
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021 1335

Intrapersonal Parameter Optimization for Offline
Handwritten Signature Augmentation

Teruo M. Maruyama , Luiz S. Oliveira, Alceu S. Britto Jr., and Robert Sabourin , Member, IEEE

Abstract— Usually, in a real-world scenario, few signature
samples are available to train an automatic signature verification
system (ASVS). However, such systems do indeed need a lot of
signatures to achieve an acceptable performance. Neuromotor
signature duplication methods and feature space augmentation
methods may be used to meet the need for an increase in the
number of samples. Such techniques manually or empirically
define a set of parameters to introduce a degree of writer vari-
ability. Therefore, in the present study, a method to automatically
model the most common writer variability traits is proposed. The
method is used to generate offline signatures in the image and the
feature space and train an ASVS. We also introduce an alterna-
tive approach to evaluate the quality of samples considering their
feature vectors. We evaluated the performance of an ASVS with
the generated samples using three well-known offline signature
datasets: GPDS, MCYT-75, and CEDAR. In GPDS-300, when
the SVM classifier was trained using one genuine signature per
writer and the duplicates generated in the image space, the Equal
Error Rate (EER) decreased from 5.71% to 1.08%. Under the
same conditions, the EER decreased to 1.04% using the feature
space augmentation technique. We also verified that the model
that generates duplicates in the image space reproduces the most
common writer variability traits in the three different datasets.

Index Terms— Handwriting signature verification, data aug-
mentation, cold start, parameter optimization, biometric.

I. INTRODUCTION

THE term signature is derived from the Latin word signare
which means to put a mark, and it may be considered

a special type of handwriting for several reasons. Generally,
the signature is a handwritten representation of a person’s
name, which may be presented in several formats, ranging
from a simple abbreviation to the complete name. It can
also have a legible or a flourished format [1, p. 309] [2,
p. 87]. Furthermore, each writer has an individual behavior
when signing. Several factors, such as culture [3, p. 1368],

Manuscript received March 27, 2020; revised June 19, 2020 and
September 24, 2020; accepted October 12, 2020. Date of publication
October 23, 2020; date of current version December 1, 2020. This work was
supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior-Brazil (CAPES)-Finance Code 001 and in part by the Department of
Foreign Affairs, Trade and Development (DFATD)-Canada. The associate edi-
tor coordinating the review of this manuscript and approving it for publication
was Dr. Emanuele Maiorana. (Corresponding author: Teruo M. Maruyama.)

Teruo M. Maruyama and Luiz S. Oliveira are with the Department of
Informatics, Federal University of Paraná, Curitiba 81531-990, Brazil (e-mail:
shinigam8@gmail.com; luiz.oliveira@ufpr.br).

Alceu S. Britto Jr., is with the Programa de Pós-Graduação em Informática
(PPGIa), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba
80215-901, Brazil (e-mail: alceu@ppgia.pucpr.br).

Robert Sabourin is with the Laboratoire d’imagerie, de vision et
d’intelligence artificielle, École de technologie supérieure, Université du
Québec, Montreal, QC H3C 1K3, Canada (e-mail: robert.sabourin@etsmtl.ca).

Digital Object Identifier 10.1109/TIFS.2020.3033442

handwriting skill, age [4], health [5], and the physical and
emotional state [6, p. 26-27] can affect this behavior. Due
to this individual behavior, signatures produced by the same
writer never have the exact same visual appearance. This is
called intra-personal variability or writer variability. Since the
handwritten signatures of two writers are never exactly alike
either, their signatures can be used to distinguish individuals
[6, p. 7]. This is known as interpersonal variability [7].

Thanks to interpersonal variability, handwritten signatures
are widely used and accepted in verifying a person’s identity
in legal, administrative, and financial endeavors [8]. Even
with the technological advancements that have occurred in
the last few decades, handwritten signatures are still the
most frequently used type of handwriting among certain
writers [2, p. 64] [9].

Like other behavioral biometric traits, the handwritten sig-
nature cannot be lost, stolen or forgotten [10]. However,
signatures can be forged [6, p. 55]. Forgeries can be classified
as random, simple, or skilled. A forgery is considered random
when the forger does not know the target’s name and they
use their own signature instead. When the forger knows
only the target’s name, the forgery is simple. The forgery is
considered skilled when the forger has access to the target’s
signature and trains to reproduce it. When a forger is trying to
reproduce a signature, they try to copy the speed, pressure, and
other visual features of the genuine signature. Consequently,
the forger tries to reproduce the writer variability of their target
[11, p. 204] [12], [13]. Given these elements, modeling the
writer variability is a complex and challenging task.

When discussing automatic handwritten signature verifi-
cation [7], [14]–[16] two different forms of acquisition are
considered: online (dynamic) and offline (static). Online sig-
natures are acquired using a digital device, such as a digitizing
table, and are represented as a sequence of values over time.
These values can represent the pressure, speed, coordinate
of the pen, etc., [7]. Offline signatures are acquired after
signatures have been written on a piece of paper. The image of
the signature is digitized using a scanner or a digital camera.
Unlike online signatures, offline signatures are represented by
color or gray level data [16]. This lack of complementary fea-
tures makes it even more difficult to identify offline signature
falsifications [8].

Contributing to increase the difficulty of offline signature
verification, in the real-world scenario, the number of genuine
signature samples per writer is usually too small to train
a machine learning model for automatic handwritten signa-
ture verification. One alternative is to use data augmentation

1556-6013 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5173-0375
https://orcid.org/0000-0002-9098-1011

1336 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

techniques to increase the number of signatures in the fea-
ture and image space. When this process is performed in
the image space, it is known as signature duplication [17].
Several signature duplication techniques have been proposed
in the literature [17]–[24]. In particular, techniques based
on human behavior present more realistic duplicates than
other approaches [18], [20], [22]. Among these techniques,
the method proposed by Diaz et al. [18] must be highlighted.

In their work, Diaz et al. [18] argue that writer variability
can be described by a global set of parameters. Even though
each writer has a different behavior when they sign, some
common behaviors can be shared by different writers during
the writing process. Therefore, these common variability traits
can be modeled by a global set of parameters. To support
their hypothesis, the authors performed experiments on two
different datasets and alphabetical systems using a set of
predefined parameters. However, the parameters were defined
empirically, and were thus not based on real writer variability.
The parameters were manually optimized based on two fac-
tors: human-like aspect and the performance of an automatic
signature verification system. The parameters that produced
the most human-like duplicates and the best performance with
the automatic signature verification system were selected.

Most data augmentation techniques in the feature space have
low computational complexity and are simple to implement.
Some of them require at least two or three samples to increase
the number of training samples [25]. Among the simple and
low computational complexity techniques, the application of
a Gaussian filter does not require the use of more than one
sample. Nevertheless, it still needs to define a parameter to
be applied, despite its simplicity. Generally, this parameter is
determined manually [25]–[27].

In this work, we advocate that writer variability can be
better modeled based on real data. With that in mind, the main
contributions of this work are: 1) a method to automatically
model writer variability based on offline signatures; 2) for the
first time, we present a method to generate synthetic offline
signature samples in the feature space using a Gaussian filter;
3) we show how our model can be used to generate more
realistic offline signature samples in the image and in the
feature spaces; and 4) we propose a new approach to validate
the writer variability of synthetic signature samples. Instead
of selecting parameters manually, we adopt a real parameter
black-box optimization strategy. As a consequence, we can
build more robust signature verification systems using very few
genuine signatures. Considering a discriminant feature descrip-
tor, we hypothesize that the writer variability observed on the
image space can be reflected in the feature space. Our method
thus tries to model the writer variability, while considering
just the feature space. Therefore, the visual appearance of our
duplicates is not directly assessed in this work.

To support our claims, we conducted experiments based
on three well-known benchmarks, GPDS-960, CEDAR, and
MCYT-75. Considering a real-world scenario, no more than
three genuine signatures per writer were used to train the
verification system. Duplicates generated using the default
parameters proposed by Diaz et al. [18] and synthetic samples
with our model were also compared. When the ASVS used the

duplicates generated using the default parameters, it achieved
EERs of 0.83, 0.70, and 3.04, for MCYT, GPDS, and CEDAR,
respectively. When it used the duplicates generated by our
method, it achieved EERs of 0.07, 0.24, and 2.16, for MCYT,
GPDS, and CEDAR, respectively. When it used the synthetic
feature vectors generated by our method, it achieved the lowest
EERs of 0.01, 0.20, and 0.82, for MCYT, GPDS, and CEDAR,
respectively. Thus, despite using fewer genuine signatures per
writer than other state-of-the-art signature verification systems,
the proposed method outperformed them. The model proved
capable of generalizing the most common writer variability
traits that are modeled using a GPDS subset, on different
datasets. With the proposed method, automatic handwritten
signature verification systems can even more closely approxi-
mate the real-world scenario.

The remainder of this paper is organized as follows:
Section II reviews related works on handwritten signa-
ture duplication and feature space augmentation. Section III
describes the proposed method for modeling writer variabil-
ity and associated concepts. In addition, it shows how the
proposed method can be used by an automatic signature
verification system. Section IV shows how writer variability
can be evaluated, considering signature features and the per-
formance of a verification system. Lastly, Section V presents
the conclusions.

II. RELATED WORKS

Over the last few decades, many advances have been
presented in signature verification literature, which have been
covered by some key survey papers [14], [15]. More recently,
Hafemann et al. [16] and Diaz et al. [7] have discussed new
trends, such as the use of deep learning techniques applied to
handwritten signatures. Such methods have achieved superior
results in multiple benchmarks. Readers interested in the state
of the art of signature verification systems, should please refer
to these works and to [28]–[31]. In this section, we cover the
core of our work, i.e., signature duplication methods and data
augmentation methods in the feature space.

