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a b s t r a c t 

This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learn- 

ing for training supervised models on small datasets for texture classification. The core of such an ap- 

proach is a loss function that computes the distances between instances of interest and support vectors. 

The objective is to update the weights of CLs iteratively to learn a representation with a large margin be- 

tween classes. Each iteration results in a large-margin discriminant model represented by support vectors 

based on such a representation. The advantage of the proposed approach w.r.t. convolutional neural net- 

works (CNNs) is two-fold. First, it allows representation learning with a small amount of data due to the 

reduced number of parameters compared to an equivalent CNN. Second, it has a low training cost since 

the backpropagation considers only support vectors. The experimental results on texture and histopatho- 

logic image datasets show that the proposed approach achieves competitive accuracy with lower compu- 

tational cost and faster convergence compared to equivalent CNNs. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Convolutional neural networks (CNNs) have been established 

s the state-of-the-art approach to computer vision. CNNs achieve 

igh accuracy due to how the convolutional layers filter im- 

ges, the number of parameters available to learn representations 

1,2] , and the large datasets [3] used in their training. They usu- 

lly present high accuracy in object recognition problems, e.g., 

ars, people, animals, and digits. Networks pretrained with large 

atasets of objects can be reused in other contexts. There are two 

ays of transferring networks between contexts, fine-tuning or us- 

ng them as feature extractors. The fine-tuning procedure allows 

ast training with less data because pretrained filters can already 

dentify some patterns. Although it reduces training effort, dat a 

ay be insufficient even for fine-tuning in small datasets. 

Furthermore, when working with datasets where textural infor- 

ation prevails to the detriment of shape and spatial characteris- 

ics, the first layers of pretrained CNNs may not respond well to 
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ew patterns. There are two additional problems: (i) deeper lay- 

rs also have more problem-specific knowledge; (ii) there is the 

eed for image size adaptation, which can slow the training [4] . 

hen used as feature extractors, CNN filters are not updated. In- 

tead, the activation maps of a specific layer are used as a feature 

ector for images of a new context, and an alternative classifier is 

rained on them. They work similarly to a handcrafted feature ex- 

ractor and neither adapt to the new patterns nor generate features 

argeted to facilitate the classification task. Small and simple mod- 

ls like these are more suitable for classifying non-object and small 

atasets since they do not require data for representation learning 

ut only for training a discriminant. 

This paper proposes a novel large-margin representation learn- 

ng that overcomes most problems related to CNNs and hand- 

rafted feature extractors. For this purpose, it addresses the fol- 

owing questions: a) is it possible to learn representations and dis- 

riminants on small-size texture datasets? b) can it speed up the 

raining convergence while achieving high accuracy? The proposed 

pproach uses a short sequence of convolutional layers (CLs) to 

earn representation for texture classification. The CLs feed a large- 

argin discriminant that, in turn, provides information to update 

he CLs’ weights and increase the decision margin. A novel loss 

unction calculates the distance between instances in the decision 

rontier and anchors. The backpropagation algorithm minimizes 
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1 https://github.com/jonathandematos/lmfcn 
he loss function while enlarging the margin between classes. The 

ovelty of our approach is that it employs only instances that vio- 

ate the decision margin to train the CLs and produce latent repre- 

entations. That speeds up the convergence of the backpropagation 

lgorithm to suitable latent representation and discriminant. In ad- 

ition, it uses fewer parameters than a conventional CNN, allow- 

ng training in small datasets, and it performs well on non-object 

ontext recognition. Otherwise, the CNNs would still be more ef- 

ective. Due to using a binary large-margin discriminant, the pro- 

osed approach is designed for two-class datasets or scenarios 

ith few classes. However, when the number of classes grows, our 

ethod needs multiple binary models generating high computa- 

ional costs and making other methods, like CNNs or deep metric 

earning, more suitable. The proposed approach was evaluated on a 

ynthetic dataset based on Gaussian distributions, texture datasets, 

nd three histopathological image (HI) datasets. 

The main contributions of this paper are: (i) an approach that 

rains CLs from scratch with little data; (ii) A representation learn- 

ng method that adapts itself to the characteristics of different tex- 

ure datasets; (iii) a computationally efficient training technique 

hat uses only support vectors (SVs) in each iteration instead of 

ll training instances; (iv) A fast convergence method compared 

o methods used for training conventional CNNs; (v) resilience to 

mbalanced data; (vi) A detailed comparison of the performance 

chieved by the proposed approach with approaches using hand- 

rafted features and CNNs. 

. Related works 

The first CLs of CNNs are suitable for identifying general and 

traightforward patterns such as textures. Their training help to 

ake them adaptable to motifs of each context, so it is worth- 

hile to train these first CLs and use only them in more simple 

mage contexts. One may find different contributions in the litera- 

ure to adapt pretrained CNN models to a new domain [5] . Cimpoi 

t al. [6] proposed the Fisher vector CNN (FV-CNN), which pools 

he last CL of a pretrained network, using it as a feature vector. 

he pooling allows using input images without resizing them to fit 

 fully connected CNN (FC-CNN). They used the FV-CNN features 

s input to an SVM and compared the FC-CNN and SIFT features. 

he FV-CNN has shown to be a good texture descriptor, performing 

ell on several benchmarks. The simple fully convolutional neural 

etwork (SFCN) proposed by Gong et al. [7] uses a shallow, fully 

onvolutional network to predict brain age in MRI images. It has a 

ow computational cost due to weight sharing and performs well 

n terms of accuracy, as MRI images do not depend on spatial and 

hape characteristics. 

The texture CNN (TCNN) [4] uses a sequence of fully connected 

FC) layers instead of a support vector machine (SVM) to classify 

mages. Unlike a traditional FC-CNN, it has a global average pool- 

ng (GAP) layer at the end, which acts as an energy layer to the 

C layers. This architecture allows the joint training of CLs and the 

lassifier, eliminating the need for a pretrained CNN. This approach 

an be useful in medical imaging applications, such as MRI, CT, ra- 

iography, or microscopy, where textural characteristics are promi- 

ent [8] , but sample sizes are small. In these scenarios, transfer 

earning or using the first layers of a CNN as an FCN to extract 

exture-aware features can simplify the classification problem. The 

xtracted feature vectors can be used with a simpler classifier with 

ewer parameters than the FC layers of a CNN. 

