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Abstract The recognition of forest species is a very chal-
lenging task that generally requires well-trained human spe-
cialists. However, few reach good accuracy in classification
due to the time taken for their training; then they are not
enough to meet the industry demands. Computer vision sys-
tems are a very interesting alternative for this case. The con-
struction of a reliable classification system is not a trivial
task, though. In the case of forest species, one must deal with
the great intra-class variability and also the lack of a pub-
lic available database for training and testing the classifiers.
To cope with such a variability, in this work, we propose
a two-level divide-and-conquer classification strategy where
the image is first divided into several sub-images which are
classified independently. In the lower level, all the decisions
of the different classifiers, trained with different features, are
combined through a fusion rule to generate a decision for
the sub-image. The higher-level fusion combines all these
partial decisions for the sub-images to produce a final deci-
sion. Besides the classification system we also extended our
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previous database, which now is composed of 41 species of
Brazilian flora. It is available upon request for research pur-
poses. A series of experiments show that the proposed strat-
egy achieves compelling results. Compared to the best single
classifier, which is a SVM trained with a texture-based feature
set, the divide-and-conquer strategy improves the recognition
rate in about 9 percentage points, while the mean improve-
ment observed with SVMs trained on different descriptors
was about 19 percentage points. The best recognition rate
achieved in this work was 97.77 %.

Keywords Textural descriptors · Fusion of classifiers ·
Two-level classification strategy · Forest species
classification

1 Introduction

In the past decade, most of the applications of computer
vision in the wood industry have been related to quality
control, grading, and defect detection [1–5]. However, more
recently the industry and supervisory agencies presented
another demand to the academia, i.e., the automatic clas-
sification of forest species. Such a classification is needed in
many industrial sectors, since it can provide relevant infor-
mation concerning the features and characteristics of the final
product [6].

Supervisory agencies have to certify that the wood has
been not extracted illegally from the forests. Besides, the
industry spends a considerable amount of money to prevent
frauds where wood trades might mix a noble species with
cheaper ones. As stated by Paula et al. in [7], identifying a
wood log or timber outside of the forest is not a straight-
forward task since one cannot count on flowers, fruits, and
leaves. Usually this task is performed by well trained spe-
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cialists but few reach good accuracy in classification due to
the time it takes for their training, hence they are not enough
to meet the industry demands.

To surpass such difficulties, some researches have begun
to investigate the problem of automatic forest species recog-
nition. In the literature this problem is addressed through
two main approaches: spectrum-based processing systems
and image-based processing systems.

In the first case, a proper source of radiation is used to
excite the wood surface to analyze the emitted spectrum.
The techniques are mainly based on vibrational spectroscopy
methods, such as Near Infra Red (NIR) [8], Mid-IR [9,10],
Fourier-transform Raman spectroscopies [11], and fluores-
cence spectroscopy [6]. The acquisition system of such meth-
ods is usually composed of a spectrometer (e.g., Ocean Optics
USB2000), a laser source, and an optical filter. All these
devices should be placed in an angle α and distance z capa-
ble to maximize the overall power of the signal captured by
the spectrometer according to the focal length of its objective
lens.

In the second case, the characteristics (color, texture, mor-
phology, etc.) of the wood are acquired by a microscope or a
camera with an illumination system. The acquisition proto-
col for microscopic images is quite complex since the wood
must be boiled to make it softer and then the wood sample
is cut with a sliding microtone to a thickness of about 25µ

(1µ = 1×10−6m). Thereafter, the veneer is colored using the
triple staining technique, which uses acridine red, chrysoi-
dine, and astra blue. Finally, the sample is dehydrated in an
ascending alcohol series and then the image is acquired from
sheets of wood using a microscope. This process produces
an image full of details that can be used for classification.
Figure 1a shows an example of an microscopic image of the
Pinacae Pinus Taeda.

Martins et al. [12] introduced a database of microscopic
images composed of 112 forest species and reported recog-
nition results ranging from 70 to 80 % using different clas-
sifiers and Local Binary Patterns as features and about 85 %
using Local Phase Quantization (LPQ) [14]. One advantage
of the microscopic approach lies in the fact that it allows the

human expert to label the database in several different levels
of the botanic, for example, Family, Sub-family, Gender, and
Species.

The complexity of the acquisition protocol used in the
microscopic approach does not make it suitable for the use
in the field, where one needs less expensive and more robust
hardware. To overcome this problem some authors [15–19]
have investigated the use of macroscopic images to identify
forest species. Figure 1b shows a macroscopic image of the
same Pinacae Pinus Taeda species acquired in laboratory.
As one may see the macroscopic image presents some signi-
ficative loss of information related to specific features of the
forest species, when compared to the microscopic sample.
Moreover, when the whole acquisition process is done in the
field, as proposed in this paper, it is possible to observe an
additional loss in terms of quality (see Fig. 1c). Basically,
it results from the use of less expensive devices and rough
tools (saws, sandpapers) in the cutting process. These tools
usually are responsible for additional noise represented by
different kinds of marks on the wood.