A. Signature Duplication Methods

Signature duplication methods consist of algorithms used to
generate new artificial signatures, with one or more signatures
used as seeds [18]. Duplication methods can be divided into:
i) the creation of online (dynamic) signatures using real
online samples [17], [22], [32]–[38]; ii) the creation of
offline (static) signatures using real online samples [20], [24],
[39]–[42]; iii) the creation of offline signatures using real
offline samples [18], [19], [21], [23], [43]–[47]; and iv) the
creation of online signatures by using real offline samples.
Despite recent advances in the recovery of dynamic signatures
from static signatures [48]–[51], the last type of method still
an open issue [7].

Duplication methods can still be classified according to the
approach used to create new signatures, which in turn can
be based on geometrical transformations or be bio-inspired.
Figure 1 depicts the taxonomy of duplication methods.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1337

Fig. 1. Taxonomy of the duplication methods.

Methods based on geometrical transformations usually
employ rotation [21], [23], [47], scaling [21], [23], [38],
a perspective view [23], displacement [19], [21], [38], and
warping [24] to increase the number of signatures. They can
add some natural and unnatural distortions, which may be
used to create artificial genuine signatures [21]–[24], [38] and
artificial signature forgeries [23], [47], respectively. As pointed
out by Ruiz et al. [47], signatures with unnatural distortions
can be used as genuine or random forgeries to improve
the performance of verification systems. One drawback of
geometrical transformations is that they can create dupli-
cates that are not necessarily visually similar to genuine
signatures [18]. Even though duplication methods based on
geometrical transformations can improve the performance of
signature verification systems, they neglect an important aspect
of handwriting, namely, the writer’s behavior. To bridge this
gap, several bio-inspired methods have been proposed in the
literature, and can be divided into three main categories,
namely, Genetic Algorithms, Deep Learning and Behavioral
approaches.

Song and Sun [17] proposed a method to duplicate dynamic
signatures based on genetic algorithms. Firstly, a set of dupli-
cates with successive stroke sections are generated. These
duplicates must be similar to some sections of the input
signature. Then, the input signatures are used to generate
a set of duplicates with some different strokes. Both sets
are then combined to generate new duplicates. The result-
ing population is iteratively updated by a cloning-mutation-
selection operation. Although it does consider the variability
of input signatures, this bio-inspired method does not provide
the signature variability that needs to be maintained during the
generation of duplicates.

With regard to deep learning, Melo et al. [42] proposed a
model to generate offline signatures based on online signatures
that learn to map online signatures to offline signatures. It
requires both types of signature to be trained. However, most
datasets do not have both types of signatures available to
perform this task. The acquisition of an online signature and
the corresponding offline signatures requires several precau-
tions and resources. Despite promising results, deep learning
models require a great amount of data to be trained. As
this requirement could not possibly be met for their specific
case, the authors used a dataset of 23,000 mapped online and
offline words. However, all the words had been written by the
same writer. Therefore, the trained model did not consider the
individual variabilities of different writers.

The third category of the bio-inspired methods tries to
mimic the behavior of a person when he/she is writing. In this
context, different approaches, such as interpolation, muscular,
kinematic, and neuromotor approaches have been used to
underpin the proposed methods.

Since dynamic signature data is related to writer behav-
ior, some works use this type of data to generate static
signatures [40], [41]. When dynamic information about the
signature trajectory is available, it can be interpolated to
generate new static signature duplicates. In order to enhance
the reliability of this kind of duplicate, information relating to
pressure and speed is also used. The reliability of this kind of
approach depends strongly on the choice of the interpolation
algorithm [40].

Although the handwriting process is still not fully under-
stood, some duplication methods try to model human behavior
during a signing act. As mentioned above, some of them are
based on muscular models, and others on kinematic theory.
The methods based on muscular models try to reproduce the
trajectory of signature strokes when the writer is moving the
muscles [52]. For their part, those based on kinematic theory
try to reproduce the writer’s muscular speed effects on the
handwritten signature [20], [32], [33], [36], [37], which thus
necessitates the presence of online signatures with velocity and
pressure information. Methods based on muscular models and
kinematic theory are mainly designed to duplicate flourished
signatures. Therefore, for legible signatures, the methods can
present signature duplicates that are not human-like [36], [45].

The fourth behavioral class category is neuromotor the-
ory [18], [34], [35], [39], [43], [44], [46], which considers
a set of muscles, skeletal parts, eyes, and the central nervous
system in creating signatures. In this case, the brain stores the
signature generation plan and sends electric impulses to the
eyes and to specific muscles, allowing the signature plan to
be executed by a series of specific muscular contractions and
articulatory movements [46].

Most neuromotor methods are not concerned with stroke
sequences. However, some of them are mainly focused on
the signature trajectory plan [34], [43]. This plan determines
the distribution and sequence of strokes which are used to
create a new signature. Generally, the sequence information
is only present in dynamic signatures. However, Djioua and
Plamondon (2009) [53], introduce an algorithm to extract the
speed information from an offline signature. Such an algorithm
was successfully used by Ferrer et al. [46] to create a trajectory
plan. Furthermore, Ferrer et al. [34] showed that the trajectory
plan and complexity of a method depend on the alphabet used
to sign.

To simulate the desired motor effects, most neuromotor
methods use a grid to map the distribution of strokes or char-
acters on the written surface. Different architectures (hexago-
nal [34], [43], quadrangular [46], and sinusoidal [18]) have
been investigated for generating the desired deformations.
In [34], the authors showed that the grid density is directly
related to the alphabet used to sign. While dense grids are
indicated for eastern alphabets such as Bengali and Devana-
gari, sparse grids are more suitable for western alphabets such
as Latin. Diaz et al. [18], on the other hand, showed that
the sinusoidal grid produces good duplicates for signatures in

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE I

SIGNATURE DUPLICATION METHODS (ON-2-OFF: FROM REAL ONLINE TO DUPLICATED OFFLINE SIGNATURE; ON-2-ON: FROM REAL ONLINE TO
DUPLICATED ONLINE SIGNATURE; OFF-2-OFF: FROM REAL OFFLINE TO DUPLICATED OFFLINE SIGNATURE; OFF-2-ON: FROM REAL OFFLINE

TO DUPLICATED OFFLINE SIGNATURE; IF THE METHOD CONSIDERS THE WRITER VARIABILITY, IT IS MARKED WITH A X)

Devanagari, Bengali, and Latin. Two other aspects that play
an important role when duplicating a handwritten signature
are the paper and ink used. In that regard, some methods try
to reproduce successive ink depositions on the paper and the
roughness of the paper used [6, p. 195-197] [20], [41], [44].

Similar to methods based on geometrical transformations,
behavior-based methods also use several parameters to con-
trol writer variability, which is generally defined empirically.
Defining such parameters is time-consuming, and very often
produces values that do not describe the real writer variability.
Table I summarizes the duplication methods showing the
reference, type of input and output of the method, the strategy
used by each method, whether or not the method considers
the writer variability (V), and the signature alphabet.

The literature shows that neuromotor-based methods pro-
duce better duplicates than models based on geometrical trans-
formations [18], [34], [35], [39]. Among the neuromotor-based
methods, we highlight the one proposed by Diaz et al. [18],
which uses an ink model to produce high quality duplicates.
The duplicates created with this method were used to train
a signature verification system and outperformed the system
trained with the duplicates created by the geometrical trans-
formation proposed in [21] by a fair margin. Furthermore,
it proved to be robust using signatures of different alphabet
systems such as Latin, Bengali, and Devanagari. Notwith-
standing the good results presented by the authors in [18],
the problem of properly defining the parameters that control
the generation of duplicates remains unsolved. In this paper,
we aim to bridge this gap by proposing a real parameter black-
box optimization strategy.

B. Data Augmentation Methods in the Feature Space

Instead of increasing the number of image samples,
some techniques such as linear delta [25], interpolation

[27], [54], [55], extrapolation [27], delta-encoder [25], and
application of random noise [25]–[27], [56], [57] increase
the number of samples in the feature space. Unlike image
space augmentation, it is very difficult to interpret the syn-
thetic feature vectors [58]. Despite this, most feature space
augmentation techniques have low computational complexity
and are easy to implement [25].

The linear delta technique finds the difference between the
same class samples and uses it to generate a new feature
vector. First, the difference between two feature vectors is
computed, and is added to a third feature vector of the same
class. The delta-encoder extends the linear delta concept using
an autoencoder-based model to learn the differences between
pairs of samples. First, it computes the intra-class deformations
between pairs of training examples. Subsequently, it generates
synthetic feature vectors applying the learned transformations
to the original feature vectors [25].

The interpolation strategy uses two feature vectors with the
same label to generate a new one. For each feature vector,
the K nearest neighbors with the same label in feature space
are computed. For each pair of neighboring vectors Vk and
Vj , a new vector V ′ can be generated using Equation 1. The
degree of interpolation λ is controlled using an interval from
0 to 1 [27].

V ′ = (
Vk − Vj

)
λ+ Vj (1)

Similar to interpolation, extrapolation can be applied to
a vector Vj using Equation 2. In this case, the degree
of extrapolation λ is controlled using an interval from
0 to ∞ [25], [27].