Deep metric learning (DML) can also be used to improve the 

raining of FCNs for better filter and representation performance. 

ML is a useful alternative for high-dimensional or low-sample 

ata in applications such as face recognition and signature verifica- 

ion [9] . DML seeks to learn a representation that can identify the 

imilarity between samples, usually using a distance metric, such 
40 
s Euclidean distance. DML combines metric and representation 

earning, the latter facilitated by deep learning and the training 

f parameters in its layers, particularly CLs. Chopra et al. [9] pre- 

ented a method that uses siamese CNNs and an energy-based 

odel. It consists of using raw energy values instead of probabilis- 

ic normalized ones. Their concept of energy is analogous to the 

ne of Andrearczyk and Whelan [4] . The advantage of using CNNs 

s that they provide end-to-end training that learns low and high- 

evel features, resulting in shift-invariant detectors. Their method 

ggregates the energy output of each siamese network into one 

eural network trained with contrastive loss. The loss allows train- 

ng the system together (siamese networks and the single neu- 

al network), improving the sample representation on the energy 

ayer for texture classification. DML algorithms can be split into 

air-based or proxy-based. The former, like contrastive loss, aims 

o minimize intra-class distance and maximize inter-class distance. 

owever, this approach has prohibitive computational complexity 

nd pairs that do not contribute to the training. Therefore, sev- 

ral works have addressed these issues [10] . The ranked list loss 

ethod [11] relies on a threshold margin that gives more attention, 

sing weighting, to the samples that maximize the margins be- 

ween opposite classes. The margin determines the negative points 

oo close to the query and violates most of the margin. These 

re the negative selected points. On the other hand, proxy-based 

ethods [12,13] create an instance representing a set of instances 

f the same class. It reduces the number of training instances and 

voids noise and outliers. 

. Large-margin fully convolutional network (LMFCN) 

The proposed approach is pair-based, selecting the most ef- 

ective instances for the training procedure, reducing the training 

omplexity, and discarding irrelevant instances. It also selects spe- 

ific examples as anchors to calculate a novel loss function, which 

peeds up training. Although the proposed approach shares ideas 

f DML, our application context is different, with more instances 

er class and fewer classes than the usual DML context. 

The proposed method has three components: a fully convolu- 

ional network (FCN) with a global average pooling (GAP), a large- 

argin classifier, and a novel loss function. The LMFCN 

1 uses a se- 

uence of CLs acting as a filter bank to learn representation from 

ata used as input to a large-margin classifier. It acts as an end-to- 

nd image classifier, like a CNN but requires less training data to 

earn high discriminant representations. Its advantage is to enable 

lter training and make the latent representation more suitable for 

he classifier. In addition, the backpropagation algorithm trains the 

lters with a novel loss function that uses the distance between 

nstances of interest and their anchors provided by a large-margin 

lassifier to improve representation learning. 

.1. Training procedure and loss function 

The learning algorithm uses the concept of anchors to guide the 

raining. Anchors are instances from the training set used as refer- 

nces by the loss function to calculate the distance to instances of 

nterest. The backpropagation algorithm minimizes such distances 

uring training. Fig. 1 presents a latent space split into two regions 

y an RBF SVM classifier and the three types of anchors. 

Type 1 anchors (red circles and crosses) are the correctly clas- 

ified instances closest to the support vectors (SVs). The LMFCN 

ttempts to maximize the margin by pushing the SVs toward such 

nchors. The learning algorithm minimizes the distance between 

hem and the SVs. In Fig. 1 (a), the dotted straight lines linking SVs

https://github.com/jonathandematos/lmfcn
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Fig. 1. A two-class latent space with a decision boundary computed by an RBF SVM. Circles are samples of class 0, and crosses, class 1. Bigger symbols mean the SVs for 

each class. In blue is the region of class 0, and in yellow is class 1. Dashed-straight black lines link the instances to their anchors. In red are the anchors for three different 

situations on the calculations. (a) Reference anchors to the SVs; (b) Anchors used to move the misclassified instances; (c) Anchors used to increase the separation of instances 

from opposite classes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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dentify the three anchors of each SV and help visualize the effect 

f the distance minimization. Type 2 anchors ( Fig. 1 (b)) are the 

Vs closest to misclassified examples used to move such instances 

n the direction of the right side of the decision boundary. Type 3 

nchors are the closest correctly classified instances of the oppo- 

ite class, as shown in Fig. 1 (c). Type 3 anchors help to maximize

he distance between samples of different classes. The number of 

nchors, regardless of their type, is a hyperparameter. 

When using the three types of anchors, all instances from the 

raining set participate in the backpropagation procedure. However, 

s further explained, only Type 1 and 2 anchors (two terms of our 

oss function) are generally used, so in one epoch, only the SVs and 

he misclassified instances of the training set usually participate in 

he backpropagation procedure. These instances are determined af- 

er obtaining the latent representation of all images by a random 

nitialized FCN and training the large-margin discriminant. Usually, 

ven with an untrained FCN, not all instances become SVs or are 
Fig. 2. An overview of the traini

41 
isclassified. Thus, some training instances are used at the back- 

ropagation procedure in the first epoch without using the Type 3 

nchors. 

The training procedure starts with a dataset of size n denoted 

s X = { X 

t , o t } n 
t=1 

, where t indexes images X 

t of width w , height h

nd c channels in X , and o t ∈ N : [0 , 1] is its expected output. All

mages from X are fed to CLs denoted as f fcn (. ) , which produces 

 matrix T n ×φ , with φ being the size of the latent representation 

step 1 at Fig. 2 ). The algorithm uses matrix T to calculate ma- 

rix P ( Eq. (1) ), which in turn is used to calculate matrices K 

n ×n 

nd D 

n ×n using Eqs. (2) and (3) , respectively (step 2 at Fig. 2 ).

 is an RBF kernel matrix used to train a large margin classifier 

f s v (. ) , which produces the output y t for each element t of X , and 

lso provides the set of support vectors (SVs) indexes S = { s u } v u =1 , 

here s u ⊂ N : [0 , n [ and v is the number of SVs (step 3 at Fig. 2 ).