Tou et al. [15–17] have reported two forest species clas-
sification experiments using macroscopic images in which
texture features are used to train a neural network classifier.
They report recognition rates ranging from 60 to 72 % for five
different forest species. Khalid et al. [18] have proposed a sys-
tem to recognize 20 different Malaysian forest species. Image
acquisition is performed with a high-performance industrial
camera and LED array lighting. Like Tou et al., the recogni-
tion process is based on a neural network trained with tex-
tural features. The database used in their experiments con-
tains 1,753 images for training, and only 196 for testing.
They report a recognition rate of 95 %. In our preliminary
work [7], we have proposed a database composed of 22 dif-
ferent species of Brazilian flora and used Gray-Level Co-
occurrence Matrix (GLCM) and color-based features to clas-
sify forest species. Our best result, 80.8 % of recognition rate,
was achieved by combining GLCM and color-based features.
A major challenge to pursue research involving forest species
classification is the lack of a consistent and reliable database.
Part of this gap was filled by Martins et al. [12] by making

Fig. 1 Samples of Pinacae Pinus Taeda: a Microscopic image. b Macroscopic image—acquisition in laboratory. c Macroscopic image—acquisition
in the field
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Forest species recognition using macroscopic images 1021

available a database of microscopic images composed of 112
species.

In light of this, the contribution of this work is twofold.
First, we extend the database of macroscopic images used
in [7], which now contains 41 species of the Brazilian flora.
This database has been built in collaboration with the Labo-
ratory of Wood Anatomy at the Federal University of Parana
(UFPR) in Curitiba, Brazil, and it is available upon request
for research purposes1. The database introduced in this work
makes future benchmark and evaluation possible. Second, we
propose a two-level divide-and-conquer classification strat-
egy where the image is first divided into several sub-images
which are classified independently. In the lower level, all
the decisions of the different classifiers, trained with several
different families of textural descriptors (structural, spectral,
and statistical), are combined through a fusion rule to gener-
ate a decision for the sub-image. Thereafter, the higher-level
fusion combines all these partial decisions for the sub-images
to produce a final decision.

Inspired on different ensemble methods available in the
literature [20–24], the novelty of the proposed classifica-
tion scheme is the two-level divide-and-conquer strategy.
The rationale behind that is to better deal with the classifica-
tion problem complexity. To this end, the first level reduces
the complexity of the classification problem when just sub-
problems, or sub-images, representing small regions of the
forest species are submitted to the ensemble of classifiers.
Local decisions are made based on diverse classifiers trained
on different feature sets, while in the second level these local
decisions are combined, characterizing a bottom-up problem
solution.

Comprehensive experiments using a Support Vector
Machine (SVM) classifier show that the proposed strategy
achieve compelling results. To have a better understanding
of each level of the system, they were evaluated indepen-
dently. Compared to the best single classifier, which is a
SVM trained with a texture-based feature set, the divide-
and-conquer strategy improves the recognition rate in about
9 percentage points. The best recognition rate achieved in
this work was 97.77 %.

This paper is structured as follows: Sect. 2 introduces the
proposed database. Section 3 describes the different families
of feature we have used to train the classifiers. Section 4
outlines the proposed method to classify forest species, while
Sect. 5 reports our experiments and discusses our results.
Finally, Sect. 6 concludes the work.

2 Database

The database introduced in this work contains 41 different
forest species of the Brazilian flora which were cataloged by

1 http://web.inf.ufpr.br/vri/forest-species-database-macroscopic.

Fig. 2 a Box designed to acquire images in the field and b image sample
acquired using the acquisition device

the Laboratory of Wood Anatomy at the Federal University
of Parana (UFPR) in Curitiba, Brazil.

Our goal was to define an acquisition protocol that could
be used in the field. In this way, one could rely on the auto-
matic identification system to get the results on the fly with-
out sending the wood samples to the laboratory. After some
attempts, we arrived at a simple design, which is depicted in
Fig. 2a. It contains two halogen lamps positioned on the sides
while the wood sample is positioned at the bottom of the box.
This configuration provides indirect light and highlights the
characteristics of the wood sample (Fig. 2b).

The camera is positioned perpendicularly to the wood
sample. The distance from the lenses to the sample is ≈ 1cm.
The database was collected using a Sony DSC T20 with
the macro function activated. The resulting images are then
saved in JPG format with no compression and a resolution
of 3,264 × 2,448 pixels.

To date, 2,942 macroscopic images have been acquired
and carefully labeled by experts in wood anatomy. Table 1
describes the 41 species in the database as well as the number
of images available for each species. The proposed database
is presented in such a way as to allow work to be performed
on different problems with different numbers of classes. For
the experimental protocol, we suggest the following: 35 %
for training, 15 % for validation, and 50 % for testing.

Figure 3 shows one example of each species of the data-
base. Differently from the microscopic database image pre-
sented in [12], where the color could not be used because of
the dye used to produce contrast, in this case color is a useful
characteristic that we can rely on to better discriminate the
species.

