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Abstract—This paper proposes the evaluation of data aug­
mentation impact in the process of microscopic charcoal image 
classification. Two data augmentation approaches were explored, 
namely morphological transformations and sub-images. From the 
augmented data, a pre-trained Inception-v3 network was used to 
train a classifier of charcoal species. The best result was found 
through the technique of sub-images, with an average accuracy 
of 99.36%.

Keywords—data augmentation, microscopic charcoal image 
classification, transfer learning

I. In t r o d u c t io n

Currently, Brazil is the world’s largest producer and con­
sumer of wood charcoal, but much of this production is still 
coming from illegal logging. The production of illegal charcoal 
is responsible for the annual emission of over 5 tons of carbon 
dioxide caused by the inadequate removal of trees and the 
release of carbonization gases [1],

In Brazil, governmental surveillance activities are performed 
based on the Document of Forestry Origin (DOF), an official 
document containing information on the origin of the charcoal 
and the species used to produce it [2], The government agents 
must verify the compliance between the loading of charcoal 
being transported and its DOF. However, the distinction of 
charcoal species is not a trivial task, making it difficult for en­
vironmental control agencies to identify the source of charcoal 
that is produced, transported and sold illegally [3],

The charcoal classification is based on its anatomical char­
acteristics and thus demands the knowledge of a specialist in 
wood anatomy [4]. Moreover, the possibility of biases and 
mistakes by humans has to be considered. Besides that, it is 
impractical for a human to analyze and identify a large number 
of species, given that just in Brazil approximately 8000 species 
of trees are known [2],

In order to improve the monitoring of charcoal source and 
ease the work of those involved in the control and monitoring 
of charcoal production, it would be useful to develop fast and 
efficient techniques for charcoal classification. However, there 
is a lack of data to conduct experiments in this field due to the 
difficulties of charcoal image extraction and labeling, and the 
requirement of specific carbonization equipment and expertise 
in the area.

A possible approach for charcoal classification is based on 
its microscopic images, from which some characteristics are 
extracted and analyzed to discriminate between species. Given 
the importance of creating a robust classifier for the identifi­
cation of charcoal species and the problem of lack of data in 
this context, together with the difficulty in using deep learning 
techniques with few data, this paper proposes the use of transfer 
learning in the CNN Inception-v3 [5] and data augmentation 
techniques, sub-images and morphological transformations, to 
perform the automatic classification of microscopic images of 
charcoal.

The main contributions of this paper are three. Direct, the 
creation of a charcoal species classifier through its microscopic 
images. Social, in the sense that it facilitates the work of 
those involved in the control and monitoring of the production 
of charcoal. And scientific, which is the evaluation of data 
augmentation techniques in the deep learning classification 
process.

The remainder of the paper is structured as follows: In 
section II, the theoretical background of charcoal and wood 
classification is given. The proposed classification method is 
presented in section III. Results and concluding remarks are 
given in section IV and V.

II. R elated  W orks

Successful CNNs, such as “AlexNet” [6], Inception [7], VGG 
[8] and ResNet [9], have already proven to be very powerful 
resources in image classification, without the need of hand­
crafting the features to be classified. Automatic feature extrac­
tion and classification can be used in different domains, given 
that sometimes it is difficult to establish a well-rounded feature 
extractor that represents a subset to be labeled, especially when 
a generalization is important.

One of the most important projects when it comes to im­
age classification is the ImageNet [10] competition, entitled 
ILSVRC (ImageNet Large Scale Visual Recognition Chal­
lenge). Since 2010, participants are given the task to classify 
images of 1000 different classes. This kind of challenge brings 
to light, every year, a lot o f discussion and new ideas to image 
classification and object recognition. The architectures VGG 
[8] and Inception [7] yielded one of the highest performances 
in the ILSVRC of 2014.
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These CNN architectures can be applied to a variety of 
domains. Studies around automatically feature extraction and 
image classification has been increasing in different areas. 
Given that, from the transfer learning technique, it is feasible 
to recognize and apply knowledge learned in previous tasks to 
novel tasks, using the weights of a network already trained in 
a domain to initialize and retrain a neural network in another 
domain [11].

