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Abstract
A primary challenge in pattern recognition is imbalanced datasets, resulting in skewed and biased predictions. This

problem is exacerbated by limited data availability, increasing the reliance on expensive expert data labeling. The study

introduces a novel method called contrastive dissimilarity, which combines dissimilarity-based representation with con-

trastive learning to improve classification performance in imbalance and data scarcity scenarios. Based on pairwise sample

differences, dissimilarity representation excels in situations with numerous overlapping classes and limited samples per

class. Unlike traditional methods that use fixed distance functions like Euclidean or cosine, our proposal employs metric

learning with contrastive loss to estimate a custom dissimilarity function. We conducted extensive evaluations in 13

databases across multiple training–test splits. The results showed that this approach outperforms traditional models like

SVM, random forest, and Naive Bayes, particularly in settings with limited training data.
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1 Introduction

A primary challenge in pattern recognition is the effective

management of imbalanced datasets [21] characterized by

uneven class representation, frequently resulting in skewed

and biased model predictions. This challenge intensifies in

scenarios with limited data availability, adding complexity

to the training process and increasing the dependency on

expert data labeling, which is time-consuming and costly

[8, 47]. In crucial applications such as medical imaging or

autonomous driving, the cost–accuracy trade-off becomes

extremely delicate.

Particularly in the context of tabular data, class imbal-

ance remains an important challenge [17]. To mitigate this,

various sampling strategies, such as downsampling and

oversampling, are frequently employed. Downsampling

reduces the majority class data, which may not be a good

option if data are already scarce. Oversampling techniques

augment the size of minority classes by generating new

data points randomly or using more sophisticated options

such as Synthetic Minority Over-sampling Technique

(SMOTE) [4].

Dissimilarity-based representation offers an alternative

feature space by emphasizing the differences between
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individual data samples [37]. This approach has demon-

strated efficacy under several conditions: constrained

sample sizes [11], high-dimensional feature spaces [41],

overlapping class distributions [33, 36, 40], and imbal-

anced data sets [51].

Typically, two primary techniques for dissimilarity

classification are dissimilarity space and the dissimilarity

vector [9]. The former is valued for its simplicity and is

suitable where class organization is inherently clear, but

feature characterization is challenging. The latter trans-

forms multi-class problems into binary ones, proving use-

ful in scenarios with multiple classes or limited instances

per class.

To address the shortcomings of traditional dissimilarity

space, which depend on predefined metrics like Euclidean

distance or cosine similarity, and the simplistic nature of

dissimilarity vector that rely on difference vectors, we

propose a new approach: a task-specific metric learning

strategy via a contrastive learning framework to address

this limitation.

Contrastive learning has garnered significant interest for

its efficacy in self-supervised learning tasks [10, 15]. The

central idea revolves around learning embeddings that

bring similar data points closer together in the feature space

while pushing dissimilar points farther apart. This approach

identifies unique features of each data sample, enhancing

its ability to differentiate between various classes or clus-

ters. In supervised learning, it is beneficial when there is a

shortage of labeled data, leading to improved generaliza-

tion [19]. The method has gained popularity recently,

notably due to the introduction of the SimCLR framework

[5].

This research presents a novel methodology that syner-

gizes dissimilarity-based representation with contrastive

learning. The hypothesis is that focusing on the differences

between data samples using a dissimilarity approach,

coupled with the contrastive loss that highlights both

similarities and differences, can help us better classify data,

especially when dealing with scarce and imbalanced

datasets. To validate this hypothesis, we conduct extensive

evaluations of the model across multiple training–test splits

to examine the impact of constrained training sets on the

model performance.

We conducted extensive comparisons across 13 data-

bases, employing 10 different training–test splits, varying

in the amount of training data. Our findings demonstrate

the superiority of our proposed approach over traditional

models such as SVM, random forest, and Naive Bayes; our

contrastive dissimilarity space model achieved a 60% win

rate with approximately 25% draws, while the contrastive

dissimilarity vector model achieved around 40% wins and

15% draws. The performance difference increases with

more limited splits, with a combined win and draw rate of

94.9% and 69.2%, respectively.

The remaining sections of this work are as follows:

Sect. 1 surveys literature pertinent to our study, Sect. 2

describes the methodology we adopt, termed as contrastive

dissimilarity, Sect. 3 elaborates on the experimental

framework, encompassing the database, algorithms, and

parameters used, Sect. 4 provides an analysis of the find-

ings, and Sect. 5 offers concluding remarks and potential

avenues for future research.

2 Literature review

In this section, we examine key concepts central to our

paper and highlight their recent progress, including dis-

similarity-based classification, metric learning, and con-

trastive learning.

2.1 Dissimilarity

Dissimilarity-based classification is effective for complex

tasks with limited training data [37]. It comes in two forms:

dissimilarity space and vectors. The former uses a matrix to

compare training samples with prototypes [37], while the

latter employs standard classifiers to evaluate the differ-

ence between two samples based on their class [3]. The

approach has wide applications, including classifying

handwritten text [38], content-based image retrieval

(CBIR) [31], human-pose estimation [45], and text cate-

gorization [39], among others.

Deep learning has also influenced the field, introducing

meta-strategies like siamese networks and fixed distance

functions for better classification, including classification

of spectrograms [27, 28, 52], brain images [1], handwriting

[42], and person re-identification [25, 46].

