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A B S T R A C T

This paper presents an image-based method for automatic identification of native wood charcoal species. For this
purpose, handcrafted features based on two configurations of the Local Binary Patterns (LBP) along with state-of-
the-art machine learning classifiers and representation learning using Convolutional Neural Networks were
evaluated. In addition, an image database composed of 44 species of wood charcoal was built and made available
for research purposes, making possible future benchmark and evaluation. The experiments have shown that
similar results can be obtained using shallow and deep representations. The best results of the handcrafted and
automatic learned features were 93.9% and 95.7% of recognition rate, respectively.

1. Introduction

Charcoal is an energetic source used in different segments of iron-
work, metallurgic, cement industry, and others, being important eco-
nomically and historically in Brazil. According to Davrieux et al. in
(Davrieux et al., 2010), Brazil consumed more than 33 million cubical
meters of charcoal, making it one of the biggest consumers as well as
producers of this fuel in the world. Historically, in Brazil, wood from
native forests was the main source used to produce charcoal, but today
a combination of stricter environmental regulation and increased en-
forcement has increased the use of wood from planted forests (Yazdani
et al., 2012). However, in certain regions, wood is still often carbonized
from illegally cut trees. In such cases, enforcement of logging rules is
hampered due to the difficulty of identifying the species, making it
necessary to obtain more information on the intrinsic characteristics of
carbonized wood to enable species identification (Nisgoski et al., 2014).

Usually, the identification of the charcoal is based on its anatomical
characteristics which demand specialists in wood anatomy. However,
few reach good accuracy in classification due to the time it takes for
their training. To overcome such a limitation, some studies have been
reported in the literature. The main line of investigation explores the
fact that charcoal is a biocarbon produced by the carbonization of
wood, a process which leads to a formation of a solid residue with an
increased content of carbon element. With that in mind, the idea is to
use a proper source of radiation to excite the wood surface to analyze
the emitted spectrum. Near Infra-red spectroscopy (Labbé et al., 2006;
Nisgoski et al., 2015; Ramalho et al., 2017) and Reflective spectroscopy

in the Medium Infra-red region (Davrieux et al., 2010) are examples of
the spectrum-based processing systems.

Another approach is the image-based, where some characteristics of
the wood are extracted and analyzed to discriminate the species. Such a
pattern recognition strategy has been successfully applied to forest
species classification by several authors for both macroscopic and mi-
croscopic images (Kobayashi et al., 2015; Yadav et al., 2017; Yusof
et al., 2013). After the release of public datasets of forest species
(Martins et al., 2013; Paula Filho et al., 2014), some researchers have
reported outstanding results using different textural descriptors and
also deep learning techniques (Andrearczyk and Whelan, 2016;
Hafemann et al., 2014).

However, the research on automatic classification of native wood
charcoal is quite limited (Gonçalves and Scheel-Ybert, 2016; Nisgoski
et al., 2014), mostly because of the lack of a robust public available
dataset. To close this gap, in this work we introduce a wood charcoal
database composed of 44 species. This database has been built in col-
laboration with the Laboratory of Wood Anatomy at the Federal Uni-
versity of Parana (UFPR) in Curitiba, Brazil, and it is available upon
request for research purposes.1 The database introduced in this work
makes future benchmark and evaluation possible.

In order to establish some baseline for further comparison, in this
work we have assessed two configurations of the Local Binary Patterns
(LBP) along with state-of-the-art machine learning classifiers. We also
have evaluated representation learning using Convolutional Neural
Networks. In our experiments we have observed similar results using
handcrafted features and representation learning. Both representations
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achieved results around 95% of recognition rate.
The remaining of this paper is organized as follows: Section 2 pre-

sents the protocol used to built the proposed database of wood charcoal
images. Section 3 describes the strategies used to represent the charcoal
classification problem, where handcrafted and automatic representa-
tion were used. Section 4 presents the experimental protocol used to
assess such different representations using the constructed wood char-
coal database, and also the best results observed for each strategy. Fi-
nally, Section 5 presents our conclusions and future work.

2. Database

The wood charcoal database presented in this work contains 44
forest species with 12 images each as shown in Table 1. This balanced
dataset were cataloged by the Laboratory of Wood Anatomy at the
Federal University of Parana in Curitiba, Brazil. The trees were cut in a
natural forest, and disks were extracted from the diameter at breast
height (DBH), with a thickness of about 8 cm. Twelve samples were
obtained from each species, with dimensions of 2× 2×5 cm. Each
sample was wrapped in aluminum foil and carbonized in a muffle
furnace (Q318S, Quimis), with a final temperature of 450C and a
heating rate of 1.66C min−1. The carbonized material remained at the
final temperature for two hours. The images were obtained directly
from the carbonized material, without coating, with a tabletop micro-
scope (TM-1000, Hitachi).