V ′ j =
(
Vj − Vk

)
λ+ Vj (2)

Despite the simplicity of interpolation, extrapolation,
and linear delta techniques, these strategies need a least

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1339

Fig. 2. Offline signature verification system using the proposed method. Training A is used only for data augmentation in the image space, while Training
B is used only for data augmentation in the feature space.

two or three feature vectors to generate a new one
[25], [27], [54]. In some cases, only one sample is avail-
able [18]. Therefore, in this specific case, these strategies
cannot be used.

Another simple way the number of training feature vectors
are increased is by applying random noise to them [26].
The one-dimensional Gaussian filter is widely used to apply
random noise in the feature space [25]–[27]. Unlike the extrap-
olation, interpolation, and linear delta strategies, random noise
can be used with only one sample [27]. Furthermore, it has
low computational complexity, and is easier to implement than
the delta-encoders [25].

To the best of our knowledge, none of these techniques
have previously been used to increase the number of offline
signatures in the feature space. Therefore, we also propose
a method to increase the number of offline signatures in the
feature space based on writer variability.

III. THE PROPOSED METHOD

To develop our method, we considered two different data
augmentation techniques, one in the image space using Dupli-
cator, and the other in the feature space using a Gaussian
filter. Figure 2 depicts the overall framework of the proposed
method, from parameter optimization through to the final
decision, i.e., assign genuine or forgery to a given query
signature. The Convolutional Neural Network SigNet-F (φ)
is used to extract a representation φ(X) from each signature
image X . For a given set of writers in the optimization
database, φ(Xo) is then used to optimize the parameters
which describe the signature variability of each writer ω.
The result of this optimization is a parameter vector πω
for each writer that describes his/her variability. Then, the
average parameter vector πavg for all writers available in the
optimization database is computed.

If we consider only the image space augmentation, the aver-
age parameter vector πavg and the signatures X of the training

set are used by Duplicator to generate duplicates respecting
the writer variability. The model φ is used to extract the
feature vectors φ(X) from signatures X , and the feature
vectors φ(X D) from duplicates X D . If only the feature space
augmentation is considered, the average parameter vector πavg

and the signature feature vectors φ(X) of the training set are
used by the Gaussian filter to generate new feature vectors
φ(X D) respecting the writer variability.

The feature vectors φ(X) and φ(X D) are used to train a
classifier f for each writer of the verification system. For an
input signature X Q , the model φ extracts the feature vector
φ(X Q) and sends it to the pre-trained classifier f . Using
the feature vector φ(X Q), the classifier f makes a decision
f (φ(X Q)) as to whether the signature X Q is genuine or a
forgery.

A. Datasets

The experimental procedure in the present study was
performed using the handwritten signature datasets
GPDS-960 [59], CEDAR [60], and MCYT-75 [61]. The
datasets are summarized in Table II considering the number
of writers, number of genuine samples, number of skilled
forgeries, and the window size (height × width) used to
normalize the signature images in each dataset. The GPDS
dataset consists of 881 different writers, and has 24 genuine
samples and 30 skilled forgeries per writer. To compare the
results with Hafemann et al. [62], we used the same GPDS
partitioning (Figure 3) as them. The last 581 writers compose
the development dataset D, which is subdivided into DL, DT
and DV subsets. Subset DL is used to train the Convolutional
Neural Network (CNN), while DT is used to monitor the
evolution of the CNN training. These two subsets contain the
same 531 writers, but different signature samples from each
writer. Subset DL contains 90% of the signature samples,
while DT contains 10% of them. Some writers of subset
DL are also used to optimize the parameters of our method.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE II

THE OFFLINE SIGNATURE DATASETS USED IN THIS WORK

Fig. 3. GPDS Dataset partitioning.

Subset DV contains 50 writers, and is used to make all
the choices regarding the CNN model, hyperparameters of
the SVM classifiers, and the initial range used to optimize
the parameter vectors.

Finally, the first 300 writers (GPDS-300) are used to train
and test the SVMs used in this work. They belong to exploita-
tion subset E . The samples that are used to train the classifiers
are called EL, while those used to test them are called ET .

The CEDAR consists of 55 different writers, and has
24 genuine samples and 24 skilled forgeries per writer [60].
The MCYT-75 consists of 75 different writers, with 15 genuine
samples and 15 skilled forgeries [61]. These datasets were used
to show the generalization capability of the proposed method.

B. Normalization Process

Hafemann et al. [62] showed that feature extraction can
be influenced by the normalization process. Furthermore,
the CNN expects signatures with the same size. Therefore,
signature images are normalized using the procedure proposed
in [62]. Firstly, the signature images are segmented using the
Otsu algorithm [63]. The signature pixels remain in grayscale,
while the background pixels are converted to white (255). The
center of mass of the signature is computed and placed into
the center of a window of height × width pixels (Table II).
Due to the difference between the acquisition protocols of
the signature datasets [59], [60], [61], their signatures have
different sizes. Therefore, each dataset has its window size
to normalize them. This process attempts to maintain the
proportion of the different signature sizes.

The color of all the pixels is inverted using Equation 3.
The resulting image is resized to 170 × 242 pixels. Finally,
the central portion of the image with 150 × 220 pixels is
cropped.

I (x, y) = 255− I (x, y) (3)

C. Convolutional Neural Network SigNet-F

We used one of the methods proposed by
Hafemann et al. [62] to extract signature features because of
the outstanding results it provided on several benchmarks.
The choice was also made thanks to the discriminant nature
of the descriptor. It uses a writer-independent feature learning
method, in which a development set DL is used to learn a
feature representation φ(X). This representation is learned
using a Convolutional Neural Network (CNN) to discriminate
among writers in DL. In this context, the CNN (called
Signet-F) is trained with both genuine signatures and skilled
forgeries, optimizing to jointly discriminate between writers,
and between genuine signatures and forgeries. In experiments
performed in [62], the SigNet-F achieved the best results in
the GPDS-300 and CEDAR datasets, and therefore, we use it
in our work.

The subset DL was used to learn signature features, while
the process was monitored using the subset DT . The training
was performed for 60 epochs, with an initial learning rate
of 0.001. After every 20 epochs, the learning rate was divided
by 10. Considering the need for a high volume of data to train
the CNN, random patches of 150× 220 pixels were extracted
from the normalized 170 × 242 pixel signatures. During the
feature extraction, the CNN layer FC7 was used to extract
vectors with 2048 elements.

D. Duplicator

Diaz et al. [18] proposed a neuromotor method combined
with an ink model for signature duplication called Duplicator,
which uses a set of 30 parameters that control the signature
variability. The first 6 parameters (αmin

A , αmax
A , αmin

P , αmax
P ,

αmin
S , αmax

S) are mainly responsible for describing the writer
variability. To create the writer variability, a sinusoidal trans-
formation is applied. The sine amplitude is determined by αmin

A
and αmax

A , while the sine period is determined by αmin
P and

αmax
P . Finally, the sine phase is delimited by αmin

S and αmax
S .

Considering a flexible surface where the signature is written,
these six parameters control how this surface will be deformed.
As a consequence, the signature will also be distorted. The
next 20 parameters (ξ1

x , σ 1
x , μ1

x , ξ2
x , σ 2

x , μ2
x , ξ3

x , σ 3
x , μ3

x , ξ1
y ,

σ 1
y , μ1

y , ξ2
y , σ 2

y , μ2
y , ξ3

y , σ 3
y , μ3

y , k1, and k2) describe the
distribution of unconnected strokes in the image. These strokes
are displaced taking into account three different kinds of ratio
intervals, which for their part are determined by k1 and k2.
To choose an interval, the ratio between the number of stroke
pixels and the number of signature pixels is calculated. If a
stroke sits within one of these intervals r , 6 parameters (σ r

x ,
μr

x , ξ r
x , σ r

y , μr
y , and ξ r

y) are used to displace the unconnected
stroke. The ink deposition effect is determined by ψ and the
last 3 parameters (ξS , σS , μS) are used to control the signature
inclination.

In this work, we focused on the optimization of the first
six parameters which are mainly responsible for defining
the writer variability [18], and the others were kept at their
default values. Table III shows the default values of all
31 parameters.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1341

TABLE III

DEFAULT PARAMETER VECTOR PROPOSED IN [18] TO
DUPLICATE OFFLINE HANDWRITTEN SIGNATURES

E. Gaussian Filter

As previously shown, the one-dimensional low-pass
Gaussian filter is widely used to generate synthetic samples
in the feature space (Equation 4). Despite the simplicity of
the filter [25], a parameter σ is still needed to control its
intensity. The standard deviation σ is randomly selected,
considering a uniform distribution from σmin to σmax . This
interval introduces some variability to the synthetic samples.
Based on the same idea as in Duplicator, we used this interval
to represent the writer variability, and thus optimized the
parameters that determine this interval using the optimization
process described in the next section.

G(x) = 1√
2πσ

e
− x2

2σ2 (4)

F. Parameter Optimization

Parameter optimization is performed in a bid to find a set
of parameters for data augmentation methods, which allow the
methods to generate synthetic samples respecting the distrib-
ution of a given writer. In a real-world scenario, two or more
writers have different intra-class variabilities. This difference
notwithstanding, some common behaviors can be shared by
these writers along the writing process, and these common
writer variability traits can be described by a global set of
parameters. Since the first six parameters of the duplicator
are mainly responsible for the intra-personal variability of
writer signatures [18], and optimization is a time-consuming
task [64], these parameters are chosen to represent the writer
variability traits. Regarding the Gaussian filter, we used the
parameters σmin and σmax to represent the writer variability
traits.

