 
tests evaluated, ViT achieved a rate more than VGG16. The difference varies between 0.02 
and 0.10 for the feature descriptors. Although ViT achieved a better accuracy, VGG16 is a 
promising computational alternative for this work, as it delivers similar results while using 
only half the features of ViT.

In summary, the studies presented in this work investigate the Piperaceae family with 
many species. Table 19 shows the performance of the leading studies in the field to date. 
Despite the lack of standardized metrics, it highlights the challenges posed by our data-
set compared to others. The different datasets used in this work are available so that new 
research can be carried out.

Table 17  Top-k (%), using the combination of MLP with VGG16 and ViT on 512×512 pixels RGB images 
- Regions of Brazil Dataset
Regional subsets # Minimum sample Species/classes VGG16 ViT

Top-3 Top-5 Top-3 Top-5
North 5 107 56.53 64.54 57.90 65.99

10 68 62.99 72.10 64.65 73.62
20 41 69.98 78.71 72.10 80.29

Northeast 5 48 79.67 88.14 79.37 88.41
10 35 85.83 92.71 85.21 91.48
20 21 89.56 94.46 88.91 93.30

Midwest 5 42 80.63 87.68 79.31 87.86
10 29 82.95 90.13 83.04 90.13
20 17 88.18 94.37 88.06 94.14

South 5 72 75.78 83.88 78.63 87.01
10 49 80.60 88.61 82.02 91.47
20 33 83.59 91.51 85.59 92.94

Southeast 5 102 66.65 76.23 65.46 75.30
10 67 71.08 81.14 72.87 82.49
20 42 76.98 86.16 79.38 88.20

# Minimum samples Species/classes VGG16 ViT
Top-3 Top-5 Top-3 Top-5

5 236 61.18 69.31 63.60 72.17
10 160 63.83 72.43 67.24 75.82
20 106 69.01 78.05 71.32 80.60

Table 18  Top-k (%), using 
the combination of MLP with 
VGG16 and with ViT on 512×
512 pixels RGB images - Brazil 
Dataset
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6  Conclusion

Automated species identification holds significant potential as a valuable tool for taxono-
mists and technical staff, streamlining identification and bringing possible misidentifica-
tions of herbarium specimens to the attention of the responsible curator. However, the main 
contributions rely on diverse taxonomic groups aggregated on large datasets, diverging from 
herbaria’s practical realities. To overcome this challenge, we presented a curated dataset of 
herbarium specimens of the Piperaceae botanical family with plants collected in several 
Brazilian regions, using the speciesLink repository and collaborating with domain experts. 
Our dataset has 236 species and 10,503 digitized images of exsiccatae from 38 herbaria.

We accompany the dataset with a robust experimental protocol for segmentation, fea-
ture extraction, and classification, with results that establish a baseline for future research 
on species identification using digitized herbarium images. The baseline underscores the 
superior performance of non-handcrafted features compared to handcrafted ones. The rates 
achieved are closely related to the complexity of identifying the Piperaceae family with 
interclass similarity and intraclass differences, as experts have pointed out. The high imbal-
ance degree may also have contributed to the low F1-Score rates in species classification. 

Fig. 11  Example of intraclass variation of the species Piper abutiloides. Original exsiccatae from [8]

 

Fig. 10  Similarity between two species: (a) Peperomia blanda (b) Peperomia glabella. Original exsic-
catae from [8]
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On the other hand, the Top-k rates encourage the development of automatic identification 
systems, supporting the specialists and users of herbaria.

In future work, we plan to evaluate additional feature extractors and explore whether 
data balancing techniques can enhance the performance of models in identifying herbarium 
specimens. In addition, we intend to evaluate other botanical families to determine whether 
the proposed approach performs similarly across different families. Another possibility is 
to expand the dataset by including samples from other countries, enabling the creation of a 
larger database and allowing us to assess performance in a cross-dataset scenario.
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Contribution Dataset # Classes Performance 
(%)

Wijesingha and 
Marikar [25]

Private 17 85.01,a

Clark et al. [24] Private 4 44.01,a

Unger et al. [27] Public 17 84.881,a

Wilf et al. [30] Public 1419 72.142,c57.26 
2,d

Grim et al. [26] Private 6 94 to 1001,a

Kho et al. [28] Private 3 83.301,a

Carranza-Rojas et al. [12] Public 1,204 255 70.31,a 79.6 
1,a

Schuettpelz et al.[31] Private 2 961,d

Younis et al. [32] Private 1,000 82.401,a

Carranza-Rojas et al. [36] Public 1,191 498 
124

64.321,a 76.23 
1,b 88.171,d

Pryer et al. [11] Public 3 90.0 1,a

Little et al. [2] Public 683 88.0 1,a

Shirai et al. [35] Private 2171 96.41,a

Kajihara et al. [29] Public 5 80.531,b

Pravin and Deepa [45] Private 15 88.01,a

Lutio et al. [37] Public 64,500 84.51,a

Our - Brazil Public 236 71.32 3,a

Our - Paraná Public 55 78.36 3,a

Table 19  Summary of state of 
the art on herbarium specimen 
identification

1. Accuracy; 2. Mean Accuracy; 
3. Top-3; a. Species; b. Genus; c. 
Order; d. Family
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