It is important to note, that even though CNNs architectures 
are powerful in the image classification task, they require a 
large amount of data to be trained with, given the number of 
parameters and deep layers to convey generalization.

Transformations techniques such as rotation, cropping, mir­
roring, zooming, and distortion can be used to increase the 
amount of data used to train these networks. A more accurate 
classifier can be achieved with data augmentation since with a 
greater amount of data it is possible to reduce the sensitivity 
of the model and avoid learning incorrect information [12]. 
The main idea of data augmentation is that the transformations 
applied to the data do not alter the semantic meaning of the 
image, thus allowing the generation of new samples.

Image processing and pattern recognition have already been 
successfully applied in the classification of charcoal and wood 
species by some authors.

As proposed in [13], the use of techniques based on dividing 
the image into several sub-images, and the use of handcrafted 
features based on Local Binary Patterns (LBP) were applied 
to the problem of wood charcoal image classification. It was 
shown that, along with machine learning classifiers, such as 
Support Vector Machine (SVM) and Random Forest (RF), these 
techniques demonstrated good results in the observed accuracy 
of the classifiers.

Sub-images combined with different classifiers trained from 
feature sets based on color, orientation and texture were used to 
classify forest wood species [14]. Hardwood and softwood im­
age classification represented through structural features, gray 
level co-occurrence matrix and texture patterns also have been 
evaluated in different machine learning classifiers, k-Nearest 
Neighbors (k-NN), Linear Discriminant Analysis (LDA), and 
SVM [15].

Deep learning models have been receiving increased atten­
tion in recent years and also have been applied to this problem. 
The usage of CNNs as feature extractors followed by the use 
of a traditional classifier, such as SVM or RF, was proposed 
in [13]. In [16], a fuzzy logic pre-classifier was proposed 
to improve the classification accuracy of wood species. Pore 
size and distribution in the image were used to cluster the 
wood image database into smaller databases which were then 
classified by a neural network. Convolutional Neural Networks 
were also explored for the classification of macroscopic and 
microscopic wood images [17].

III. E x p e r im e n t a l  D e t a il s

A. Database
In this work, an open-access database of microscopic images 

of wood charcoal species, comprising 44 species, was used (see

Fig. 1 for some examples). Twelve samples of each species 
produce a database of 528 images [13]. The samples have 1280 
x 1040 pixel resolution, are available in grayscale Tagged Image 
File Format (TIFF) and were cataloged by the Laboratory of 
Wood Anatomy, Federal University of Parana, Brazil.

1»  (b) <c)
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Fig. 1. Database image samples, (a) Apuleia molaris. (b) Aspidosperma 
populifolium. (c) Astronium gracile. (d) Poeppigia procera. (e) Vochysia 
densiflora. (f) Hymenaea courbaril.

B. Proposed Method
In the proposed method, two techniques of data augmen­

tation were used: morphological transformations and random 
cropping, as can be seen in Fig. 2.

The results reported here were compared to those of the 
database authors [13], using the experimental protocol proposed 
by them. The main difference between our proposed method 
and theirs is that here the CNN is used as an end-to-end 
solution, while they use it just as a feature extractor.

To conduct a 10-fold cross validation, from the original 
database, 10 new databases were randomly generated main­
taining the class distribution. The images were divided into 
training and testing set, considering 50% of the images for 
each one. To avoid overfitting, the test images are kept aside 
and do not interfere in any way in the training. It is important to 
remember that during the training process, the training images 
were subdivided into training (80%), validation (10%), and test 
(10%).

Morphological transformations are a collection of operations 
that modify the shape of images (see Fig. 3). To evaluate the 
morphological transformations, we considered the following 
empirically selected techniques: vertical mirroring; horizontal 
mirroring; rotation between -10° and 10°; zoom with a factor 
between 1 and 1.5; and distortion between -5° and 5°.

The protocol for applying the data augmentation techniques 
is defined as a two-step process: first, both vertical and hor­
izontal mirroring were applied to all images; second, each 
of the remaining morphological transformations had a 50% 
chance of being applied to each image. Given this protocol, 
each augmented base had, after this process, 4400 images with 
an average of 100 training images per species. The test datasets 
were not submitted to morphological transformations.
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Fig. 2. Experimental protocol pipeline, considering the data augmentation techniques.