In this work, we used a Particle Swarm Optimization (PSO)
algorithm [65] to find the first six variability parameters used
by the Neuromotor-based duplicator, and the two parameters
used by Gaussian filter. The PSO was originally proposed by

Kennedy and Eberhart [66] to optimize continuous nonlinear
functions. The algorithm is based on the behavior of a flock of
birds or school of fish looking for places with abundant food.
Due to its efficiency in solving several kinds of optimization
problems [65], [67]–[69] and its simple implementation [64],
the PSO is used in our work.

Considering the search space of d dimensions, each particle
π with index i represents the position and a possible solution
to an optimization problem. During optimization, a velocity
v with index i is associated with each particle in the search
space. For each iteration n of the algorithm, the velocity vn+1

id
of the next iteration (Equation 5) is updated according to the
values of the local minima particle pn

id and the global minima
particle πn

ωd [65].

The vn+1
id is also computed considering two uniformly

distributed variables within [0,1], rn
1id and rn

2id . These vari-
ables introduce some diversity to the particles during the
search. This diversification is regulated by the constant 1−χo.
The constant χo itself controls the intensity of the search to
find the best solution [65]. While the constant co1 regulates
the tendency of the particles to approach their local minima
particle, the constant co2 regulates their tendency to approach
their global minima particle [69]. The perturbation constant
γo controls the stability of the algorithm regulating the effect
of both constants co1 and co2 concurrently.

vn+1
id = (1− χo)v

n
id + χoco1γorn

1id (pn
id − πn

id)

+χoco2γorn
2id (π

n
ωd − πn

id) (5)

According to the optimization experiments performed by
Zhao [65], when the PSO uses the constants (1 − χo) =
(3−√5)/2, χoco1γo = (1+

√
5)/2, and χoco2γo = 1 it is more

accurate, efficient, and stable than the traditional PSO [66].
Therefore, we used these constants in Equation 5, which
resulted in Equation 6. Considering the computed velocity
vn+1

id , the position of the particle πn+1
id is updated using

Equation 7.

vn+1
id = (3−√5)

2
vn

id +
(1+√5)

2
rn

1id (pn
id − πn

id)

+ rn
2id (π

n
ωd − πn

id) (6)

πn+1
id = πn

id + vn+1
id (7)

The parameter vector is encoded into a 6-dimensional par-
ticle π for image space augmentation, while for feature space
augmentation, it is encoded into a 2-dimensional particle π .
The parameters are randomly initialized considering a uniform
distribution with low and high limits. Table IV shows the low
and high limits used during the optimization process. The low
limit of the max parameter is defined using the value of the min
parameter. For example, if the parameter αmin

A is initialized
with the value 20, the low limit of the parameter αmax

A is 20.
For the image space augmentation, the limits of the para-

meters were defined considering the extreme values of the
default parameters proposed by Diaz et al. [18]. If we use
αmin

A and αmax
A equal to or greater than 10, the duplicator

generates duplicates with fewer distortions than when values
lower than 10 are used. However, if we use large values of
αA, the duplicates will be equal to the signature used as seed.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE IV

PARAMETER INITIALIZATION RANGE USED TO
OPTIMIZE THE PARAMETER VECTORS

In order to find the best values of αmin
A and αmax

A , we set
the limits of αmin

A from 10 to 100. According to the authors
in [18] the values of αmin

P , αmax
P , αmin

S , and αmax
S should be

between 0 and 1. However, when these parameters assume
extremely small or extremely large values, the duplicator
generates unnatural signature duplicates.

For the feature space augmentation, the limits of the para-
meters were defined, considering the mathematical constraints
of the Gaussian filter. When σ is 0, it leads to a mathematical
indetermination. We also thought about the degree of pertur-
bation applied by the Gaussian filter in the original feature
vectors. If we perturb the original feature vector too much,
it can generate a feature vector that does not resemble the
same class as the original [27]. Therefore, we considered the
limits ranging from 0.01 to 1.00.

To guide the optimization process, we used the silhouette
index [70]. Usually, this index is used to measure how good
two or more clusters are. If the silhouette index is equal
to 1, the clusters have a small intraclass and a large interclass
variability; if it is equal to −1, it means the data were assigned
to the wrong clusters. Finally, if the silhouette index is equal
to 0, then the clusters are overlapped. This is exactly what we
are looking for. Therefore, during the optimization process,
our goal is to find a set of parameters such that the silhouette
index is close to 0.

The silhouette index evaluates the sparsity and the distance
between the clusters concurrently. Several functions can be
used to compute the dissimilarity between the elements of
the clusters. As recommended by Rousseeuw [70], we used
the Euclidean distance as a dissimilarity function d(.). The
average dissimilarity between the i th element and the elements
of the same cluster Cs can be computed using Equation 8.
Basically, a(.) measures the sparsity inside each cluster.

a(φ(Xi)) =

nCs∑
j=1

d(φ(Xi);φ(X j))

nCs − 1
(8)

The average dissimilarity between the i th element and the
elements of the other cluster Cr is computed using Equation 9.
Subsequently, Equation 9 is used in Equation 10 to compute
the minimum distance between the border of the clusters Cs
and Cr . This indicates how far the clusters are from each
other. It is important to highlight that the clusters Cs and Cr
are different.

d(φ(Xi);Cr) =

nCr∑
j=1

d(φ(Xi);φ(X j))

nCr
(9)

b(φ(Xi)) = min {d(φ(Xi);Cr)} (10)

Equations 8 and 10 are combined in Equation 11. For
an arbitrary feature vector φ(Xi) as reference, Equation 11
evaluates the intraclass and the interclass variability con-
currently. Following that, the value is normalized using the
maximum value between the intraclass and the interclass
variability.

δ(φ(Xi)) = b(φ(Xi))− a(φ(Xi))

max {b(φ(Xi)); a(φ(Xi))} (11)

Equation 12 computes the δ(φ(Xi)) for all elements of
the clusters. The δ(φ(Xi))s are summed and divided by
the number of elements nC in all clusters. To simplify the
optimization process, we used only the absolute value of the
silhouette index (|
|).

|
| =

∣∣∣∣∣∣∣∣∣

nC∑
i=1

δ(φ(Xi))

nC

∣∣∣∣∣∣∣∣∣

, |
| ∈ [0, 1] (12)

Details of the proposed optimization algorithm are pre-
sented in Algorithm 1. It receives as input N (the number
of samples that will be generated for each genuine signature),
W (list of writers with their respective genuine signatures), and
I (the number of iterations for which the algorithm will run).
The output is the average parameter vector πavg . While
Algorithm 2 presents the evaluation process of parameters
to generate duplicates, Algorithm 3 details the evaluation of
parameters to generate samples in the feature space.

Then, the optimization process starts with the PSO gen-
erating a set of parameter vectors that are used to create
the synthetic samples. In the image space augmentation, for
each signature of the writer Xo, a duplicate X D is generated.
The duplicates are normalized and the feature vectors φ(Xo),
and φ(X D) are extracted. In the feature space augmenta-
tion, the signatures of the writer are normalized and the
feature vectors φ(Xo) are extracted. For each feature vector
φ(Xo), a synthetic feature vector φ(X D) is generated using a
Gaussian filter. The feature vectors of the genuine signatures
φ(Xo) and synthetic samples φ(X D) are used to compute the
absolute value of the silhouette index |
|. If the cluster of
genuine signatures and the cluster of synthetic samples have an
equal or similar variability, |
| → 0. Therefore, the parameter
vectors πω with the lowest absolute silhouette indices are
selected and saved for each writer. The parameter vectors are
updated for the next iteration using Equations 6 and 7. The
process is repeated until the stop condition is satisfied. In the
end, the average parameter vector (πavg) is computed, and
describes the common behavioral biometric traits shared by the
writers in the optimization database. It is important to highlight
that we hypothesized that the writer variability observed on the
image space can be reflected in the feature space. Based on
this hypothesis, the parameter optimization is performed, con-
sidering only the feature vectors. Therefore, we assume that
the duplicates will have a human-like appearance if |
| → 0.
In other words, the interaction between the first 6 parameters
is taken into account considering the minimization of the
absolute value of
 (Equation 12).

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1343

Algorithm 1 The Parameter Optimization Algorithm (Sigvar)
Input:

N : number of duplicates per signature
W : list of writers
I : number of iterations

Output:
πavg: average parameter vector

1: πavg ← ∅
2: foreach ω ∈ W do
3: X ← loadSignatures(ω)
4: 	 Initialize the particles
5: particles← initializeParticles()
6:
localmin ← 9999
7:
min ← 9999
8: πω ← ∅
9: foreach i teration ∈ I do

10: p← ∅
11: foreach π ∈ particles do
12: 	 Evaluate parameter vector
13:
←evalParameters(π ,X ,N)
14: if |
| < |
min | then
15: |
min | ← |
|
16: πω ← π
17: end if
18: if |
| < |
localmin | then
19: |
localmin | ← |
|
20: p← π
21: end if
22: end for
23: 	 Update the value of each particle using

Equations 6 and 7
24: particles← updateParticles(particles, p, πω)
25: end for
26: 	 Save the best parameters for each writer
27: saveParameters(ω,πω)
28: 	 Sum all the parameter vectors
29: πavg ← πavg + πω
30: end for
31: 	 Count the number of writers in the list W
32: nW ←getNumberOfWriters(W)
33: 	 Compute the average parameter vector
34: πavg ← πavg/nW

G. Training

Once the search process is complete, we can use the
optimized parameters to create synthetic samples to train the
Writer-Dependent classifiers used by the signature verification
system. Four different scenarios were considered to train
these classifiers. The first scenario considers that there are
no duplicates at all to train the SVMs, and is used as a
baseline. The second one uses duplicates that were created by
using the default parameters reported in Table III. The third
creates duplicates using the parameters found by the proposed
algorithm described in the previous section. Finally, the last
scenario creates synthetic feature vectors using a Gaussian
filter and the parameters found by the optimization process.