3 Features

In this section, we briefly describe all the feature sets we used
to train the classifiers. It can be observed from Fig. 3 that tex-
ture and color seem to be the most discriminative features for
these images. They are represented here by the use of statis-
tical, structural, and spectral descriptors usually suggested
in the literature as the most suitable approaches to represent
texture and color. The rationale behind that is the possible
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Table 1 Forest species

ID Family Species Number of images

1 Apocynaceae Aspidosperma polyneuron 43

2 Araucariaceae Araucaria angustifolia 63

3 Bignoniaceae Tabebuia sp. 99

4 Boraginaceae Cordia goeldiana 53

5 Boraginaceae Cordia sp. 51

6 Euphorbiaceae Hura crepitans 41

7 Fabaceae Acrocarpus fraxinifolius 53

8 Fabaceae Hymenaea sp. 82

9 Fabaceae Peltogyne sp. 58

10 Fabaceae Hymenolobium petraeum 99

11 Fabaceae Myroxylon balsamum 75

12 Fabaceae Dipteryx sp. 67

13 Fabaceae Machaerium sp. 87

14 Fabaceae Bowdichia sp. 99

15 Fabaceae Mimosa scabrella 48

16 Fabaceae Cedrelinga catenaeformis 99

17 Goupiaceae Goupia glabra 51

18 Lauraceae Ocotea porosa 99

19 Lauraceae Mezilaurus itauba 64

20 Lauraceae Laurus nobilis 46

21 Lecythidaceae Bertholethia excelsa 72

22 Lecythidaceae Cariniana estrellensis 55

23 Lecythidaceae Couratari sp. 63

24 Meliaceae Carapa guianensis 43

25 Meliaceae Cedrela fissilis 37

26 Meliaceae Melia azedarach 56

27 Meliaceae Swietenia macrophylla 96

28 Moraceae Brosimum paraense 63

29 Moraceae Bagassa guianensis 58

30 Myristicaceae Virola surinamensis 80

31 Myrtaceae Eucalyptus sp. 99

32 Pinaceae Pinus sp. 79

33 Podocarpaceae Podocarpus lambertii 62

34 Proteaceae Grevilea robusta 86

35 Rutaceae Balfourodendron riedelianum 99

36 Rutaceae Euxylophora paraensis 96

37 Sapotaceae Micropholis venulosa 78

38 Sapotaceae Pouteria pachycarpa 94

39 Sapotaceae Manilkara huberi 92

40 Vochysiaceae Erisma uncinatum 98

41 Vochysiaceae Vochysia sp. 59

combination of complementary information from different
families of features. Table 2 summarizes all the features used
in our experiments. All feature vectors were normalized in
the interval [−1, 1] according to the min–max rule.

3.1 Color features

Three different color representations were assessed in this
work. The first two were based on the work presented by Zhu
et al. [25]. In such a case, the image is partitioned into 3 × 3
grids. For each grid, we extract three kinds of color moments:
mean, variance, and skewness from each color channel (R,
G, and B), respectively. Thus, an 81-dimensional grid color
moment vector is adopted as feature set. The same proce-
dure is carried out using the Lab color model generating a
second feature vector, which is also composed of 81 compo-
nents.

The third is similar to the one presented in [7]. To calcu-
late it, we have used a more perceptive approach to define the
color features. The choice of which features to be used was
done by an empirical analysis of histograms collected from
channels of different color spaces. The idea was to choose
those channels that maximize the inter-class and minimize
the intra-class variance, respectively. By the end of this analy-
sis, we have chosen to use the following color channels: green
(G) from RGB, saturation (S) from HSV, and luminance (L)
from CIELUV.

We also have noticed that different classes have the infor-
mation concentrated in certain zones of the histogram. To
take advantage of this fact, we decided to implement a local
analysis by dividing the histogram into two zones and then
extracting one feature vector from each zone. The first zone
covers those pixels from 0 to 200 while the second zone
covers those from 201 to 255. From each histogram three
characteristics based on first-order statistics were calculated:
average, kurtosis, and skewness. Considering the three color
channels mentioned before and the zoning strategy used, in
the end we have a feature vector composed of 18 (3 features
× 3 histograms × 2 zones) components.

3.2 GLCM

The Gray-Level Co-occurrence Matrix (GLCM) is a widely
used approach to textural analysis. A GLCM is the joint prob-
ability occurrence of gray-level i and j within a defined spa-
tial relation in an image. That spatial relation is defined in
terms of a distance d and an angle θ . Given a GLCM, some
statistical information can be extracted from it. The most
common descriptors were proposed by Haralick [26] and
have been successfully used in several application domains.
In this work, we have used the following seven descriptors,
which provided the best preliminary results: energy, contrast,
entropy, homogeneity, maximum probability, correlation,
and third-order momentum. Considering that these features
were computed in four different angles (θ = 0, 45, 90, 135)
and d = 1, the resulting feature vector is composed of 28
attributes.
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Fig. 3 Samples of the database

Table 2 Summary of the descriptors used in this work

ID Name Dimension

1 Color RGB 81

2 Color lab 81

3 Color mix 18

4 GLCM gray 28

5 Gabor filters 120

6 LBP8,1 59

7 LBP8,2 59

8 LBP16,2 59

9 LBPH F 59

10 Fractals 24

11 Edges 37

12 LPQ 256

13 CLBP_SMC8,1 200

14 CLBP_SMC16,3 648

15 CLBP_SMC24,5 1,352

3.3 Gabor filters

Like GLCM, Gabor filters are among the mostly used tex-
tural descriptors in the literature, specially, for face and facial
expression recognition [27,13]. The Gabor wavelet trans-
form is then applied on the scaled image with 5 scales and 8
orientations through the use of a mask with 64 × 64 pixels
(Fig. 4), which results in 40 sub-images. For each sub-image,
3 moments are calculated: mean, variance, and skewness.
Thus, a 120-dimensional vector is used for Gabor textural
features.