 is essential to the rest of the algorithm as it contains the pair- 

ise distance of all instances and is used to create the anchor 
ng scheme of the LMFCN. 
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atrices. 

p i j = 

φ∑ 

b=0 

( T ib − T jb ) 
2 (1) 

 i j = exp (−γ p i j ) (2) 

 i j = 

√ 

p i j (3) 

Type 1 anchors (step 4 at Fig. 2 ) are obtained from ma- 

rix D , the set S , the expected output o t , and the output from

f sv ( f fcn ( X 

t )) , as shown in Eq. (4) . In the first step of the first

poch, the LMFCN generates the matrix T , forwarding all training 

mages through a randomly initialized FCN. T contains the latent 

epresentation of all images that are then used to compute the dis- 

ance matrices and the large-margin discriminant. Finally, the SVs 

iscovered during the optimization process and the correct and 

isclassified instances predicted by the discriminant are used to 

efine the anchors of the three types. 

 i j = 

{
τ if i = j or j ∈ S or o i � = o j or o j � = f sv ( f fcn (X 

j )) 
d i j otherwise 

(4) 

here e i j is either the distance between SVs and their anchors ( d i j )

r a large constant τ that indicates that there is no SV-anchor re- 

ation (uninteresting instances), f fcn ( X 

t ) denotes the latent repre- 

entation generated by the FCN for an input X 

t , f sv (. ) is the output 

redicted by the large-margin classifier. The constant τ is defined 

s the largest distance in D multiplied by a large integer (10 0 0),

imulating an infinite distance. 

Furthermore, we also define the sorting function f argsort (. ) that 

akes a vector as input and returns a vector of indexes sorted in 

ncreasing order. Therefore, the anchor matrix A 

s ×n is calculated 

sing Eq. (5) . During the calculation of A , all values of D corre-

ponding to distances of possible anchors of each SV are copied to 

n auxiliary matrix E . Values that are not anchors are replaced by 

. D and E have the same dimensions with part of values identical 

nd τ replacing uninteresting distances. The return of the f argsort (. ) 

unction over each line of E is assigned to each line of A , so at the

nd, it has a list of indexes pointing to elements in T (latent rep-

esentations). For example, taking only the five first values of each 

ine of A is the same as taking the indexes of the five closest an-

hors to an SV. The same procedure applies in calculating Q and R ,

ut each of their lines relates to indexes in T pointing to anchors 

f Type 2 and 3. 

 u = f argsort ( e s u ) with s u ∈ S and u ∈ [0 , | S| [ (5) 

ikewise A , we calculate with the Eqs. (7) and (9) the ma- 

rices M 

m ×n and G 

g×n for type 2 and 3 anchors, respectively 

step 4 at Fig. 2 ). We define a set of indexes to the misclas-

ified and correct classified instances from X as Q = { q | q ⊂ N :

0 , n [ ∧ f sv ( f fcn ( X 

q )) � = o q } , and R = { r | r ⊂ N : [0 , n [ ∧ r / ∈ S ∪ Q } , re-

pectively. 

 i j = 

{
d i j if i ∈ Q and j ∈ S and i � = j 
τ otherwise 

(6) 

 i = f argsort ( z q i ) with q i ∈ Q and i ∈ [0 , | Q | [ (7) 

 i j = 

{
d i j if i ∈ R and j ∈ R and o i � = o j 

τ otherwise 
(8) 

 i = f argsort ( h r i ) with r i ∈ R and i ∈ [0 , | R | [ (9) 
42 
here z i j and h i j in Eqs. (6) and (8) are the distance between 

isclassified instances and the SVs ( d i j ) and the distance between 

orrect classified instances from opposite classes ( d i j ), respectively. 

gain, τ is a large constant that indicates uninteresting instances. 

Step 5 of the algorithm is the weight updating of the FCN by 

he backpropagation algorithm using the loss function with the an- 

hors and the images from X 

S , X 

Q , and X 

R , which contain the im- 

ges corresponding to the SVs, the misclassified, and the correct 

lassified images. They are fed to the FCN to calculate the gradients 

nd calculate the loss functions to update the CL weights. Steps 1 

o 5 define one epoch. After step 5, the process restarts from step 

, so the latent representation is computed again, as though the 

atrices P , K and D and the large-margin discriminant is retrained 

n such an updated latent representation, producing another set of 

Vs allowing recalculation of matrices A , M and G . Therefore, the 

lements of matrix T differ from the previous epoch because of the 

pdated FCN weights. 

The proposed loss function relies on the similarity between ex- 

mples, and it has three terms, as shown in Eq. (10) . It aims at

nding a latent representation that maximizes the margin ( L sv ) 

hile pushing misclassified examples towards the right side of the 

ecision boundary ( L mc ) and moving well-classified examples far- 

her away from the decision boundary ( L cc ). Although the sum 

f the loss function terms is not explicitly weighted in Eq. (10) , 

he number of SVs and the number of misclassified and correctly 

lassified instances work as an implicit weighting mechanism in 

qs. (11) –(13) . 

 = L sv + L mc − L cc (10) 

L sv calculates the sum of distances between SVs and their an- 

hors using A , as shown in Eq. (11) . Consequently, the gradients 

re affected only by the SV instances, not by the Type 1 anchors, 

s they were already generated and stored in T . The backpropaga- 

ion procedure updates the weights in a way that the latent repre- 

entation generated by f fcn (. ) has the smallest possible distance to 

he fixed values of Type 1 anchors at the current epoch. Therefore, 

he weights are updated to move the SVs and not the anchors. 

 sv = 

1 

| S | 
|S| ∑ 

i =0 

s v close ∑ 

j=1 

[ f fcn (X 

s i ) − t a i j 
] 2 (11) 

here s v close is the number of anchors to use for each SV, f fcn (. ) is 

he FCN updated by the backpropagation procedure, X 

s i is the ma- 

rix that represents the s i image from X , a i j is an index pointing to 

n anchor instance in the input set X , t a i j 
is the latent representa-

ion of an image X 

a i j , and | S | is the number of SVs. 