Algorithm 2 evalParameters (Duplicator)
Input:
π : parameter vector
X : signatures
N : number of duplicates per signature

Output:

: Silhouette Index

1: πavg ← ∅
2: X D ← ∅
3: foreach Xi ∈ X do
4: auxX D ← Duplicator(π , N,Xi)
5: 	 Concatenate X D and auxX D

6: X D ← X D
�auxX D

7: end for
8: 	 Normalize the signatures and duplicates
9: normX ←normalize(X)

10: normX D ←normalize(X D)
11: 	 Extract the features from the normalized signatures

and duplicates using the SigNet-F
12: φ(X)←extractFeatures(normX)
13: φ(X D)← extractFeatures(normX D)
14: 	 Calculate the value of the silhouette index
15:
←silhouetteIndex(φ(X),φ(X D))

Algorithm 3 evalParameters (Gaussian Filter)
Input:
π : parameter vector
X : signatures
N : number of new samples per signature

Output:

: Silhouette Index

1: 	 Normalize the signatures and duplicates
2: normX ←normalize(X)
3: 	 Extract the features from the normalized signatures

using the SigNet-F
4: φ(X)←extractFeatures(normX)
5: φ(X D)← ∅
6: foreach φ(Xi) ∈ φ(X) do
7: auxφ(X D)← applyGaussianfilter(π , N, φ(Xi))
8: 	 Concatenate φ(X D) and auxφ(X D)
9: φ(X D)← φ(X D)

�auxφ(X D)
10: end for
11: 	 Calculate the value of the silhouette index
12:
←silhouetteIndex(φ(X),φ(X D))

To validate the impacts of the proposed optimization
method and to fairly compare the results with those of
Hafemann et al. [62], we adopted the same signature verifica-
tion system proposed by them. The SigNet-F is used to extract
the feature vectors of the normalized genuine and random
forgery signatures. For each writer, an SVM (Support Vector
Machine) classifier with an RBF kernel is trained using these
feature vectors. The genuine signatures were considered as a
positive class and the random forgeries were considered as
a negative class. The genuine signatures of other writers are
used as random forgeries. The difference in the numbers of

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1344 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

positive and negative examples may lead to classifiers that
tend to select one class more frequently than others. Therefore,
different C weights were adopted to positive and negative
classes. For the negative class, C− is equal to 1. Before
determining the C+, it is necessary to compute the skew ψ .
The skew ψ was computed using the number of positive
examples P (genuine signatures) used for training and the
number of negative examples N (random forgeries) used for
training (Equation 13). Then, C+ was computed using C− and
ψ (Equation 14).

ψ = N

P
(13)

C+ = ψC− (14)

H. Verification

After training the Writer-Dependent classifiers the system
is ready to be deployed. During the verification phase, each
query signature image X Q is normalized and the feature
vector φ(X Q) is extracted using the SigNet-F. The feature
vector φ(X Q) is submitted to an SVM classifier f , and it
makes a decision f (φ(X Q)). As a result of the decision
f (φ(X Q)), the signature X Q is classified as a genuine or a
forgery sample. To assess the performance of the proposed
method, the mean Equal Error Rate (EER) of the verification
system was computed. The verification system was assessed
considering the three previously exposed scenarios.

IV. EXPERIMENTAL RESULTS

To validate the proposed method, two different
approaches were considered: feature-level (Section IV-A)
and performance-level (Sections IV-B and IV-C).
All experiments were carried out on the three datasets
described in Section III-A.

It is well known that finding a solution for an optimization
problem using a meta-heuristic algorithm is a time-consuming
task, and it was no different in our case. For this reason,
instead of using all writers available in the DL, we selected
a subset of 20 writers representing the entire population to
compose our optimization dataset. The 20 writers that covered
the distribution of DL were randomly selected (writers 431,
490, 503, 525, 588, 611, 631, 641, 643, 654, 673, 676, 701,
716, 797, 825, 897, 912, 935, and 945) and used as input to
the optimization algorithm.

As discussed in Section III-F, at the end of the optimization
process, for each writer from the optimization dataset, there
is one optimized parameter vector, which is used to calculate
the average parameter vector (πavg) that is used by the data
augmentation method. While the duplicator uses the average
parameter vector πdup, the Gaussian filter uses the average
parameter vector πgauss. Table V shows the silhouette index,
the average parameter vectors πdup and πgauss, and the default
parameter vector. As we can see, πdup is quite distant from
the default vector. Mainly, the first two parameters (αmin

A
and αmax

A) have greater average parameter vector values than
those specified for the default parameter vector. Consequently,
the silhouette index (|
|) of the πdup is lower than that of

TABLE V

AVERAGE PARAMETER VECTORS πdup AND πgauss , DEFAULT
PARAMETERS (πde f) PROPOSED IN [18],

AND SILHOUETTE INDICES

Fig. 4. Effect of Gaussian filter in the |
| for each writer of 20DL.

the πdef . Therefore, πdup better represents the variability of
these writers than πdef does.

Figure 4 shows the effect of the Gaussian filter on the
silhouette index for each writer of 20DL. It can be seen
that each writer has their own ideal sigma interval denoting
their specific writer variability. Furthermore, even a simple
noise addition technique needs some kind of optimization to
generate more realistic synthetic samples.

A. Validation at Feature Level

Before discussing the impacts of the proposed optimization
method in terms of performance, i.e., reduction of the EER in
the signature verification system, we will present an analysis
of the quality of the synthetic samples that are created by
the duplicator and Gaussian filter using the average parameter
vectors.

Since we are only using the feature vectors of handwritten
signatures, it was necessary to perform the validation of the
method at the feature level. For the same writer, it is expected
that genuine signatures and synthetic samples will have similar
aspects, and as a result, the signature and synthetic feature
vectors should be similar as well. Besides the similarity,
the synthetic samples are also expected to keep the original
writer variability. It is important to highlight that the feature
descriptor must be sufficiently discriminant to measure the dis-
similarity between the signatures and synthetic samples [62].

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1345

TABLE VI

AVERAGE ABSOLUTE VALUES OF THE SILHOUETTE INDICES (|
|avg),
AVERAGE SPARSITY OF GENUINE CLUSTERS (coavg), AND

STANDARD DEVIATIONS FOR GPDS-300,
CEDAR, AND MCYT-75

If the feature descriptor is poor, then the distinction between
them will be poor as well [30].

In this experiment, for each writer, we used the first
12 genuine signatures to build the genuine cluster in the
2048 dimensional feature space created by the SigNet-F.
Therefore, 4 clusters with 12 feature vectors were created:
one with genuine signatures, one with duplicates created with
the optimized parameter vector πdup, one with the duplicates
created with the default parameter vector πdef , and one with
the feature vectors generated with the optimized parameter
vector πgauss .

To measure how close the synthetic samples and genuine
signatures are, we used the absolute value of the silhouette
index |
|. As earlier explained, if both clusters have a similar
variability, then |
| → 0. For each writer, three |
| values
were computed using Equation 12: the |
| between the
genuine cluster and the cluster of duplicates using the default
parameter vector πdef , the |
| between the genuine cluster
and the duplicates using the average parameter vector πdup,
and the |
| between the genuine cluster and the synthetic
feature vectors using the average parameter vector πgauss.
Then, the average silhouette indices |
|avg and the standard
deviations were computed. To measure the sparsity of each
dataset in the feature space, we used the average cohesion
of all writers in each dataset. The cohesion co is computed
using the sum of the squared differences between all elements
φ(Xi) of the cluster and the cluster centroid μ (Equation 15)
[71, p. 578]. For each dataset, we computed the cohesions
of all genuine clusters and their average, coavg. Table VI
shows the |
|avg, the average sparsities coavg, and standard
deviations of the three datasets described in Section III-A.

co =
n∑

i=1

(φ(Xi)− μ)2 (15)

Although the average parameter vector πdup does not repre-
sent the individual variability of each writer, it does represent
the variability better than the πdef . Besides, duplicates created
using πdef may introduce some distortions that may lead
to unnatural signature duplicates (Figure 5). As can be seen
in Figure 5 and Table VI, minimizing the silhouette index helps
improve the quality of duplicates. Furthermore, the average
parameter vector πgauss helps generate synthetic samples in
the feature space that resemble the original signatures.

Since the average parameter vectors πdup and πgauss were
optimized using a subset of GPDS-960, the lowest |
|avg was
achieved using the GPDS-300 dataset. Even using the signa-
tures of just 20 writers, the method was able to represent the

Fig. 5. Genuine signatures (a-c), duplicates (d-f) generated by Duplicator
with default parameters, and duplicates (g-i) generated by Duplicator with the
average parameter vector πdup .

writer variability of 300 different writers. As well, using just
the parameters optimized in the GPDS dataset, the proposed
method proved able to better represent the writer variability
in the CEDAR and MCYT-75 datasets.

As can be seen, πdef , πdup, and πgauss have difficulty rep-
resenting the variability of the writers present in the CEDAR
dataset. In the case of πdup and πgauss, this may be due to
the kind of signatures present in the GPDS dataset, where the
parameters have been optimized. Since the GPDS dataset has
highly sparse signatures in the feature space, it is expected that
the parameter vector will be able to reproduce the sparsity
of signatures with the same nature. According to Table VI,
the writers in the CEDAR dataset present a smaller sparsity
(coavg) in the feature space than those writers in the other
two datasets. Since we applied two indirect transformations
and one direct one in the feature space, it can be seen that
the nature of the transformations applied in the feature space
also impacts the quality of synthetic samples. The results
presented in Table VI suggest that it is more difficult to
generate synthetic samples that are close to the low-sparsity
clusters than it is to generate them close to high-sparsity ones.