The images were obtained in grayscale and stored in TIFF (Tagged
Image File) format with no compression and resolution of 1280×1040
pixels. Fig. 1 shows some samples of the database.

3. Features

In this section, we present the feature sets we have used to train the
classifiers. Section 3.1 describes the handcrafted textural descriptors,
while Section 3.2 gives the details about the CNN used to automatically
extract the representation from the charcoal images.

3.1. Handcrafted features

Along with Grey Level Co-occurrence Matrices (Haralick, 1979),
LBP is likely the most used texture descriptor, which first emerged in
the 1990s. As stated in (Kylberg and Sintorn, 2013), at first LBP was
introduced as a local contrast descriptor and a further development of
the texture spectra. Shortly afterward, it was shown to be interesting as

Table 1
Forest species dataset.

ID Family Species Images for training Images for test

1 Apuleia molaris 6 6
2 Aspidosperma populifolium 6 6
3 Astronium gracile 6 6
4 Byrsonima coriaceae 6 6
5 Calophyllum brasiliensis 6 6
6 Cecropia glaziovii 6 6
7 Cecropia sciadophylla 6 6
8 Cedrelinga catenaeformis 6 6
9 Cochlospermum orinoccense 6 6
10 Combretum leprosum 6 6
11 Copaifera langsdorfii 6 6
12 Croton argyrophylloides 6 6
13 Diplotropis purpurea 6 6
14 Dipteryx odorata 6 6
15 Enterolobium schomburgkii 6 6
16 Erisma uncinatum 6 6
17 Goupia glabra 6 6
18 Hieronyma laxiflora 6 6
19 Hymenaea courbaril 6 6
20 Hymenolobium petraeum 6 6
21 Jacaranda copaia 6 6
22 Jatropha mutabilis 6 6
23 Licaria cannela 6 6
24 Luitzelburgia auriculata 6 6
25 Mezilaurus itauba 6 6
26 Mimosa scabrella 6 6
27 Ocotea leucoxylon 6 6
28 Ocotea odorifera 6 6
29 Ocotea porosa 6 6
30 Parkia pendula 6 6
31 Pera glabrat 6 6
32 Piptadenia communis 6 6
33 Poeppigia procera 6 6
34 Poincianella bracteosa 6 6
35 Qualea paraensis 6 6
36 Sapium glandulatum 6 6
37 Schefflera morototoni 6 6
38 Sclerolobium paniculatum 6 6
39 Tabebuia alba 6 6
40 Trattinnickia burseraefolia 6 6
41 Vatairea guianensis 6 6
42 Vatairea paraensis 6 6
43 Vochysia densiflora 6 6
44 Vochysia maxima 6 6

Fig. 1. Samples of the database: (a) Apuleia molaris, (b) Aspidosperma populifolium, (c) Astronium gracile, (d) Byrsonima coriaceae, (e) Calophyllum brasiliensis, (f)
Cecropia sciadophylla (g) Copaifera langsdorfii, (h) Hymenaea courbaril.
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a texture descriptor (Ojala et al., 1996) and has become widely used
since then (Nanni et al., 2012).

In a more simplistic way, LBP works as follows. A histogram is
computed with the distribution of the binary configurations of the
pixels of the image, based on thresholding the surrounding window of
each pixel when the intensity of the neighborhood pixel is below or
above the center value. In the most simple implementation of LBP,
3× 3 windows can be considered and a 256 bin histogram can be
generated given the 28 possible combinations of the binary windows. In
(Ojala et al., 2002), Ojala et al. extended the LBP descriptor to other

neighborhood sizes. To compute LBP, it is considered a neighborhood
with circular symmetry of a radius Rwith P neighbors equally separated
(Fig. 2). The LBP descriptor presents 2P different binary patterns which
can produce a histogram of frequency as feature vector.

Some texture patterns are more common than others, thus they are
called uniform patterns. For example, in a neighborhood of 8 neighbors
and radius equal to 1, the uniform patterns correspond to nearly 90%
from all patterns. However, in a neighborhood of 16 neighbors and
radius equal to 2, the uniform patterns represent about 70% of all
patterns. The local binary pattern is considered uniform if there are up
to a maximum of two transitions between zero and one, otherwise the
pattern is considered non-uniform. More precisely, in a neighborhood
of P neighbors the operator LBPU produces a feature vector with P *
(P− 1)+ 3 components. The P * (P− 1)+ 2 of them describe different
uniform patterns and the last one describes all non-uniform patterns
from the texture (Ojala et al., 2002).