To evaluate the random cropping (defined from now on 
as sub-images) protocol, both training and test datasets were 
submitted to the process. The sub-images were obtained from 
each image of the original database. Fig. 4 shows examples 
of sub-images. Given an image, 25 sub-images were generated 
with random patches of 256x256 pixels. The number of sub­
images as well as their size were empirically selected. This 
process was applied to all 10 bases. Therefore, each database of 
sub-images had 6600 images, 150 training images per species.

The accuracy in the sub-images databases was evaluated 
according to the majority vote, as shown in Fig. 5. For each 
image, 25 patches were submitted to the CNN and labeled by 
the classifier. In the end, the label with the highest occurrence 
was the one chosen to be the label of that image.

IV. R e s u l t s  a n d  D is c u s s io n  

A. Experimental results
The performance of the proposed method was evaluated for 

the two data augmentation approaches discussed before. A con­
volutional neural network, namely the Inception-v3 architecture 
[5], was used with a learning rate of 0.01 and a training batch 
size of 100. Tests were conducted with steps ranging from 2000 
to 20000 (a step is a forward pass of the batch on the neural 
network), increasing by 2000 each time. The best results were 
yielded with the Inception-v3 network fine-tuned with 20000 
steps.

The use of data augmentation represented a gain in accuracy 
using the Inception-v3 network, with an average accuracy of 
93.14% when using the morphological transformation dataset 
and 99.36% when using the sub-images dataset, compared to 
89.62% with the original dataset. These results can be observed 
in Table I.

As shown in Fig. 6, the use of data augmentation techniques 
provides an improvement on the average accuracy, with respect 
to the original method.

In order to verify the significant difference in the average 
accuracy of the classifier trained from different methods of

Fig. 3. Examples of images after the morphological transformations.

Fig. 4. Examples of sub-images. On the left, the original image and on the 
right, four sub-images generated from the original.

25 sub-images 256x256 

*

CNN
inception v3

Class 1 Class 2 Class N

Majority vote

Decision

Fig. 5. Sub-imaging process and decision based on majority vote.
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Fig. 6. Results obtained with the CNN for the original dataset and using the morphological transformation and sub-images data augmentation technique.

data augmentation, the Friedman [18] statistical test was applied 
with a significance level of 0.05. It was concluded that the use 
of data augmentation had an impact on the observed accuracy. It 
is also noticed that the rank order reported by the test indicates 
that the technique of sub-images obtained a better result than 
the others, as shown in Fig. 7.

Given that there is a significant difference in applying at least 
one of the data augmentation techniques, the Nemenyi [19] post 
hoc test was used to identify the internal differences between 
each of the observed bases. The Nemenyi test compares all 
observed variables, one against the other, identifying if one 
variable is significantly different from the other when the 
observed rank average is greater than the calculated critical 
distance (CD). In this case, CD  =  1.04.

As can be seen in Fig. 7, the original base and the dataset 
augmented with morphological transformations did not present 
a significant difference (1.95 — 1.1 =  0.9 <  CD). It is also 
shown in Fig. 7, that the classifier trained from the dataset 
augmented with sub-images has a significantly higher accuracy 
than the others.

It was concluded that the use of sub-images performs bet­
ter than morphological transformations and is, therefore, the 
method proposed in this paper to solve the wood charcoal 
species classification problem.

The results reported in Table II were compared to those of 
the database authors [13]. In the approach reported by them, the 
features were extracted from “pool_3” layer of the Inception-v3 
and then used to train Linear SVM and RF classifiers. All the 
results described in [13] refer to 80 sub-images. However, the 
authors state that similar results can be achieved using a smaller 
number of patches. For Linear SVM the best performance was 
achieved with 9 patches and for RF, 40 patches were required 
to reach the performance shown in Table II. For our proposed 
model, the reported result refer to 25 patches of the original 
image.

TABLE I
Average classification accuracy for each dataset used.

Dataset Accuracy ( % )

Original 89.62 ±  2.27
Morphological 93.14 ± 2 .14

Sub-images 99.36 ±  0.72

Fig. 7. Nemenyi test from the average ranks obtained through the Friedman 
test.