B. Validation at Performance Level Using the Duplicator

To respect the constraints imposed by problems in the real
world, where few genuine signatures per writer are available,
no more than three genuine signatures per writer were used
in these experiments to train the Writer-Dependent SVMs of
the signature verification system described in Section III-H.
The genuine signatures of other writers of the dataset were
used as random forgeries to train the classifiers. Each genuine
signature and forgery was randomly selected for training.
During the testing, the genuine signatures and forgeries were
randomly selected as well.

To better assess the impacts of the number of duplicates in
reducing the EER, for each genuine signature, we created up to
22 duplicates. Furthermore, to compare the performance using
the duplicates with that achieved by Hafemann et al. [62],

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1346 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE VII

DATASET SEPARATION INTO TRAINING AND TESTING. THE NUMBER OF GENUINE SIGNATURES G, RANDOM FORGERIES R, AND
SKILLED FORGERIES S ARE SPECIFIED. THE NUMBER OF DUPLICATES USED FOR TRAINING ALSO IS SPECIFIED

we used the same experimental protocol. In our case, we used
fewer original genuine signatures for training and included the
duplicates during the training process. Table VII summarizes
the separation of the dataset into training and testing. For each
number of duplicates, the experiment was repeated 10 times,
and the average EER and standard deviation were reported for
the three datasets described in Section III-A. As in the previous
experiments, duplicates were created using πdef and πdup.

For each random forgery used to train the SVMs, from
0 to 22 duplicates were also used, meaning that the random
forgeries and the corresponding duplicates were used for train-
ing. In GPDS, 14 genuine signatures of 581 other writers and
the corresponding duplicates are used as random forgeries. For
example, if we use 14 genuine signatures with 22 duplicates
each for 581 writers, we have the original random forgeries,
plus the corresponding duplicates ((14× 581)+ (14× 581×
22) = 187, 082). The classifiers were tested using 10 genuine
signatures, 10 random forgeries and 10 skilled forgeries per
writer from subset ET .

For the MCYT-75 dataset, 10 genuine signatures of 74 other
writers and the corresponding number of duplicates were
used as random forgeries. The classifiers were tested using
5 genuine signatures and 15 skilled forgeries. For the CEDAR
dataset, 12 genuine signatures of 54 other writers were used as
random forgeries. The classifiers were tested using 10 genuine
signatures and 10 skilled forgeries.

Figure 6 shows the average EER of each number of
duplicates in the GPDS dataset. As expected, the greater
the number of duplicates, the smaller the EER. It should,
however, be noted that the system trained with the duplicates
created with πdup outperforms the one trained with πdef in
all scenarios. This is somewhat attributable to the quality
of the duplicates created using the optimized parameters.
As shown in the previous section, the default parameters
may sometimes lead to unnatural duplicates that negatively
affect the performance of the verification system. Like the
real signatures, the duplicates can also provide complementary
information about the signatures of a writer.

Figure 7 shows the average EER of each number of dupli-
cates in the MCYT-75 dataset. As observed earlier, when the
number of duplicates increases, the EER drops simultaneously.
This experiment also showed the generalization capability of
the proposed method. Even though πdup was optimized on
a subset of GPDS-960, it was able to produce high quality
duplicates for MCYT-75 as well, since this dataset contains
highly variable signatures, similar to those found in the GPDS
dataset.

Fig. 6. Average EER achieved using GPDS-300 dataset, Signet-F and the
Proposed Method with a Large Range of parameters.

Fig. 7. Average EER achieved using MCYT-75 dataset, Signet-F and the
Proposed Method with a Large Range of parameters.

Figure 8 shows the performance of each number of dupli-
cates in the CEDAR dataset. As observed in the previous
datasets, while the EER follows the same trend, the drop in the
EER is, however, more subtle. This corroborates the hypothesis
that the distribution of the CEDAR signatures is hard to
represent due to the difference between the writer variability of
the optimization dataset and the CEDAR dataset. Nevertheless,
the performance achieved using duplicates generated with
πdup is better than that obtained using πdef .

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1347

Fig. 8. Average EER achieved using CEDAR dataset, Signet-F and the
Proposed Method with a Large Range of parameters.

Table VIII summarizes the best results achieved in each
experiment and compares them with the signature verification
system proposed in [62], which uses up to 12 genuine signa-
tures; the one proposed in [28], which uses 10 and 12 gen-
uine signatures, and the original duplicator proposed in [18].
It should be noted that the results published in [18] and [28]
use other representations, and therefore, a direct comparison
is not possible. As can be seen, the proposed method achieves
outstanding results. Using the optimized parameter vector,
it achieves state-of-the art results using no more than three
genuine signatures.

Even duplicates generated using an πdup provide additional
data that enable the classifiers to learn to distinguish between
genuine signatures and skilled forgeries. Similar to Frias-
Martinez et al. [21] and Diaz et al. [18], the best results were
achieved using between 15 and 22 duplicates (Table VIII).
This may be an indication of the ideal number of duplicates
that can be used to improve the performance of a verification
system. Notwithstanding the fact that parameters were opti-
mized using the GPDS dataset, the proposed method was able
to generate real duplicates when it was tested using CEDAR
and MCYT-75.

C. Validation at Performance Level Using the
Gaussian Filter

As mentioned before, we hypothesized that adding some
intraclass variability in the image space would induce some
intraclass variability in the feature space as well, which allows
measuring the fitness function in the feature space. To prove
that this a valid strategy, we also present a method in which the
feature data points increase when the duplicate feature points
are placed on the feature domain. This was implemented by
perturbing the genuine feature vector with correlated noise,
which was added using a low-pass Gaussian filter (Equation 4).

We used the same protocol adopted in Section IV-B to evalu-
ate the performance in the GPDS-300, MCYT-75, and CEDAR
datasets. Instead of using the duplicates, we used the feature
vectors with noise to train the SVM classifiers. To generate

TABLE VIII

SUMMARY OF THE EXPERIMENTAL RESULTS WHERE #W, #S, AND #D
STAND FOR THE NUMBER OF WRITERS USED FOR TRAINING,

THE NUMBER OF GENUINE SAMPLES USED FOR TRAINING,
AND THE NUMBER OF DUPLICATES PER SAMPLE

USED FOR TRAINING, RESPECTIVELY

the feature vectors with noise, the standard deviation σ was
defined considering the average parameter vector πgauss.

Figures 9, 10, and 11 respectively show the performance on
the GPDS-300, MCYT-75, and CEDAR datasets, respectively.
The performance is summarized in Table VIII. As can be
observed, most of the results achieved by the classifiers trained
with the synthetic feature vectors achieved results similar to
those of the proposed method reported in Section IV-B. For
the CEDAR dataset, the synthetic feature vectors achieved

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1348 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 9. Average EER achieved using GPDS-300 dataset, Signet-F and the
feature vectors with noise.

Fig. 10. Average EER achieved using MCYT-75 dataset, Signet-F and the
feature vectors with noise.

Fig. 11. Average EER achieved using CEDAR dataset, Signet-F and the
feature vectors with noise.

better results than did the duplicates. According to Figure 4,
the sigma interval regulates the noise intensity applied in the
feature vectors. If the sigma interval is high, it will generate

synthetic feature vectors with more noise. Therefore, these
synthetic feature vectors will be far from the original feature
vectors. Consequently, the EER will be higher than when a
small interval is used.

The feature space augmentation does not provide the sig-
nature image that can be used by different feature descriptors.
It is worth to mention that generating duplicated signatures
with realistic appearances helps provide a better understanding
of signature execution from several neuroscientific perspec-
tives. Moreover, such synthetic specimens can be used with
any feature extraction method [18].

V. CONCLUSION

In this work, we proposed a method to automatically
optimize and select the parameters used to generate synthetic
samples of offline handwritten signatures in the image and
feature spaces. We showed that the proposed method can be
used to increase the number of signatures used to train an
automatic handwritten signature verification system. In addi-
tion to improving the performance of the system, the proposed
method was able to represent writers’ variability better than the
parameters proposed by Diaz et al. (2017) [18]. Furthermore,
a new approach to validate the writer variability of synthetic
signature samples using their features was proposed. The
experimental results support the hypothesis that the writer
variability observed on the image space is reflected in the
feature space as well.

The proposed method achieved an EER almost equal to zero
in MCYT-75. This dataset is characterized by writers with a
great variability. Since the writers from the GPDS dataset used
to optimize the parameters also showed great variability, this
behavior was expected. The proposed method achieved low
EERs in the CEDAR dataset. However, the optimization of
the six parameters here may not be enough to generate more
compact clusters in a feature space such as in the CEDAR
dataset. Therefore, more parameters can be optimized to solve
this issue. The different distributions of the three datasets sug-
gest that other transformations can be investigated to improve
the performance in the CEDAR dataset. The proposed method
showed interesting results for three different signature datasets
based on the Latin alphabet. To verify its generalization
capability for different writing systems, the method can also be
evaluated using signatures based on other alphabetical systems.

Notwithstanding the fact that the feature space augmentation
in our proposed method has a low computational complex-
ity [25] and presented promising results, it nonetheless needs
to have optimized parameters in order to generate more
realistic samples. As well, it does not provide a signature
image that can be used by different feature descriptors. Since
the method can represent the variability of signatures during
data augmentation in the image space, it can therefore be used
to create more robust offline handwritten signature datasets.
In addition, the generated signatures can be used to train more
robust CNN models.