3.4 Local binary patterns (LBP)

The original LBP proposed by Ojala et al. [28] labels the
pixels of an image by thresholding a 3 × 3 neighborhood of
each pixel with the center value and considering the results
as a binary number. The 256-bin histogram of the LBP labels
computed over a region is used as texture descriptor. Figure 5
illustrates this process.
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Fig. 4 Example of the Gabor filters for 8 orientations and 5 scales

Fig. 5 The original LBP operator

Fig. 6 The extended LBP operators

The limitation of the basic LBP operator is its small neigh-
borhood which can not absorb the dominant features in large-
scale structures. To surpass this problem, the operator was
extended to cope with bigger neighborhoods [29]. Using cir-
cular neighborhoods and bilinearly interpolating the pixel
values allow any radius and number of pixels in the neigh-
borhood. Figure 6 exemplifies the extended LBP operator
where (P, R) stands for a neighborhood of P equally spaced
sampling points on a circle of radius of R from a circularly
symmetric neighbor set.

The LPB operator LBPP,R produces 2P different configu-
rations corresponding to the 2P different binary patterns that
can be formed by the P pixels in the neighbor set. However,
certain bins contain more information than others, hence, it
is possible to use only a subset of the 2P LBPs. Those fun-
damental patterns are known as uniform patterns. A LBP is
called uniform if it contains at most two bitwise transitions
from 0 to 1 or vice versa when the binary string is considered
circular. For example, 00000000, 001110000 and 11100001
are uniform patterns. It is observed that uniform patterns
account for nearly 90 % of all patterns in the (8,1) neigh-
borhood and for about 70 % in the (16, 2) neighborhood in
texture images [29].

Accumulating the patterns which have more than two tran-
sitions into a single bin yields an LBP operator, denoted
LBPu2

P,R , with less than 2P bins. For example, the number
of labels for a neighborhood of 8 pixels is 256 for the stan-
dard LBP but 59 for LBPu2. Thereafter, a histogram of the
frequency of the different labels produced by the LBP oper-
ator can be built.

In our experiments, five different configurations of the
LBP operator were considered: LBPu2

8,1, LBPu2
8,2, LBPu2

16,1,

LBPu2
16,2, and LBP-HF (Histogram Fourier) [30]. The first two

produce a feature vector of 59 components while the third and
forth ones produce a feature vector of 243 components. The
last one, LBP-HF, which is computed from discrete Fourier
transforms, is composed of 38 components.

3.5 Fractals

The fractal concept introduced by Mandelbrot [31] provides
an interesting textural descriptor since it is able to capture the
raggedness of natural surfaces. Many fractal features have
been defined in the literature. The three most common are:
fractal dimension [32], lacunarity [33], and succolarity [34].

The fractal dimension [31,32] is the simplest measure in
the fractal theory and it can be computed in several different
ways. In this work, we use the fractal box counting dimen-
sion, which represents the growth in the number of grid cubes
intersected by X as a function of the grid size.

Voss [33] demonstrated that the fractal dimension charac-
terizes only part of the information available in the object.
To fill this gap, the author proposed another measure, called
lacunarity, which is a measure that characterizes the way in
which the fractal set occupies the available topological space.
It is a mass distribution function by definition.

Still looking for some complementary information in the
fractal theory, Melo and Conci [34] proposed the measure of
succolarity, which gives the percolation degree of an image,
i.e., how much a given fluid can flow through this image.

The fractal features were extracted using the same chan-
nels used for the color features, i.e., green (G) from RGB,
saturation (S) from HSV, and luminance (L) from CIELUV.
In the case of the fractal dimension, it was computed for three
different sizes (2, 3, and 5). This gives us 9 features (three for
each channel). The lacunarity was computed for each channel
(three components) and the succolarity was computed in four
different directions for each channel (top–down, bottom–up,
left–right and right–left), summing up 12 components. The
final feature vector contains 24 components.

3.6 Edge histograms

An edge orientation histogram is extracted for each image.
For this purpose, first, the color space of the input macroscopy
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image is reduced to 256 gray levels. Then, Sobel operators
(Kx and Ky) are used to detect the horizontal and vertical
edges, as defined by Eq. 1. With the results, it is possible to
calculate the orientation of each edge using Eq. 2. After that,
a threshold (T ) is applied to G(x, y) as a filter to eliminate
irrelevant information as defined by the Eq. 3. Finally, as in
[35], the orientations are divided into K bins and the value
of each bin is computed through Eq. 4.