TABLE II
Recognition rates for classifiers trained from Inception-v3

FEATURES.

Method Accuracy ( % )

Random Forest [13] 93.9 ± 4 .0
Linear SVM [13] 95.7 ± 4 .7
Proposed Model 99.36 ±  0.72
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Fig. 8. Average accuracy and the average time taken (in seconds) to execute the test with the Inception-v3 network for each sub-image size analyzed. Results 
obtained with the CNN for the original dataset and using the morphological transformation and sub-images data augmentation techniques.

Fig. 9. Examples of misclassified charcoal images: (a) Copaifera langsdorfii misclassified as (b) Hymenaea courbaril, (c) Vatairea guianensis misclassified as 
(d) Vatairea paraensis.

Accuracy tends to increase with more patches, although the 
time consumed to test every image also increases. Fig. 8 shows 
the average accuracy obtained for each number of patches 
tested. In conjunction with the average accuracy, the time spent 
for the network (seconds per image) to analyze all patches for 
a given image was also observed and is reported on the right 
vertical axis.

Since each training base has 264 images and tests were per­
formed on 10 randomly selected sets of images, 2640 images of 
charcoal were classified in each of the experiments. Considering 
our best result of 25 sub-images only 17 were misclassified. 
From the confusion matrix, it was observed that the most 
confusing classes were the following: Copaifera langsdorfii and 
Vatairea guianensis, both with 4 misclassified images. These 
classes were commonly classified as Hymenaea courbaril and 
Vatairea paraensis, respectively. Fig. 9 shows two examples of 
misclassified species.

B. Discussion

The protocol of morphological transformations achieved a 
slight improvement over the original database, given that a 
greater number of training examples allows the neural network 
to better adjust its parameters and thus obtain a better perfor­
mance.

The high accuracy observed with the sub-images protocol 
is a reflex of the patterns present in the images. The results 
show that smaller patches of the charcoal images are sufficient 
to accurately distinguish between different classes, given that 
these 256x256 patches still represent the main pattern of each 
class. Smaller patches could be used to speed up training and 
prediction time, although the first layer on the Inception-v3 
network is a convolution filter of 299x299x3, which could lead 
to loss of information due to resizing.

Another reason for the high accuracy is the voting process, 
which gives the neural network more examples and chances
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for the classification task, while still maintaining a significant 
difference between classes when working with sub-images.

In regards to the time consumed on the sub-images, 60 
patches were also tested, leading to an average of 16 hours 
(228 seconds for each image) of prediction time across all 10 
databases. Although this yielded a higher accuracy (99.47%), 
the time is exponentially larger (for 25 patches, the average 
time was 2.5 hours, with 34 seconds for each image) and is 
impractical for real-time predictions.

As the patches are randomly selected, it was observed that 
some of them overlapped during the experiments. However, it 
has been verified that this is very rare, less than 1% of images 
overlap.

The tests were performed with the Inception-v3 [5], which 
is a well-known network in the literature for obtaining good 
results in the image classification task, with a reasonable 
number of parameters and training time. However, smaller 
networks could also be tested in order to compare the time 
and accuracy.

V. C o n c l u sio n s

We have presented a method to use data augmentation ap­
plied to transfer learning for charcoal image classification. Two 
different techniques were explored, which were morphological 
transformation and sub-images. Datasets for each technique 
were generated, using a 50%/50% rule to train and test sets. The 
pre-trained convolutional neural network Inception-v3 was used 
for transfer learning on each dataset, including the original, 
for comparison. The best results were achieved when using 25 
patches from the original image, with an average accuracy of 
99.36%.

Although higher accuracy could be obtained with more 
patches, we show that the time taken for the network to 
process higher numbers (greater than 25) of patches is not 
viable given the small gain in accuracy. We have compared 
the results with previous protocols of microscopical charcoal 
image classification approached in the literature and shown that 
the use of sub-images using transfer learning with a pre-trained 
CNN represented a successful gain in accuracy.

Further work can be done to explore other transformations 
and methods of feature extraction. The use of smaller networks 
could also be analyzed and even the combination of multiple 
classifiers. It would also be interesting to apply the same 
protocol proposed here with other charcoal image datasets.
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