ACKNOWLEDGMENT

The authors would like to thank Prof. Diego Bertolini
of the Federal University of Technology - Paraná,

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

MARUYAMA et al.: INTRAPERSONAL PARAMETER OPTIMIZATION FOR OFFLINE HANDWRITTEN SIGNATURE AUGMENTATION 1349

Prof. Daniel Weingaertner of the Federal University of
Paraná; Luiz Gustavo Hafemann and Rafael Menelau Oliveira
e Cruz of École de Technologie Supérieure.

REFERENCES

[1] S. Mitra and M. Gofman, Biometrics in a Data Driven World: Trends,
Technologies, and Challenges. Boca Raton, FL, USA: CRC Press, 2017.

[2] M. J. Allen, Foundations of Forensic Document Analysis: Theory and
Practice. Hoboken, NJ, USA: Wiley, 2016.

[3] S. Z. Li and A. Jain, Encyclopedia of Biometrics, 2nd ed. New York,
NY, USA: Springer, 2015.

[4] R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia,
“Reducing the template ageing effect in on-line signature biometrics,”
IET Biometrics, vol. 8, no. 6, pp. 422–430, Nov. 2019.

[5] D. Impedovo and G. Pirlo, “Dynamic handwriting analysis for the
assessment of neurodegenerative diseases: A pattern recognition per-
spective,” IEEE Rev. Biomed. Eng., vol. 12, pp. 209–220, 2019.

[6] K. M. Koppenhaver, Forensic Document Examination: Principles and
Practice. Totowa, NJ, USA: Humana Press, 2007.

[7] M. Diaz, M. A. Ferrer, D. Impedovo, M. I. Malik, G. Pirlo, and
R. Plamondon, “A perspective analysis of handwritten signature tech-
nology,” ACM Comput. Surv., vol. 51, no. 6, pp. 117:1–117:39, 2019.

[8] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Fixed-sized repre-
sentation learning from offline handwritten signatures of different sizes,”
Int. J. Document Anal. Recognit., vol. 21, no. 3, pp. 1–14, 2018.

[9] J. Linden, R. Marquis, S. Bozza, and F. Taroni, “Dynamic signatures:
A review of dynamic feature variation and forensic methodology,”
Forensic Sci. Int., vol. 291, pp. 216–229, Oct. 2018.

[10] A. K. Jain, K. Nandakumar, and A. Ross, “50 years of biomet-
ric research: Accomplishments, challenges, and opportunities,” Pattern
Recognit. Lett., vol. 79, pp. 80–105, Aug. 2016.

[11] D. D. Zhang, Automated Biometrics: Technologies and Systems.
Norwell, MA, USA: Kluwer, 2000.

[12] M. I. Malik and M. Liwicki, “From terminology to evaluation: Perfor-
mance assessment of automatic signature verification systems,” in Proc.
Int. Conf. Frontiers Handwriting Recognit., Sep. 2012, pp. 614–618.

[13] E. N. Zois, A. Alexandridis, and G. Economou, “Writer indepen-
dent offline signature verification based on asymmetric pixel relations
and unrelated training-testing datasets,” Expert Syst. Appl., vol. 125,
pp. 14–32, Jul. 2019.

[14] R. Plamondon and G. Lorette, “Automatic signature verification and
writer identification—The state of the art,” Pattern Recognit., vol. 22,
no. 2, pp. 107–131, Jan. 1989.

[15] D. Impedovo and G. Pirlo, “Automatic signature verification: The state
of the art,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 5,
pp. 609–635, Sep. 2008.

[16] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Offline handwritten
signature verification—Literature review,” in Proc. 7th Int. Conf. Image
Process. Theory, Tools Appl. (IPTA), Nov. 2017, pp. 1–8.

[17] M. Song and Z. Sun, “An immune clonal selection algorithm for
synthetic signature generation,” Math. Problems Eng., vol. 2014, no. 15,
pp. 1–12, 2014.

[18] M. Diaz, M. A. Ferrer, G. S. Eskander, and R. Sabourin, “Genera-
tion of duplicated off-line signature images for verification systems,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 5, pp. 961–964,
Apr. 2017.

[19] B. Fang, C. H. Leung, Y. Y. Tang, P. C. K. Kwok, K. W. Tse,
and Y. K. Wong, “Offline signature verification with generated training
samples,” IEE Proc. Vis., Image Signal Process., vol. 149, no. 2,
pp. 85–90, Apr. 2002.

[20] M. A. Ferrer, M. Diaz-Cabrera, A. Morales, J. Galbally, and
M. Gomez-Barrero, “Realistic synthetic off-line signature generation
based on synthetic on-line data,” in Proc. 47th Int. Carnahan Conf.
Secur. Technol. (ICCST), Oct. 2013, pp. 1–6.

[21] E. Frias-Martinez, A. Sanchez, and J. Velez, “Support vector machines
versus multi-layer perceptrons for efficient off-line signature recog-
nition,” Eng. Appl. Artif. Intell., vol. 19, no. 6, pp. 693–704,
Sep. 2006.

[22] J. Galbally, J. Fierrez, M. Martinez-Diaz, and J. Ortega-Garcia, “Improv-
ing the enrollment in dynamic signature verfication with synthetic
samples,” in Proc. 10th Int. Conf. Document Anal. Recognit., 2009,
pp. 1295–1299.

[23] K. Huang and H. Yan, “Off-line signature verification based on geo-
metric feature extraction and neural network classification,” Pattern
Recognit., vol. 30, no. 1, pp. 9–17, Jan. 1997.

[24] C. Rabasse, R. M. Guest, and M. C. Fairhurst, “A new method for the
synthesis of signature data with natural variability,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 38, no. 3, pp. 691–699, Jun. 2008.

[25] V. Kumar, H. Glaude, C. de Lichy, and W. Campbell, “A closer look
at feature space data augmentation for few-shot intent classification,”
in Proc. 2nd Workshop Deep Learn. Approaches Low-Resource NLP
(DeepLo), 2019, pp. 1–10.

[26] J. Schlüter and T. Grill, “Exploring data augmentation for improved
singing voice detection with neural networks,” in Proc. Int. Symp. Med.
Robot., 2015, pp. 121–126.

[27] T. DeVries and G. W. Taylor, “Dataset augmentation in feature space,”
in Proc. 5th Int. Conf. Learn. Repr., 2017, pp. 1–12.

[28] E. N. Zois, D. Tsourounis, I. Theodorakopoulos, A. L. Kesidis,
and G. Economou, “A comprehensive study of sparse representation
techniques for offline signature verification,” IEEE Trans. Biometrics,
Behav., Identity Sci., vol. 1, no. 1, pp. 68–81, Jan. 2019.

[29] M. B. Yilmaz and K. Öztürk, “Recurrent binary patterns and CNNs
for offline signature verificatio,” in Proc. Future Technol. Conf., 2019,
pp. 417–434.

[30] V. L. F. Souza, A. L. I. Oliveira, R. M. O. Cruz, and R. Sabourin,
“A white-box analysis on the writer-independent dichotomy transforma-
tion applied to offline handwritten signature verification,” Expert Syst.
Appl., vol. 154, Sep. 2020, Art. no. 113397.

[31] M. Diaz, M. A. Ferrer, S. Ramalingam, and R. Guest, “Investigating
the common authorship of signatures by off-line automatic signature
verification without the use of reference signatures,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 487–499, 2020.

[32] M. Diaz, A. Fischer, M. A. Ferrer, and R. Plamondon, “Dynamic
signature verification system based on one real signature,” IEEE Trans.
Cybern., vol. 48, no. 1, pp. 228–239, Jan. 2018.

[33] M. Diaz, A. Fischer, R. Plamondon, and M. A. Ferrer, “Towards an
automatic on-line signature verifier using only one reference per signer,”
in Proc. 13th Int. Conf. Document Anal. Recognit. (ICDAR), Aug. 2015,
pp. 631–635.

[34] M. A. Ferrer et al., “Static and dynamic synthesis of Bengali
and Devanagari signatures,” IEEE Trans. Cybern., vol. 48, no. 10,
pp. 2896–2907, Oct. 2018.

[35] M. A. Ferrer, M. Diaz, C. Carmona-Duarte, and A. Morales, “A behav-
ioral handwriting model for static and dynamic signature synthesis,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1041–1053,
Jun. 2017.

[36] J. Galbally, J. Fierrez, J. Ortega-Garcia, and R. Plamondon, “Synthetic
on-line signature generation. Part II: Experimental validation,” Pattern
Recognit., vol. 45, no. 7, pp. 2622–2632, Jul. 2012.

[37] J. Galbally, R. Plamondon, J. Fierrez, and J. Ortega-Garcia, “Synthetic
on-line signature generation. Part I: Methodology and algorithms,”
Pattern Recognit., vol. 45, no. 7, pp. 2610–2621, Jul. 2012.

[38] M. E. Munich and P. Perona, “Visual identification by signature
tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 2,
pp. 200–217, Feb. 2003.

[39] M. Diaz-Cabrera, M. A. Ferrer, and A. Morales, “Cognitive inspired
model to generate duplicated static signature images,” in Proc. 14th Int.
Conf. Frontiers Handwriting Recognit., Sep. 2014, pp. 61–66.