Gx (x, y) = Kx × I (x, y), G y(x, y) = Ky × I (x, y) (1)

θ = arctan

(
G y(x, y)

Gx (x, y)

)
(2)

G ′(x, y) =
{

G(x, y) if G(x, y) ≥ T
0 otherwise

(3)

�k(x, y) =
{

G ′(x, y) if θ(x, y) ∈ bink

0 otherwise
(4)

In this work, the edge orientation histogram is quantized
into 36 bins of 10 degrees each. An additional bin is used to
count the number of pixels without edge information. Hence,
a 37-dimensional vector is used for shape features.

3.7 Local phase quantization

The Local phase quantization (LPQ) [36] is based on the blur
invariance property of the Fourier phase spectrum. It has been
shown to be robust in terms of blur and according to [37] it
outperforms LBP in texture classification. The local phase
information of an N × N image f (x) is extracted by the 2D
DFT [short-term Fourier transform (STFT)]

f̂ui (x) = ( f × �ui )x (5)

The filter �ui is a complex valued m × m mask, defined
in the discrete domain by

�ui = {e− j2πuT
i y|y ∈ Z

2; ||y||∞ ≤ r}, (6)

where r = (m−1)/2, and ui is a 2D frequency vector. In LPQ
only four complex coefficients are considered, corresponding
to 2D frequencies u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T ,
and u4 = [a,−a]T , where a = 1/m. For the sake of conve-
nience, the STFT presented in Eq. 5 is expressed using the
vector notation presented in Eq. 7

f̂ui (x) = wT
ui

f(x) (7)

where wu is the basis vector of the STFT at frequency u and
f(x) is a vector of length m2 containing the image pixel values
from the m × m neighborhood of x.

Let

F = [f(x1), f(x2), . . . , f(xN 2)] (8)

denote an m2 × N 2 matrix that comprises the neighborhoods
for all the pixels in the image and let

w = [wR, wI ]T (9)

where wR = Re[wu1 , wu2 , wu3 , wu4 ] and wI = I m[wu1 ,

wu2 , wu3, wu4 ]. In this case, Re{·} and I m{·} return the real
and imaginary parts of a complex number, respectively.

The corresponding 8 × N 2 transformation matrix is given
by

F̂ = wF (10)

In [36], the authors assume that the image function f (x) is
a result of a first-order Markov process, where the correlation
coefficient between two pixels xi and x j is exponentially
related to their L2 distance. Without a loss of generality, they
define each pixel to have unit variance. For the vector f, this
leads to a m2 × m2 covariance matrix C with elements given
by

ci, j = σ ||xi −x j || (11)

where || · || stands for the L2 norm. The covariance matrix
of the Fourier coefficients can be obtained from

D = wCwT (12)

Since D is not a diagonal matrix, i.e., the coefficients
are correlated, they can be decorrelated using the whitening
transformation E = V T F̂ where V is an orthogonal matrix
derived from the singular value decomposition (SVD) of the
matrix D that is

D′ = V T DV (13)

The whitened coefficients are then quantized using

qi, j =
{

1 if ei, j ≥ 0,

0 otherwise
(14)

where ei, j are the components of E . The quantized coeffi-
cients are represented as integer values from 0–255 using
binary coding

b j =
7∑

i=0

qi, j 2
i (15)

Finally, a histogram of these integer values from all the
image positions is composed and used as a 256-dimensional
feature vector in classification.

3.8 Completed local binary pattern

Different variants of the LBP have been proposed in the lit-
erature with the objective of improving such a local texture
descriptor. The derivative-based LBP [38], the dominant LBP
[39], the center-symmetric LBP [40] and the completed LBP
(CLBP) [41] are recent and good examples of contributions in
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1026 P. L. P. Filho et al.

this direction. In special, the CLBP method provides a com-
pleted modeling of the LBP, which is based on three com-
ponents extracted from a local region and coded by proper
operators. Similar to LBP, for a given local region, it calcu-
lates the difference between the center pixel gc and each of
its P circularly and evenly spaced neighbors gp located in a
circle of radius R, defined as dp = gp − gc. However, here
the difference dp is decomposed into two components: sign,
which is defined as sp = sign(dp), and magnitude, which
is defined as m p = ∣∣dp

∣∣. Finally, the complete descriptor
is composed of the center gray level (C), and of these two
components derived from the local difference, sign (S) and
magnitude (M).

The operator related to the component C , named CLBP_C,
is defined in Eq. 16, where cI corresponds to the average gray
level of the whole image.

CLBP_CP,R = t (gc, cI ) where

(16)
t (x, cI ) =

{
1 if x ≥ cI

0 otherwise

The operator defined to code the component S (named
CLBP_S) corresponds to the original LBP operator, while
the operator defined to code the component M (CLBP_M) is
presented in Eq. 17. In this case, the threshold c is originally
defined as the mean value of m p from the whole image.