The training algorithm computes the loss over the entire set 

f SVs as a single batch. It is also possible to use mini-batches, 

ut considering small-size datasets and an FCN with compact ar- 

hitecture that yields a low-dimensional latent representation, this 

s unnecessary. In the next epoch, the updated weights will affect 

he generation of the latent representation of the entire dataset. 

herefore, the latent representation of anchors also changes, and 

he training algorithm builds a new set of anchors. 

L mc calculates the summation of distances between misclas- 

ified instances and their anchors using matrix M , as shown in 

q. (12) . We also use all misclassified instances as a single batch, 

lthough there is no limitation to performing it in mini-batches. 

he influence of L mc in the training algorithm is the weight up- 

ating that minimizes the distance between the misclassified in- 

tances and their closest SVs. Consequently, the misclassified in- 

tances are pushed towards the right side of the decision bound- 

ry. 

 mc = 

1 

| Q | 
| Q | ∑ 

i =0 

wr close ∑ 

j=0 

[ f fcn (X 

q i ) − t m i j 
] 2 (12) 
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Table 1 

The architecture of the FCN ( w : width, h : height, c: number of channels, φ: 

dimension of the latent representation). 

Layer Input Output 

Convolutional Layer w × h × c w × h × 64 

Max Pooling w × h × 64 w/ 2 × h/ 2 × 64 

Convolutional Layer w/ 2 × h/ 2 × 64 w/ 2 × h/ 2 × 128 

Max Pooling w/ 2 × h/ 2 × 128 w/ 4 × h/ 4 × 128 

Convolutional Layer w/ 4 × h/ 4 × 128 w/ 4 × h/ 4 × φ

Global Average Pooling w/ 4 × h/ 4 × φ 1 × 1 × φ

Batch Normalization and ReLU after each CL. 
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here wr close is the number of anchors for each misclassified in- 

tance, f fcn (. ) is the FCN updated by the backpropagation, X 

q i is 

he matrix that represents the q i image from X , m 

i j is an index 

ointing to an anchor instance in the input set X , t m i j 
is the latent

epresentation of an image X 

m i j , and | Q | is the number of misclas-

ified instances. 

When looking at only a single misclassified instance, the weight 

pdating may not be enough to move such an instance to the right 

ide of the decision boundary because its anchors are SVs right at 

he margin of the decision boundary. Despite that, the misclassified 

xample can become an SV in the following training epoch. 

L cc represents the distance between well-classified instances 

nd their anchors. Since we want to maximize such a distance, 

omputed by Eq. (13) , it is incorporated to the loss function as 

 negative term, which is minimized during training. 

 cc = 

1 

| R | 
| R | ∑ 

i =0 

sh close ∑ 

j=0 

[ f fcn (X 

r i ) − t g i j 
] 2 (13) 

here sh close is the number of anchors for each correctly classi- 

ed instance, f fcn (. ) is the FCN updated by the backpropagation, 

 

r i is the matrix that represents the r i image from X , g i j is an in- 

ex pointing to an anchor instance in the input set X , t g i j 
is the

atent representation of an image X 

g i j , and | R | is the number of

orrect classified instances. 

The number of anchors used for each training instance is con- 

rolled by s v close , wr close , and sh close in Eqs. (11) –(13) , respectively. 

sually, complex classification problems require a higher number 

f anchors. Furthermore, using all three terms of the proposed loss 

unction in the training process may not always be necessary. L sv 

eads to good representations as such a loss is directly related to 

Vs and margin maximization. The computational cost for com- 

uting this loss term is not high and decreases as the number of 

nstances used by the backpropagation algorithm reduce at each 

raining epoch. Computing L mc is also not expensive because the 

umber of incorrectly classified examples tends to decrease over 

he training epochs. On the other hand, computing L cc can become 

ery expensive because the number of well-classified instances 

ends to increase over the training epochs. Therefore, the term L cc 

hould be used wisely, preferably only on challenging problems 

here just the other two terms of the proposed loss function may 

ot lead to a low training error. 

After the loss calculation and weight updating, a model is re- 

ained if the validation accuracy shows improvement. The entire 

rocess from step one to step five in Fig. 2 repeats for a user-

efined number of epochs, and after it, the final model is the one 

ith the best validation accuracy. 

.2. FCN architecture 

The FCN is a sequence of CLs similar to ones used in CNNs, used 

s filter banks to learn representation related to textures, as pre- 

ented in Table 1 . Pooling layers follow these layers to reduce the 
43 
nput size progressively. The deeper the layers, the narrower the 

atent representation, but with an increasing number of channels, 

hich allows more filters combination, increasing the complexity 

f the representation. At the end of the CLs, a GAP layer builds a 

atent representation where each element represents the response 

f a filter combination to a texture, measuring how much it hap- 

ened and not its position on the image. The GAP layer also makes 

he output dimension independent of the input size, and the la- 

ent representation will always have the same number of channels 

t the end of the FCN. Such a latent representation feeds a large- 

argin discriminant to learn classification tasks. We compared our 

pproach with two CNNs with identical architecture ( Table 1 ), but 

ith a sequence of FC layers as discriminant after the GAP layer. 

e employed binary cross-entropy (BCE) loss and hinge loss for 

inary problems and cross-entropy loss in multiclass problems. 

The large-margin classifier of the LMFCN is a support vector 

achine (SVM) with an RBF kernel, which Gram matrix K is ob- 

ained by Eq. (2) calculated jointly with the distance matrix D . 

art of the classifier calculation is reused and performed in GPU. 

e chose the precomputed RBF kernel due to its ease of compu- 

ation using the GPU resources and space separation capacity. Al- 

hough a linear kernel has reduced computational cost, it would 

equire more training of the FCN weights to provide features with 

ore class separation. In the preliminary studies, we compared the 

wo kernel approaches and verified the advantage of the RBF. 

A large-margin discriminant is inherently binary, and to deal 

ith multiclass problems, we adopted the one-vs-all (OVA) ap- 

roach, which reduces multiclass problems into multiple binary 

lassification problems. In the training stage, one provides all in- 

tances to all n c pairs of LMFCNs. After training all the n c LM- 

CNs, we discard the discriminants, keeping only the FCNs. Then, 

e train a new multiclass SVM. The new classifier is trained using 

 latent representation with φ × n c , which is the concatenation of 

ll FCN latent representations. At the end of the training process, 

he model comprises n c FCNs with an φ-dimensional output and a 

ulticlass SVM with a latent representation of φ × n c dimensions. 

he multiclass SVM holds internally multiple binary SVMs with 

BF kernel on OVA configuration. Although this approach seems 

imilar to using multiple SVMs trained with the FCNs, the new 

lassifiers have access to a latent representation that is better fitted 

or them. 