Over the years, though, several variations of LBP have been pro-
posed, with several purposes such different sampling techniques to ef-
fectively capture characteristics of certain features, or improving ro-
bustness to noise (Chen et al., 2013; Liu et al., 2016; Zhao et al., 2012).
In this work, we have performed experiments with several descriptors
but our best results were achieved with LBP(8, 1) (256 features) and
LBP(16, 2)(65,536 features).

3.2. Representation learning

Representation learning or feature learning has become a field in
itself in the machine learning community. The main idea to learn re-
presentation from the data hence avoiding feature engineering.
Representation learning using deep CNN has been explored in several
applications yielding substantial gains in various benchmarks. One
example is the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). In 2012, Krizhevsky et al. (Krizhevsky et al., 2012) proposed
an 8-layer CNN and achieved an error rate of 15.4% (the second best
entry achieved an error of 26.2%). In 2015, Google introduced an ar-
chitecture codenamed Inception (Szegedy et al., 2015), a 22-layer CNN,
that reduced the error rate on the 2014 ILSVRC to about 6%. Then,
researchers from Microsoft presented ResNet (He et al., 2016), a 152-
layer CNN that won the ILSVRC 2015 with an incredible error rate of
3.6%.

To take advantage of these trained models, several researchers have
dedicated efforts to make available algorithms to fine-tuning these
models for distinct image classification tasks. This is often referred to as
transfer learning (Pan and Yang, 2010) and has been an area of parti-
cular interest in the field of representation learning. A common pre-
scription for a computer vision problem is to first train an image clas-
sification model with the ImageNet Challenge dataset, and then transfer
this model's knowledge to a distinct task.

In 2016, Szegedy et al. (Szegedy et al., 2016) compared the In-
cepetion_v3 with other CNN architectures and showed that In-
ception_v3 achieved the lowest error rate among them. Inspired on that,
in this work we have used the Inception_v3 as feature extractor for
wood charcoal classification. The descriptors were provided by the
pool_3 layer, which has a dimension of 2048. The pool_3 layer re-
presents the lowest level features that have high discriminant capability
if compared with other layers from the same architecture (Szegedy
et al., 2016). The Inception model was used “as is”, just passing the
input image through a feed-forward step, and using the outputs of the
aforementioned layers of the network as input for the classifier.

4. Experimental results

In our experiments the dataset was randomly divided into training
(50%) and testing (50%) (see Table 1). In addition, 20% of the training
set was used for validation. Since the amount of images available in the
dataset is limited, we have adopted the strategy presented by Hafemann

Fig. 2. LBP distribution.

Fig. 3. The testing procedure adopted in this work.

Table 2
Recognition rates for the classifiers trained with the hand-crafted features.

Classifier Feature set

LBP(8, 1) LBP(16, 2)

RF 90.4 ± 4.7 88.4 ± 4.1
Linear SVM 92.7 ± 4.7 93.4 ± 5.1
RBF SVM 92.8 ± 4.5 93.9 ± 5.1
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et al. (Hafemann et al., 2014), where the original image is divided into
several sub-images called patches. In this case, the main premise is that
these patches can contain enough information to train a model, then an
appropriated set of patches is extracted from each image. In this work
we have empirically investigated different number of patches and the
best results were observed using 80 random patches of 256×256
pixels extracted from each image. The patch size was chosen based on
two observations: i) the input from Inception_v3 must to be squared,
and ii) Martins et al. (Martins et al., 2013) and Paula Filho et al. (Paula
Filho et al., 2014) achieved better results to recognize forest species
using LBP descriptor and patches of 341×256 pixels, and 326×244
pixels, respectively.

To classify a given input image, the same idea is used, i.e., a number
of random patches are extracted from the image and individually sub-
mitted to the classifier. Then, all classifier's decisions are combined
through majority voting to produce a final decision. This is exemplified
in Fig. 3.

The recognition rate that we used for evaluation purpose in this
work is given by Eq. 1. This is always computed on the testing set with

N images. We call Nrec, the images from this set that were correctly
classified by the recognition system. The results are average of ten
trials, in which the training and testing were randomly divided into
50–50%.

= ×
N
N

Recognition rate 100rec
(1)

4.1. Handcrafted features

To assess the handcrafted features, we have used several state-of-
the-art classifiers, however, the best results were achieved with Support
Vector Machines (SVM) and Random Forests (RF). For the SVM, both
Linear and RBF kernels were considered. In the case of the RBF, the
parameters C and γ were determined through a grid search on the va-
lidation set. In the case of the RF, the best results were yielded with 50
trees and M features randomly picked at each node in test set.M is the
number of features from the feature vector. Table 2 reports the re-
cognition rates using LBP(8, 1) and LBP(16, 2).