CLBP_MP,R =
P−1∑
p=0

t (m p, c)2p, where

(17)
t (x, c) =

{
1 if x ≥ c
0 otherwise

See [41] for more details about the rotation invariant
version of CLBP_M and different schemes to combine the
histograms of codes provided by each operator CLBP_C,
CLBP_S, and CLBP_M. After evaluating the different con-
figurations suggested in [41], the best results observed in our
experiments were obtained with the combination of all com-
ponents (SMC) using a 3D histogram, while the best values
for the parameters P and R, were 24 and 5, respectively.

4 Proposed method

Figure 7 shows a general overview of the proposed method,
in which the forest species classification is done based on a
divide-and-conquer idea. For this purpose, the input image
is divided into n non-overlapping sub-images with identical
sizes, which are themselves smaller instances of the same
type of problem. These n sub-images are then classified by
k different classifiers and then two different levels of fusion,
which we call low- and high-level, are used to produce a
final decision. Basically, the proposed method classifies the

Fig. 7 Overview of the proposed method

whole image sample throughout the classification of its parts
or sub-images.

The fusion scheme based on two levels is used to explore
the combination of diverse classifiers trained on complemen-
tary color and textural information in the low level, and to
deal with the inherent intra-class problem variability by com-
bining the results of the different sub-images in the high level.

Examples of the mentioned intra-class variability are
shown in Fig. 8. They usually represent local problems in
the image samples. For instance, Fig. 8a is related to changes
in the intensity colors motivated by the presence of transi-
tions between heartwood and sapwood, or growing rings in
the wood. Figure 8b shows some marks produced by the
improper manipulation of the wood samples, while Fig. 8c
shows an ill-prepared sample in which one may see the saw
marks.

The motivation behind the proposed strategy is that by
splitting the images into smaller ones is an interesting way
to cope with such a variability since smaller images tend to
be more homogeneous, hence, an easier classification prob-
lem. The best number of sub-images is a parameter of the
system and it will be investigated in our experiments. The
low-level fusion combines the outputs of the k different clas-
sifiers. The literature has shown that such a combination can
considerably improve the results when complementary clas-
sifiers are used [21]. In our case, the complementarity comes
from the different families of descriptors used to characterize
the texture and colors of the forest species.

In this paper, we are dealing with a 41-class classification
problem. Multiple experts, based on different descriptors,
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Fig. 8 Intra-class variability: a
different color intensities in the
same sample. b Marks due to
improper manipulation of the
wood sample and c saw marks

Fig. 9 The low-level fusion: a
sub-images and b list of classes
with estimation of posteriori
probabilities

produce as output an estimation of posteriori probabilities
P(ωk |xi ), where ωk represents a possible class and xi is the i-
th expert input pattern. We have tried out several fixed fusion
rules when developing our framework, but the best results
were always achieved using the Sum rule [20]. This is repre-
sented by the Eq. 18, where N and m represent the number
of classifiers (N = 12) and the number of possible classes
(m = 41), respectively.

N∑
i=1

P(ω j |xi ) = m
max
k=1

N∑
i=1

P(wk |xi ) (18)

Finally, we perform the high-level fusion where the n
pieces of the original images are combined to produce a final
decision. We exemplify this process in Fig. 9a, where the
image was divided into 9 sub-images. In this example, we
assume that we have a 3-class problem. The result of the low-
level fusion is a list of classes with estimation of posteriori
probabilities (Fig. 9b). In this example, the sample depicted
in Fig. 9a belongs to class 1, therefore, the sub-images 1, 8,
and 9 were misclassified. As we may notice, the sub-image
1 is lighter than the average while sub-images 8 and 9 are
darker. This could contribute for the misclassification. But
since most of sub-images were correctly classified, the high-
level fusion is able to produce the correct decision (class 1).
In this case, the Sum rule was used but other rules would
produce the same result.

5 Experimental results and discussion

In all experiments, Support Vector Machines (SVM) were
used as classifiers. As stated in Sect. 2, the database was

divided into training (35 %), validation (15 %), and testing
(50 %). Different kernels were tried out, but the best results
were achieved using a Gaussian kernel. Parameters C and γ

were determined through a grid search with hold-out valida-
tion, using the training set to train SVM parameters and the
validation set to evaluate the performance.

For all reported results, we used the following definitions
of the recognition rate and error rate. Let B be a test set with
NB images. If the recognition system classifies correctly Nrec

and misclassifies the remaining Nerr , then

Recognition rate = Nrec

NB
× 100 (19)

Error Rate = Nerr

NB
× 100 (20)

One of the limitations with SVMs is that they do not work
in a probabilistic framework. There are several situations
where it would be very useful to have a classifier produc-
ing a posteriori probability P(class|input). In our case, as
depicted in Fig. 7, we are interested in the estimation of prob-
abilities because we want to try different fusion strategies like
sum, max, min, average, and median. Due to the benefits of
having classifiers estimating probabilities, many researchers
have been working on the problem of estimating probabili-
ties with SVM classifiers [42]. In this work, we have adopted
the strategy proposed by Platt in [42].