The computational cost for training the LMFCN and equivalent 

NNs up to the GAP layer is proportional to the number and res- 

lution of input images ( n × w × h × c) and the number weights 

 αfcn ). The LMFCN replaces the FC layers (computational cost of 

fc × n ) with an SVM, which requires kernel calculation ( n 2 ), and 

equential minimal optimization (SMO) algorithm, which requires 

 

3 in the worst case. Assuming a small training set, the SMO cost 

s lower than n × αfcn . However, for large datasets, where n 2 is 

reater than αfcn , the problem becomes more suitable for conven- 

ional CNN architectures. 

The main advantage of the LMFCN is using only the SVs in the 

ackpropagation, which reduces its computational cost from n to 

 S | . The CLs used on both LMFCN and conventional CNNs have 

everal trainable parameters. Therefore, having only SVs as train- 

ng instances reduces the number of training instances and speeds 

p the training process, making the loss function converge faster 

ithin a few epochs. 

. Experimental results and discussion 

The proposed LMFCN is evaluated on images with texture char- 

cteristics and low training data availability. We used a synthetic 

ataset of images generated from two Gaussian distributions with 

triped patterns, the Salzburg Texture Image Database [14] (misc 
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Fig. 3. Learning curves of the LMFCN with the Gaussian image dataset and a 2-dimensional latent representation. Parameters: s v close = 5 , wr close = 1 , and sh close = 0 . 
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2 Intel Xeon E5-2620 processor, 64 GB RAM, Tesla P100 GPU with 12 GB of VRAM, 
nd fabric categories), and three datasets of histopathological im- 

ges (HIs): BreaKHis [15] , BACH [16] , and CRC [17] . 

Figure 3 shows the learning curves of the LMFCN with the 

aussian image dataset over 20 epochs. The best-balanced accu- 

acy values for training, validation, and test sets correspond to the 

eak validation accuracy. It is possible to observe that the value of 

osses and the number of SVs decrease over the epochs, and the 

ccuracy rises. That shows that the SVs are getting closer to their 

nstances due to the loss reduction. In addition, the decrease in the 

umber of SVs indicates that better separability is being achieved. 

Table 2 compares the results of the LMFCN with other CNN 

rchitectures on five datasets. First, we compared with two addi- 

ional LMFCNs, one with residual blocks (LMFCN-res) and one with 

nception blocks (LMFCN-inc) [18] , and two CNNs with architec- 

ures similar to the LMFCN, one trained with hinge loss (CNN-H) 

nd one trained with binary cross-entropy loss (CNN-CE). These 

wo CNNs are equivalent to TCNNs [4] since they use a short se- 

uence of CLs and a GAP to produce energy values. We limited the 

umber of training epochs to 100 and 20 for the CNNs and LM- 

CN, respectively. We also compared the LMFCN with pretrained 

esNet18 and InceptionV3, used as feature extractors, and an SVM 

ith RBF kernel as a discriminant. Furthermore, we used PCA to 

educe the feature vectors generated by these two CNNs from 512 

nd 2048 to 16, the same size used by the other architectures. 

inally, we compared our approach with pretrained CNNs fine- 

uned on the target datasets. The ResNet18 FT, DenseNet FT, and 

queezeNet FT had their first layers frozen and training only two 

dditional FC layers at their end to adapt their output to the target 

atasets. We also allowed them to train for 100 epochs. Overall, 

he LMFCN converges to a latent representation that generalizes 

ell much faster (less than ten epochs for all datasets) than dif- 

erent CNN architectures. Furthermore, in 2 out of 5 datasets, the 

ccuracy achieved by the LMFCN on the test sets is higher than 

hat achieved by other CNNs. For the three other datasets, the dif- 

erence in accuracy is almost negligible. 

Table 3 shows the average results of balanced accuracy of 

ve repetitions comparing the results achieved by the LMFCN 

ith shallow approaches that employ an SVM and three hand- 

rafted feature extractors: Local Binary Pattern (LBP), Gray Level 

o-occurrence Matrix (GLCM), and Parameter Free Threshold Ad- 

acency Statistics (PFTAS) [15] . The LMFCN uses a 59-dimensional 

atent representation, the same dimension as the smallest feature 

ector, obtained with the LBP with uniform patterns for a fair 

omparison. PFTAS and GLCM produce 162- and 169-dimensional 

eature vectors, respectively. PFTAS achieved the best accuracy 

mong the handcrafted feature extractors on three datasets (BACH, 
U

44
reaKHis, and CRC). LBP achieved the best accuracy on Salzburg 

nd GLCM on the Gaussian dataset. However, the LMFCN with 

 59-dimensional latent representation achieves higher accuracy 

han all shallow methods on all datasets, indicating its adaptability 

o different problems and datasets. 

The multiclass experiments were carried out on three HI 

atasets and included comparisons against handcrafted feature ex- 

ractors GLCM, LBP, and PFTAS, as though as ResNet18 and In- 

eptionV3 as feature extractors. We also used a CNN with cross- 

ntropy loss (CE) and similar architecture to the LMFCN but using 

ore filters. For a fair comparison, the number of filters is propor- 

ional to the total number of parameters summing all OVA mod- 

ls of the LMFCN. Finally, we used a ResNet18, a DenseNet, and 

 SqueezeNet, adding two more FC layers as in the CNN-CE and 

reezing the first layers during the fine-tuning. 

Table 4 shows the average balanced accuracy for all evaluated 

ethods. It is noticeable the superior performance of the LMFCN 

ver all others. In the case of the CNNs, we allowed the training 

rocedure to extend over 400 epochs. Although the LMFCN uses 

ultiple models, we let each one only train for ten epochs. The 

alanced accuracy helps identify problems in imbalanced datasets. 

ur approach presented a promising performance on the BreaKHis 

ataset, which significantly differs between some classes, e.g., duc- 

al carcinoma and phyllodes tumor. This result shows that the 

MFCN performed well in imbalanced scenarios. We also no- 

iced that the LMFCN performed well on the imbalanced OVA 

ubproblems. 