[40] M. Diaz-Cabrera, M. Gomez-Barrero, A. Morales, M. A. Ferrer, and
J. Galbally, “Generation of enhanced synthetic off-line signatures based
on real on-line data,” in Proc. 14th Int. Conf. Frontiers Handwriting
Recognit., Sep. 2014, pp. 482–487.

[41] J. Galbally, M. Diaz-Cabrera, M. A. Ferrer, M. Gomez-Barrero,
A. Morales, and J. Fierrez, “On-line signature recognition through the
combination of real dynamic data and synthetically generated static
data,” Pattern Recognit., vol. 48, no. 9, pp. 2921–2934, Sep. 2015.

[42] V. K. S. L. Melo, B. L. D. Bezerra, D. Impedovo, G. Pirlo, and
A. Lundgren, “Deep learning approach to generate offline handwritten
signatures based on online samples,” IET Biometrics, vol. 8, no. 3,
pp. 215–220, May 2019.

[43] M. Diaz et al., “Multiple generation of bengali static signatures,” in Proc.
15th Int. Conf. Frontiers Handwriting Recognit. (ICFHR), Oct. 2016,
pp. 42–47.

[44] M. Diaz, M. A. Ferrer, and R. Sabourin, “Approaching the intra-class
variability in multi-script static signature evaluation,” in Proc. 23rd Int.
Conf. Pattern Recognit. (ICPR), Dec. 2016, pp. 1147–1152.

[45] M. A. Ferrer, M. Diaz-Cabrera, and A. Morales, “Synthetic off-line
signature image generation,” in Proc. Int. Conf. Biometrics (ICB),
Jun. 2013, pp. 1–7.

[46] M. A. Ferrer, M. Diaz-Cabrera, and A. Morales, “Static signature
synthesis: A neuromotor inspired approach for biometrics,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 667–680, Mar. 2015.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

1350 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[47] V. Ruiz, I. Linares, A. Sanchez, and J. F. Velez, “Off-line handwrit-
ten signature verification using compositional synthetic generation of
signatures and siamese neural networks,” Neurocomputing, vol. 374,
pp. 30–41, Jan. 2020.

[48] M. Diaz, M. A. Ferrer, A. Parziale, and A. Marcelli, “Recovering western
on-line signatures from image-based specimens,” in Proc. 14th IAPR Int.
Conf. Document Anal. Recognit. (ICDAR), Nov. 2017, pp. 1204–1209.

[49] K. K. Lau, P. C. Yuen, and Y. Y. Tang, “Universal writing model
for recovery of writing sequence of static handwriting images,” Int. J.
Pattern Recognit. Artif. Intell., vol. 19, no. 05, pp. 603–630, Aug. 2005.

[50] E.-M. Nel, J. A. du Preez, and B. M. Herbst, “Estimating the pen
trajectories of static signatures using hidden Markov models,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 11, pp. 1733–1746,
Nov. 2005.

[51] V. Nguyen and M. Blumenstein, “Techniques for static handwriting tra-
jectory recovery: A survey,” in Proc. 8th IAPR Int. Workshop Document
Anal. Syst. (DAS), 2010, pp. 463–470.

[52] P. Morasso and F. A. Mussa Ivaldi, “Trajectory formation and handwrit-
ing: A computational model,” Biol. Cybern., vol. 45, no. 2, pp. 131–142,
Sep. 1982.

[53] M. Djioua and R. Plamondon, “Studying the variability of handwriting
patterns using the kinematic theory,” Human Movement Sci., vol. 28,
no. 5, pp. 588–601, Oct. 2009.

[54] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, pp. 321–357, Jun. 2002.

[55] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap,
“DBSMOTE: Density-based synthetic minority over-sampling
TEchnique,” Int. J. Speech Technol., vol. 36, no. 3, pp. 664–684,
Apr. 2012.

[56] G. Kurata, B. Xiang, and B. Zhou, “Labeled data generation with
encoder-decoder LSTM for semantic slot filling,” in Proc. Interspeech,
Sep. 2016, pp. 725–729.

[57] X. Teng, T. Wang, X. Zhang, L. Lan, and Z. Luo, “Enhancing stock
price trend prediction via a time-sensitive data augmentation method,”
Complexity, vol. 2020, pp. 1–8, Feb. 2020.

[58] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” J. Big Data, vol. 6, no. 1, p. 60, Dec. 2019.

[59] F. Vargas, M. Ferrer, C. Travieso, and J. Alonso, “Off-line handwritten
signature GPDS-960 corpus,” in Proc. 9th Int. Conf. Document Anal.
Recognit. (ICDAR), Sep. 2007, pp. 764–768.

[60] M. K. Kalera, S. Srihari, and A. Xu, “Offline signature verification and
identification using distance statistics,” Int. J. Pattern Recognit. Artif.
Intell., vol. 18, no. 07, pp. 1339–1360, Nov. 2004.

[61] L. Hu and Y.-H. Wang, “On-line signature verification based on fusion of
global and local information,” in Proc. Int. Conf. Wavelet Anal. Pattern
Recognit., Nov. 2007, pp. 295–306.

[62] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Learning features
for offline handwritten signature verification using deep convolutional
neural networks,” Pattern Recognit., vol. 70, pp. 163–176, Oct. 2017.

[63] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66,
Jan. 1979.

[64] Y. Zhang, X. Liu, F. Bao, J. Chi, C. Zhang, and P. Liu, “Particle
swarm optimization with adaptative learning strategy,” Knowl. Based
Syst., vol. 196, Jun. 2020, Art. no. 105789.

[65] F. Zhao, “Optimized algorithm for particle swarm optimization,” Int.
J. Math. Comput. Phys. Elect. Comput. Eng., vol. 10, pp. 96–100,
Feb. 2016.

[66] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int.
Conf. Neural Netw., 1995, pp. 1942–1948.

[67] K. Y. Huang, “A hybrid particle swarm optimization approach for
clustering and classification of datasets,” Knowl.-Based Syst., vol. 24,
no. 3, pp. 420–426, Apr. 2011.

[68] S. Salehi, A. Selamat, M. Reza Mashinchi, and H. Fujita, “The syn-
ergistic combination of particle swarm optimization and fuzzy sets to
design granular classifier,” Knowl.-Based Syst., vol. 76, pp. 200–218,
Mar. 2015.

[69] C. Fan, B. Hou, J. Zheng, L. Xiao, and L. Yi, “A surrogate-assisted
particle swarm optimization using ensemble learning for expensive
problems with small sample datasets,” Appl. Soft Comput., vol. 91,
Jun. 2020, Art. no. 106242.

[70] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,
pp. 53–65, Nov. 1987.

[71] P. N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to
Data Mining, 2nd ed. London, U.K.: Pearson, 2018.

Teruo M. Maruyama received the B.S. degree
in computer engineering and the M.Sc. degree in
applied computing from the State University of
Ponta Grossa, Ponta Grossa, Brazil, in 2013 and
2017, respectively. He is currently pursuing the
Ph.D. degree in informatics with the Federal Univer-
sity of Paraná, Curitiba, Brazil. His current interests
include pattern recognition, machine learning, and
image processing.

Luiz S. Oliveira received the B.S. degree in
computer science from Unicenp, Curitiba, Brazil,
the M.Sc. degree in electrical engineering and indus-
trial informatics from the Centro Federal de Edu-
cação Tecnológica do Paraná (CEFET-PR), Curitiba,
and the Ph.D. degree in computer science from
the École de Technologie Supérieure, Université du
Québec, in 1995, 1998, and 2003, respectively. From
2004 to 2009, he was a Professor with the Computer
Science Department, Pontifical Catholic University
of Paraná, Curitiba. In 2009, he joined the Federal

University of Paraná, Curitiba, where he is currently a Professor with the
Department of Informatics and the Head of the Graduate Program in computer
science. His current interests include pattern recognition, machine learning,
image analysis, and evolutionary computation.

Alceu S. Britto Jr., received the M.Sc. degree
in industrial informatics from the Centro Federal
de Educação Tecnológica do Paraná (CEFET-PR),
Brazil, in 1996, and the Ph.D. degree in computer
science from the Pontifícia Universidade Católica do
Paraná (PUCPR), Brazil, in 2001. In 1989, he joined
the Informatics Department, Universidade Estadual
de Ponta Grossa (UEPG), Brazil. In 1995, he also
joined the Computer Science Department, PUCPR,
and in 2001, the Master’s Program in Informatics
(PPGIa). His current interests include pattern recog-

nition, machine learning, image analysis, and evolutionary computation.

Robert Sabourin (Member, IEEE) joined the
Physics Department, Montreal University, in 1977,
where his main contribution was the design and
implementation of a microprocessor-based fine
tracking system combined with a low-light level
CCD detector. In 1983, he joined the staff of
the École de Technologie Supérieure, Université
du Québec, Montreal, QC, Canada, where he
co-founded the Department of Automated Manufac-
turing Engineering. He is currently a Full Professor
with the Université du Québec, and teaches pattern

recognition, evolutionary algorithms, neural networks, and fuzzy systems.
In 1992, he joined the Computer Science Department, Pontificia Universidade
Católica do Paraná, Curitiba, Brazil. Since 1996, he has been a Senior
Member of the Centre for Pattern Recognition and Machine Intelligence
(CENPARMI), Concordia University. Since 2012, he has been the Research
Chair specializing in adaptive surveillance systems in dynamic environments.
He is the author or coauthor of more than 450 scientific publications, including
journals and conference proceedings. His research interests include adaptive
biometric systems, adaptive classification systems in dynamic environments,
dynamic classifier selection, and evolutionary computation.

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARANA. Downloaded on December 03,2020 at 21:50:43 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