To have a better insight of the proposed methodology we
divided the experiments into two parts. In the first part, what
we call baseline, the system contains only the low-level mod-
ules, i.e., the image is not divided into sub-images. Then, in
the second part we added the high-level modules and ana-
lyzed the impacts of the divide-and-conquer strategy.
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5.1 Baseline system

Our baseline system is a traditional pattern recognition sys-
tem composed of the following modules: Acquisition, Fea-
ture Extraction, and Classification. Table 3 reports the perfor-
mance of the baseline system for all the feature sets presented
in Sect. 3.

As one may see in Table 3, the most promising results were
achieved by the classifiers trained with the color RGB, color
LAB, and CLBP descriptors. The classifier trained on CLBP
SMC with 24 neighbors and a radius equal to 5 provided the
best recognition rate (88.60 %).

Following the strategy depicted in Fig. 7, we performed
the low-level fusion, i.e., the results of the individual classi-
fiers were combined. In this experiment, all classifiers were
combined using brute force. As stated before, the best result
was provided by the Sum rule. Table 4 reports the Top-5
combination results.

Table 3 Recognition rates achieved by different texture descriptors

ID Feature Rec. Rate (%)

1 Color RGB 76.40

2 Color lab 79.50

3 Color mix 56.04

4 GLCM gray 55.97

5 Gabor filters 67.97

6 LBP8,1 61.73

7 LBP8,2 65.53

8 LBP16,2 68.24

9 LBPH F 51.31

10 Fractals 46.46

11 Edges 39.04

12 LPQ 61.77

13 CLBP_SMC8,1 75.05

14 CLBP_SMC16,3 86.24

15 CLBP_SMC24,5 88.60

Table 4 Results of the best combination results

# of Classifiers Feature sets Rec. rate (%)

7 CLBP_SMC16,3, CLBP_SMC24,5,
Color RGB, Color Lab, Gabor,
LBP16,2, Fractals

94.27

4 CLBP_SMC24,5, Color Lab,
Gabor, LBP16,2

94.27

7 CLBP_SMC16,3, CLBP_SMC24,5,
Color RGB, Color Lab, Color
Mix, Gabor, LBP16,2, Fractals

94.20

4 CLBP_SMC24,5, Color Lab,
Gabor, LBP8,2

94.20

8 CLBP_SMC8,1, CLBP_SMC24,5,
Color RGB, Color Lab, Color
Mix, Gabor, LBP16,2, Fractals

94.13

It is possible to observe from Table 4 that the feature sets
offer a certain level of complementarity. Their combination
brought an improvement of more than 5.5 percentage points
when compared to the best individual classifier (CLBP24,5).
It is worth of remark that such a complementarity does not
really involve the classifiers with highest individual recogni-
tion rates. A clear example is the Fractal feature set, which
reaches a poor performance (about 46 %) but is present in
three Top-5 ensembles.

5.2 Divide-and-conquer strategy

Once we have analyzed the performance of the baseline clas-
sifiers and their combination, let us focus on the two high-
level modules (Image Splitting and Image Fusion) illustrated
in Fig. 7. An important issue in this strategy is the number
of sub-images that the Image Splitting module should gener-
ate. In this work we consider the following number of non-
overlapping sub-images: {4, 9, 25, 36, 49, 64, 100}. Table 5
presents the size in pixels of the sub-images for each config-
uration.

Following the same idea of assessing the modules step-
by-step, in this experiment we first evaluate the impact of the
high-level modules using single classifiers (k = 1). Are the
high-level modules capable of improving the results using
a single classifier? To address this aspect we selected three
different feature sets: a color-based (Color RGB), a spectral
(Gabor), and a structural (LPB8,1). The classifiers were then
retrained using larger training sets (original training set ×
number of sub-images). The testing images are also divided
into n sub-images and the final decision is achieved using the
Sum rule.

Figure 10 shows the performance on the testing set for the
three selected classifiers. The recognition rate of the color-
based classifier increases as the number of sub-images gets
bigger. The best performance, 91.2 %, was achieved when
the original image was divided into 100 sub-images (10 ×
10 matrix). The other two classifiers reached their best per-
formances using less sub-images. The Gabor-based classi-
fier produced its best recognition rate with nine images (3

Table 5 Size of the sub-images in pixels

Number of sub-images (n) Size in pixels

4 1,632 × 1,224

9 1,088 × 816

25 652 × 489

36 544 × 408

49 466 × 349

64 408 × 306

100 326 × 244
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Fig. 10 Performance of the classifiers for different number of sub-
images

Fig. 11 Performance of the combination of classifiers for different
number of sub-images

×3 matrix) while the LPB-based classifier achieved its best
performance using 25 sub-images (5 ×5 matrix). Indepen-
dently of the classifier, Fig. 10 shows clearly that the proposed
strategy succeeds in improving the results of all classifiers.
Besides, we can notice that there is a best n for each feature
set.

Our final experiment consists in using the full framework
proposed in Sect. 4. To this end, we have combined the out-
puts of the three aforementioned classifiers, i.e., k = 3, thus
creating four possible outcomes (Color RGB + Gabor; Color
RGB + Gabor + LBP; Color RGB + LBP; Gabor + LBP).
Figure 11 compares the performance of such a combination
for different number of sub-images. In this case, the bests
results, was achieved using n = 25 and n = 36.