.1. Computation complexity 

Table 5 compares the running time 2 of a CNN and the LMFCN 

o complete ten training epochs for BreaKHis and BACH datasets, 

he two most challenging ones with different characteristics. The 

reaKHis dataset has more but smaller images, while the BACH 

ataset has fewer images but bigger ones. Table 6 shows that the 

NN took more epochs to achieve the best validation accuracy than 

he LMFCN. There was more difference for the BACH dataset due 

o the fewer images than BreaKHis. Fewer images reduce the SMO 

nd matrices calculation time, as shown in Table 7 . The LMFCN 

omplexity is related to the number of instances and takes advan- 

age of its fast convergence. 

The LMFCN reduces the number of SVs over the training epochs. 

ewer SVs imply that the computational effort reduces, as the first 
buntu 20.04.4 LTS, Python 3.6.13, and Pytorch 1.2.0+cu92. 
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Table 2 

Average balanced accuracy and standard deviation for the LMFCN and equivalent CNN architectures. 

Epoch refers to the training epoch where the best validation accuracy was achieved. NA: Not applicable 

for models used as feature extractors. 

Dataset Architecture Training Validation Test Epoch 

BACH LMFCN 0.8811 ± 0.0426 0.7857 ± 0.0221 0 . 8056 ± 0 . 0203 6 

LMFCN-res 0.8845 ± 0.0264 0.7323 ± 0.0388 0.7570 ± 0.0417 18 

LMFCN-inc 0.8750 ± 0.0451 0.7759 ± 0.0531 0.7773 ± 0.0392 3 

CNN-CE 0.8926 ± 0.0135 0 . 8200 ± 0 . 0291 0.7864 ± 0.0212 88 

CNN-H 0.8534 ± 0.0410 0.8038 ± 0.0261 0.7838 ± 0.0242 68 

ResNet18 0 . 9981 ± 0 . 0026 0.7596 ± 0.0122 0.7584 ± 0.0270 NA 

InceptionV3 0.6295 ± 0.0746 0.5924 ± 0.0625 0.6049 ± 0.0630 NA 

ResNet18 FT 0.9184 ± 0.0158 0.8198 ± 0.0281 0.7812 ± 0.0251 10 

DenseNet FT 0.9740 ± 0.0243 0.7782 ± 0.0334 0.7906 ± 0.0302 17 

SqueezeNet FT 0.6690 ± 0.0677 0.7058 ± 0.0538 0.6512 ± 0.0125 37 

BreaKHis LMFCN 0 . 9882 ± 0 . 0064 0 . 9442 ± 0 . 0137 0 . 8942 ± 0 . 0372 5 

LMFCN-res 0.9175 ± 0.0089 0.9040 ± 0.0185 0.8814 ± 0.0071 9 

LMFCN-inc 0.9252 ± 0.0091 0.8953 ± 0.0349 0.8876 ± 0.0272 2 

CNN-CE 0.8926 ± 0.0092 0.9122 ± 0.0226 0.8926 ± 0.0140 91 

CNN-H 0.8560 ± 0.0041 0.8856 ± 0.0166 0.8638 ± 0.0042 91 

ResNet18 0.9777 ± 0.0062 0.8034 ± 0.0120 0.8262 ± 0.0122 NA 

InceptionV3 0.6058 ± 0.0207 0.6064 ± 0.0209 0.5949 ± 0.0207 NA 

Resnet18 FT 0.9154 ± 0.0342 0.8890 ± 0.0190 0.8640 ± 0.0143 37 

DenseNet FT 0.8776 ± 0.0738 0.8900 ± 0.0171 0.8640 ± 0.0150 25 

SqueezeNet FT 0.4996 ± 0.0089 0.5174 ± 0.0149 0.5108 ± 0.0175 23 

CRC LMFCN 0.9924 ± 0.0046 0.9914 ± 0.0024 0.9914 ± 0.0060 6 

LMFCN-res 0.9912 ± 0.0029 0.9862 ± 0.0088 0.9873 ± 0.0086 19 

LMFCN-inc 0.9906 ± 0.0041 0.9903 ± 0.0045 0.9900 ± 0.0068 17 

CNN-CE 0.9828 ± 0.0070 0 . 9934 ± 0 . 0025 0.9880 ± 0.0111 31 

CNN-H 0.9928 ± 0.0038 0.9924 ± 0.0027 0 . 9928 ± 0 . 0070 30 

ResNet18 0 . 9991 ± 0 . 0013 0.9683 ± 0.0081 0.9680 ± 0.0150 NA 

InceptionV3 0.7718 ± 0.0352 0.7670 ± 0.0375 0.7842 ± 0.0355 NA 

ResNet18 FT 0.9936 ± 0.0094 0.9788 ± 0.0165 0.9814 ± 0.0112 42 

DenseNet FT 0.9906 ± 0.0094 0.9884 ± 0.0086 0.9862 ± 0.0081 34 

SqueezeNet FT 0.9104 ± 0.0123 0.9258 ± 0.0162 0.9306 ± 0.0098 41 

Salzburg LMFCN 0.9842 ± 0.0049 0.9446 ± 0.0083 0.9230 ± 0.0081 8 

LMFCN-res 0.8729 ± 0.0187 0.8411 ± 0.0184 0.8362 ± 0.0123 9 

LMFCN-inc 0.8877 ± 0.0174 0.8666 ± 0.0301 0.8450 ± 0.0214 3 

CNN-CE 0.8966 ± 0.0103 0.8762 ± 0.0100 0.8602 ± 0.0115 91 

CNN-H 0.8258 ± 0.0257 0.8292 ± 0.0277 0.8046 ± 0.0314 84 

ResNet18 0 . 9946 ± 0 . 0033 0.9046 ± 0.0221 0.8932 ± 0.0088 NA 

InceptionV3 0.6680 ± 0.0332 0.6607 ± 0.0323 0.6644 ± 0.0473 NA 

ResNet18 FT 0.9744 ± 0.0104 0 . 9494 ± 0 . 0188 0 . 9470 ± 0 . 0130 45 

DenseNet FT 0.9792 ± 0.0170 0.9474 ± 0.0173 0.9460 ± 0.0132 38 

SqueezeNet FT 0.5712 ± 0.0808 0.7332 ± 0.0169 0.7242 ± 0.0266 28 

Gaussian LMFCN 1 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.9990 ± 0.0022 2 