Fig. 4. Confusion matrix for the Linear SVM trained with LBP(16, 2).

Fig. 5. Some confusions: (a) Parkia pendula (class 30), (b) Cedrelinga catenaeformis (class 8), (c) Ocotea porosa (class 29) and (d) Astronium gracile (class 3).
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The SVMs trained with LBP(16, 2) achieve a slightly better result than
the same classifiers trained with LBP(8, 1), however with a considerable
large feature vector (65,536 versus 256). Fig. 4 shows the confusion
matrix for the Linear SVM trained with the LBP(16, 2) features. Some
examples of the misclassifications are presented in Fig. 5. Two confu-
sions found very often occur between classes 30 Parkia pendula
(Fig. 5a) and 8 Cedrelinga catenaeformis (Fig. 5b), and classes 29
Ocotea porosa (Fig. 5c) and 3 Astronium gracile (5d). In both cases, the
species have as prominent attribute large vessels and also similar tex-
ture patterns.

4.2. Representation learning

To be able to compare the discriminative power of representation
learning with the handcrafted features, we used the Inception_v3 to
extract features of the image patches and train the same classifiers used
in the previous experiments. Therefore, the same hyper-parameters
used to train the classifiers with handcrafted features were used here.
As stated before, we have used the “pool_3” layer, which produces a
vector with 2048 features. The experiments were performed using the
Tensor Flow 1.3.2. Fig. 6 shows some examples of the images created in
the activation layer of the CNN. As we can see, it is able to highlight the

same features in several different ways.
As we can observe from Table 3, the features extracted from the

“pool_3” layer of the Inception model offer good discrimination power
producing slightly better results than those we have observed with the
hand-crafted features. In other words, the CNN trained to discriminate a
1000 classes of objects is able to learn a powerful representation, which
compares to the state-of-the art textural descriptors such as LBP.

All the results reported so far consider the combination through
majority voting of 80 patches. However, the same performance can be
achieved using a considerable smaller number of patches, hence redu-
cing the computational cost for classification. Fig. 7 shows the accuracy
from the number of patches ranging from 1 to 80 for both Linear SVM
and RF classifiers trained with Inception features. In the case of the
Linear SVM the performance of 95% is achieved with 9 patches and no
further improvement is observed afterwards. The RF needs more in-
formation (around 40 patches) to reach the performance reported in
Table 3.

Fig. 8 shows the confusion matrix for the Linear SVM trained with
the Inception features. Some examples of the misclassifications are
presented in Fig. 9. Two confusions found very often occur between
classes 28 Ocotea odorifera (Fig. 9a) and 5 Calophyllum brasiliensis
(Fig. 9b), and classes 36 Sapium glandulatum (Fig. 9c) and 8 Cedrelinga
catenaeformis (9d). In both cases, the species have as prominent attri-
bute large vessels and also similar texture patterns.

5. Conclusion

In this paper we dealt with the challenging problem of automatic

Fig. 6. Examples of the images created in the activation layer of the CNN.

Table 3
Recognition rates for the classifiers trained with
the representation learning (Inception).

Classifier Inception

RF 93.9 ± 4.0
Linear SVM 95.7 ± 4.7

2 https://www.tensorflow.org/
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classification of native wood charcoal. For this purpose, we introduced
a new database which is composed of images related to 44 different
species of wood native charcoal. In addition, different methods were
evaluated in the context of handcrafted and automatic feature learning.
To assess the handcrafted features, we have used different state-of-the-
art classifiers, however, experiments have shown that the best results
were achieved with Support Vector Machines (SVM) and Random
Forests (RF). These shallow methods were compared with a deep

learning method by using the Inception_v3 convolutional neural net-
work. This deep method was based on transfer learning, in which the
Inception_v3 is used as a feature extractor. We have observed very
promising results using handcrafted features and representation
learning, being the best results 93.9% and 95.7% of recognition rate,
respectively.

The set of experiments performed in this work also provide the
baseline results for the introduced charcoal image database, which may
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Fig. 7. Accuracy versus number of patches.

Fig. 8. Confusion matrix for the Linear SVM.
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minimize the gap related to the lack of a robust public dataset in the
field of automatic classification of native wood charcoal, making pos-
sible future benchmark and evaluation.

Further work can be done to explore other handcrafted and auto-
matic features or even the combination of them using multiple classi-
fiers. Due the wide application of Convolution Neural Networks as a
classifier to solve different tasks, it can also be assessed and explored as
an end-to-end solution for the wood charcoal classification problem. In
addition, the proposed method can be assessed using other forest spe-
cies besides the proposed ones. Therefore, the creation of other public
available datasets of wood charcoal using different forest species is also
encouraged.
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