Table 6 Fusion of classifiers for sum of sub-images (25 pieces)

ID Feature Rec. rate Rec. rate full image Gain
Fusion (%) (Table 3) (%) (percentage

points)

1 Color RGB 87.53 76.40 11.13

2 Color lab 86.78 79.50 7.28

3 Color mix 75.93 56.04 19.89

4 GLCM 83.41 55.97 27.44

5 Gabor filters 87.66 67.97 19.69

6 LBP8,1 83.68 61.73 21.95

7 LBP8,2 83.28 65.53 17.75

8 LBP16,2 85.84 68.24 17.60

9 LBPH F 75.05 51.31 23.74

10 Fractals 62.58 46.46 16.12

11 Edges 80.85 39.04 41.81

12 LPQ 81.19 61.77 19.42

13 CLBP_SMC8,1 93.53 75.05 18.48

14 CLBP_SMC16,3 96.09 86.24 9.85

15 CLBP_SMC24,5 96.22 88.60 7.62

Table 7 Performance of the best ensembles using n = 25

Number of
classifiers

Feature sets Rec. rate %

6 CLBP_SMC16,3, CLBP_SMC24,5,
Color RGB, Gabor, LBP8,2,
Fractals

97.77

4 CLBP_SMC16,3, CLBP_SMC24,5,
Color RGB, LBP8,2

97.71

4 CLBP_SMC24,5, Color RGB,
Gabor, LBP8,2

97.64

6 CLBP_SMC16,3, CLBP_SMC24,5,
Color RGB, LBP8,1, LBP8,2,
Fractals

97.64

6 CLBP_SMC16,3, CLBP_SMC24,5,
Color RGB, Gabor, LBP8,1,
LBP8,2, Fractals

97.64

Regarding the performance, all ensembles achieve a sim-
ilar performance of about 95 % and there is no statistical
difference among them. In that case, one should select the
smaller ensemble for n = 25, thus reducing the computa-
tional cost of classification. Figure 11 still shows that after
a certain point the performance of the system drops as n
increases.

Table 6 shows the contribution of the proposed two-
level divide-and-conquer scheme considering each individ-
ual descriptor. The mean gain observed by considering the
proposed scheme is 18.65 percentage points. As expected,
the most significant contributions of the proposed methodol-
ogy were observed for the weak classifier, e.g., the classifier
trained with Edge descriptors, where the increase in terms of
performance was about 41 percentage points. On the other
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Table 8 Summary of the works on forest species recognition

Ref. Year Features Classifiers Images/classes Rec. rate (%)

Tou et al. [15] 2007 GLCM Neural networks 360/5 72.0

Tou et al. [16] 2008 GLCM, 1DGLCM Neural networks, kNN 360/5 72.8

Tou et al. [17] 2009 GLCM, Gabor kNN 600/6 85.0

Khalid et al. [18] 2008 GLCM Neural networks 1,949/20 95.0

Yusof et al. [43] 2010 Gabor, GLCM Neural networks 3,000/30 90.3

Nasirzadeh et al. [19] 2010 LBPu2, LBPH F Neural networks 3,700/37 96.6

Paula et al. [7] 2010 Color, GLCM Neural networks 1,270/22 80.8

hand, we also observed compelling improvements for our
best classifier, the CLBP, where the gain produced was more
than 7 percentage points (from 88.60 to 96.22 %).

The results related to the combination of the classifiers
trained on different descriptors are shown in Table 7. It is
possible to observe an improvement in the recognition rate
of 1.55 percentage points (from 96.22 to 97.77 %), show-
ing some complementarity of the evaluated descriptors. It
is worth emphasizing that CLBP, LBP, and Color RGB are
always present in all promising ensembles.

Finally, Table 8 summarizes the works on forest species
recognition using macroscopic images we have found in the
literature. A direct comparison is not possible since differ-
ent databases have been considered in each work. However,
it gives us an idea of the state of the art in this field and
shows that our results compare favorably to the literature,
even using a low-cost acquisition process dedicated to field
direct application.

6 Conclusion

In this work we have discussed the problem of automatic
classification of forest species based on macroscopic images.
We have introduced a two-level divide-and-conquer classi-
fication strategy where the input image is first divided into
several sub-images which are classified independently. Then,
in the lower level, the partial decision produced by the dif-
ferent classifiers are combined to yield a final decision. Our
experiments have shown that the proposed method is able
to deal with the great intra-class variability presented by the
forest species and it was able to increase the results by 9.17
percentage points when compared with the best single classi-
fier based on the CLBP descriptor. The mean gain in terms of
correct recognition observed by considering classifiers based
on different descriptors was about 19 percentage points.

In addition, we extend our previous database to 41 species
of the Brazilian flora. As stated before, it is available upon
request for research purposes to make future benchmark and
evaluation possible. For future works, we plan to investigate
other strategies for combining experts which includes the

dynamic selection of classifies and also in selecting the best
subset of features to perform the classification task.
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