LMFCN-res 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.9970 ± 0.0067 0.9708 ± 0.0304 15 

LMFCN-inc 1 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.9586 ± 0.0472 9 

CNN-CE 0.9950 ± 0.0061 1 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 72 

CNN-H 1 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 1 . 0 0 0 0 ± 0 . 0 0 0 0 56 

ResNet18 0.9740 ± 0.0109 0.6126 ± 0.0198 0.6176 ± 0.0257 NA 

InceptionV3 0.5102 ± 0.0235 0.5311 ± 0.0185 0.5021 ± 0.0258 NA 

ResNet18 FT 0.9700 ± 0.0050 0.9310 ± 0.0129 0.9210 ± 0.0156 19 

DenseNet FT 0.9960 ± 0.0089 0.8958 ± 0.0175 0.8802 ± 0.0167 33 

SqueezeNet FT 0.5046 ± 0.0071 0.5236 ± 0.0370 0.5188 ± 0.0310 38 
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erm of the loss function depends on the number of SVs. Compared 

o equivalent CNNs, the LMFCN has an extra cost related to the 

omputation of kernel K , distance matrix D , and the quadratic opti- 

ization problem solved by the SMO algorithm, which has compu- 

ational complexities O (n 2 ) , O (n 2 ) , and O (n 3 ) , respectively. CNNs

ave a training complexity proportional to the number of instances 

nd weights. Therefore, compared to the LMFCN, CNNs have more 

arameters, use more instances in the backpropagation algorithm, 

nd take more epochs to converge. 

.2. Discussion 

The experimental results have shown that the LMFCN out- 

erforms all other methods in a scenario composed of textu- 

al images and small-size datasets. Besides achieving higher ac- 
45
uracy, the proposed method has several advantages over shal- 

ow and deep methods. The LMFCN approach requires little data 

o properly train a sequence of CLs and a large-margin discrim- 

nant. In the experiments comparing the LMFCN with equivalent 

NNs, using a 16-dimensional latent representation, the LMFCN 

chieved training stability and high accuracy within 20 training 

pochs, while the CNNs needed 100 epochs to achieve comparable 

erformance. 

The latent representation learned by the LMFCN, constrained 

o a dimensionality similar to shallow methods (59- and 162- 

imensional), is more discriminant than LBP, PFTAS, and GLCM. 

s a result, the LMFCN achieved higher balanced accuracy than 

he compared methods. Furthermore, the LMFCN obtained a com- 

etitive accuracy even with a 16-dimensional latent representa- 

ion. Moreover, the improvement achieved by increasing the latent 
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Table 3 

Average balanced accuracy and standard deviation for LMFCN, GLCM, LBP, and PFTAS. The 

best results on each dataset are underlined. 

Dataset Method Training Validation Test 

BACH LMFCN-59 0.9664 ± 0.0751 0.7888 ± 0.0577 0.7684 ± 0.0435 

LMFCN-162 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 8068 ± 0 . 0600 0 . 7934 ± 0 . 0536 

GLCM 0.7346 ± 0.0199 0.6309 ± 0.0346 0.6618 ± 0.0711 

LBP 0.9146 ± 0.0154 0.7455 ± 0.0442 0.7005 ± 0.0228 

PFTAS 0.9899 ± 0.0037 0.7372 ± 0.0634 0.7608 ± 0.0361 

BreaKHis LMFCN-59 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.9639 ± 0.0247 0.9476 ± 0.0075 

LMFCN-162 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 9666 ± 0 . 0183 0 . 9595 ± 0 . 0050 

GLCM 0.8128 ± 0.0086 0.8117 ± 0.0375 0.8076 ± 0.0071 

LBP 0.9292 ± 0.0059 0.7998 ± 0.0099 0.7925 ± 0.0098 

PFTAS 0.9801 ± 0.0034 0.9237 ± 0.0236 0.9145 ± 0.0168 

CRC LMFCN-59 0.9977 ± 0.0022 0 . 9937 ± 0 . 0023 0 . 9883 ± 0 . 0084 

GLCM 0.9864 ± 0.0036 0.9828 ± 0.0055 0.9853 ± 0.0101 

LBP 0.9974 ± 0.0012 0.9431 ± 0.0099 0.9479 ± 0.0061 

PFTAS 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.9852 ± 0.0025 0.9872 ± 0.0097 

Salzburg LMFCN-59 0 . 9994 ± 0 . 0 0 06 0 . 9672 ± 0 . 0112 0 . 9500 ± 0 . 0180 

GLCM 0.7706 ± 0.0163 0.7257 ± 0.0186 0.7338 ± 0.0142 

LBP 0.9987 ± 0.0012 0.9282 ± 0.0209 0.9116 ± 0.0208 

PFTAS 0.9650 ± 0.0051 0.9096 ± 0.0124 0.8973 ± 0.0137 

Gaussian LMFCN-59 1 . 0 0 0 0 ± 0 . 0 0 0 0 0 . 9354 ± 0 . 1254 0 . 9880 ± 0 . 0121 

GLCM 0.9583 ± 0.0028 0.9327 ± 0.0110 0.9527 ± 0.0191 

LBP 0.6303 ± 0.0091 0.6710 ± 0.0131 0.6109 ± 0.0075 

PFTAS 0.5578 ± 0.0080 0.5953 ± 0.0077 0.5608 ± 0.0076 

Table 4 

Average balanced accuracy and standard deviation on three HI datasets for seven methods 

considering a multiclass scenario. 

Dataset Method Training Validation Test 

BACH LMFCN 0.9690 ± 0.0348 0 . 7170 ± 0 . 0210 0 . 6854 ± 0 . 0278 

CNN-CE 0.8390 ± 0.0184 0.6788 ± 0.0406 0.6444 ± 0.0187 

GLCM 0.4081 ± 0.0183 0.4003 ± 0.0753 0.3637 ± 0.0303 

LBP 0.4643 ± 0.0334 0.4871 ± 0.0729 0.3951 ± 0.0896 

PFTAS 0.6229 ± 0.0146 0.5690 ± 0.0464 0.6043 ± 0.0235 

ResNet18 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.6056 ± 0.0578 0.5671 ± 0.0300 

InceptionV3 0.4628 ± 0.0807 0.4269 ± 0.0904 0.4057 ± 0.0261 

ResNet18 FT 0.6721 ± 0.0855 0.5513 ± 0.0078 0.4668 ± 0.0575 

DenseNet FT 0.9524 ± 0.0843 0.6220 ± 0.0453 0.4842 ± 0.0502 

SqueezeNet FT 0.5692 ± 0.1180 0.6238 ± 0.0676 0.5462 ± 0.0681 

BreaKHis LMFCN 0.9688 ± 0.0285 0 . 8125 ± 0 . 0321 0 . 7895 ± 0 . 0162 

CNN-CE 0.8032 ± 0.0319 0.7347 ± 0.0238 0.7040 ± 0.0307 

GLCM 0.4697 ± 0.0111 0.4218 ± 0.0212 0.4091 ± 0.0050 

LBP 0.9235 ± 0.0084 0.5373 ± 0.0174 0.5218 ± 0.0147 

PFTAS 0.9537 ± 0.0086 0.6643 ± 0.0109 0.6768 ± 0.0147 

ResNet18 1 . 0 0 0 0 ± 0 . 0 0 0 0 0.5933 ± 0.0341 0.5834 ± 0.0213 

InceptionV3 0.1848 ± 0.0182 0.1745 ± 0.0194 0.1767 ± 0.0123 

ResNet18 FT 0.3496 ± 0.0633 0.4055 ± 0.0343 0.3546 ± 0.0182 

DenseNet FT 0.8582 ± 0.1184 0.5561 ± 0.0475 0.5194 ± 0.0655 

SqueezeNet FT 0.3038 ± 0.0652 0.3689 ± 0.0108 0.3589 ± 0.0186 

CRC LMFCN 0.9834 ± 0.0127 0 . 9379 ± 0 . 0065 0 . 9338 ± 0 . 0073 

CNN-CE 0.7209 ± 0.2614 0.3946 ± 0.0453 0.3901 ± 0.0402 

GLCM 0.6062 ± 0.0057 0.5960 ± 0.0069 0.6049 ± 0.0084 

LBP 0.6148 ± 0.0045 0.6086 ± 0.0270 0.6144 ± 0.0123 

PFTAS 0.8359 ± 0.0058 0.8271 ± 0.0152 0.8297 ± 0.0097 

ResNet18 0.9506 ± 0.0033 0.5070 ± 0.0141 0.5066 ± 0.0138 

InceptionV3 0.1509 ± 0.0036 0.1546 ± 0.0075 0.1477 ± 0.0082 

ResNet18 FT 0.7285 ± 0.0189 0.7530 ± 0.0155 0.7460 ± 0.0115 

DenseNet FT 0 . 9955 ± 0 . 0063 0.9032 ± 0.0054 0.8933 ± 0.0037 

SqueezeNet FT 0.8233 ± 0.0163 0.8126 ± 0.0190 0.8041 ± 0.0112 

Table 5 

Time in seconds to complete ten training epochs . 

Dataset Method 

Folds 

1 2 3 4 5 

BACH CNN 30.74 32.96 31.57 32.94 33.14 

LMFCN 33.66 34.57 31.17 31.20 28.81 

BreaKHis CNN 65.74 64.55 63.22 64.42 68.39 

LMFCN 43.65 43.16 43.36 39.41 42.44 
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46 
epresentation to 59 dimensions is meaningful, with a slight gain 

hen increasing it to 169 dimensions. 

Data imbalance is burdensome for training machine learning al- 

orithms. However, the LMFCN deals well with imbalanced classes 

n two-class and multiclass scenarios, achieving competitive perfor- 

ance even on highly imbalanced OVA subproblems. Furthermore, 

he computational effort is not extremely high, given the reduced 

umber of epochs to train the model at each subproblem. 
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Table 6 

Time in seconds to achieve the best validation accuracy . 

Dataset Method 

Folds 

1 2 3 4 5 

BACH CNN 263.81 281.81 247.05 251.72 285.25 

LMFCN 11.28 21.91 16.97 22.58 28.81 

BreaKHis CNN 605.56 570.43 547.856 565.95 633.45 

LMFCN 31.20 18.50 22.31 32.15 18.07 

Table 7 

Epoch time breakdown of the LMFCN (in milliseconds) . 

Dataset Epoch FCN Distance and Matrices SMO Backpropagation 

BreaKHis 1 1398.18 5.68 31.08 5530.60 

5 1464.87 5.61 100.19 2622.38 

10 1445.52 5.60 104.30 2490.75 

BACH 1 609.54 0.37 2.40 4292.28 

5 604.34 0.28 3.05 2610.76 

10 605.97 0.28 4.10 2488.21 
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. Conclusion 

This paper proposed a large-margin representation learning ap- 

roach comprising convolutional layers and a large-margin dis- 

riminant. As a result, the LMFCN achieved competitive accuracy 

ompared to CNNs with similar architecture but with a reduced 

omputational cost. Furthermore, the LMFCN achieved training sta- 

ility in a few epochs thanks to using only the SVs in the back- 

ropagation algorithm. These achievements were possible using a 

arge-margin discriminant, which replaces the fully connected and 

oftmax layers of conventional CNNs. As a result, an SVM with 

n RBF kernel can produce complex margins, avoiding expensive 

efinement of the latent representation. This way, the FCNs do 

ot need to suffer drastic updates. Unlike the handcrafted fea- 

ure extractors, the LMFCN has more adaptability, given its con- 

istent results in different datasets. The most problematic scenario 

or the LMFCN is the multiclass classification task, but it showed 

romising results despite the overhead caused by the OVA ap- 

roach. However, it requires a few epochs per subproblem to alle- 

iate the computational cost of using several models, keeping the 

ost of our approach similar to the CNNs. In conclusion, the LM- 

CN has advantages in computational cost and classification per- 

ormance over the compared methods for small datasets of textural 

mages. 
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