2.2 Metric learning

Metric learning focuses on creating a custom distance

metric between samples [22]. While traditional methods

like Euclidean and cosine distance metrics are widely used,

they may not be suitable for problems involving nonlinear

relationships or high-dimensional data. Custom metrics can

be generated using supervised or semi-supervised

approaches.

In the context of dissimilarity, [29] used a siamese

network and metric learning for image classification,

achieving state-of-the-art results. [30] used the triplet loss

function and explored techniques for generating dissimi-

larity space, showing improved performance over previous

methods.
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2.3 Contrastive learning

Contrastive learning is a self-supervised learning approach

that trains models to differentiate between similar and

dissimilar data points. Originally developed in the context

of information theory [15], it has gained significant traction

in computer vision, natural language processing, and other

domains. The objective is to learn representations such that

similar samples are pulled closer in the embedding space

while dissimilar ones are pushed apart [32].

A particularly noteworthy aspect of contrastive learning

is its effectiveness in dealing with imbalanced data sets. It

addresses this challenge by improving the representation of

minority classes in the learned embedding space without

adversely affecting the representation of the majority

classes [23, 24].

The approach has also been adapted for tabular data,

particularly in medical and financial applications [6, 49].

These adaptations often involve specialized architectures

and data preprocessing methods tailored to the unique

characteristics of tabular data. Despite the differences from

image or text data, contrastive learning in this context has

shown promising results in tasks like anomaly detection

and clustering [14, 48].

3 Proposed method

The proposed method is composed of three phases: metric

learning (Phase 1), siamese network training (Phase 2),

and dissimilarity representation (Phase 3). In Phase 1, the

focus is on the architectural specifics prior to training,

primarily concerning the projection head, which serves as

the metric learning component.

Phase 2 involves the siamese network training; consid-

ering tabular data, a row is paired with another from the

same class. This process is repeated to create the number of

pairs specified by the batch size. For each pair, the absolute

difference between them is then fed into the projection

head, which generates a dissimilarity value used for cal-

culating the contrastive loss. Internally, the procedure

automatically constructs all possible pairings among the

provided samples, thereby eliminating the need for

explicitly labeled negative pairs.

Phase 3 is dedicated to dissimilarity representation; the

projection head is utilized to estimate dissimilarity values,

replacing the need for a predetermined distance function. It

involves calculating the dissimilarity of each data obser-

vation against a set of prototypes to form both the training

and testing sets. The prototypes are a selected subset of

representative samples.

3.1 Phase 1: metric learning

This study introduces a novel metric learning approach that

leverages contrastive learning to create a task-specific

measure of dissimilarity for tabular data. Our method goes

beyond traditional distance measures like Euclidean or

cosine distances [35]. It learns to identify differences

between data pairs during training, as illustrated in Fig. 1.

The projection head consists of several fully connected

layers that take the absolute difference between two data

points as input and compute their dissimilarity. The dis-

similarity value is then used to determine the contrastive

loss. During the learning process, the projection head is

trained to increase the dissimilarity for data point pairs

belonging to different classes and decrease it for pairs from

the same class.

The architecture of the projection head plays a crucial

role in shaping the mapping function. A single-layer pro-

jection head generates a linear mapping, whereas a multi-

layer structure enables a nonlinear function.

3.2 Phase 2: siamese network training

Algorithm 1 outlines the procedure for training our con-

trastive dissimilarity model. The model uses the NT-Xent

loss function as its loss [5], eliminating the need for

labeling negative pairs. Unlike the original model, which

only handles one positive pair, we modified the loss

function to accommodate multiple positive pairs. The input

comprises two sets, d0 and d00, each containing data points.

The batch size specifies the number of pairs within each

set. Each pair is matched so that they belong to the same

class. This means the first element in d01 corresponds to the

same class as the first element in d001 , and this pattern

continues for subsequent elements in both sets. The first

step (Line 1) concatenates d0 and d00 into a single set x.

Following this, Lines 2–3 employ the tile and repeat

operations to expand x into x0 and x00. Tile replicates an

array along specified axes, creating a larger array by

repeating the original pattern, while repeat duplicates each

element of an array a specified number of times, resulting

in an expanded array where elements are repeated indi-

vidually. This expansion serves a specific purpose: it gen-

erates all feasible pair combinations between d0 and d00. In
Line 4, the algorithm computes the dissimilarity for all

positive and negative pairs. Line 5 then reshapes this set

into a matrix format, aligning it with the input shape

expected by the NT-Xent loss. Finally, Line 6 calculates

the NT-Xent loss. The loss function aims to minimize the

dissimilarity for positive pairs while maximizing it for

negative pairs.
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Algorithm 1 Contrastive dissimilarity training.

Algorithm 2 outlines the pseudocode for computing the

dissimilarity NT-Xent loss. The function takes two inputs:

the dissimilarity matrix diss and the labels y. Additionally,

there is a temperature parameter t set during initialization.

First, in lines 2–6, a positive mask is created to account for

multiple positive pairs, followed by the creation of a neg-

ative mask in line 7. In lines 8 and 9, the numerator and

denominator are computed respectively, then divided, and

followed by taking the negative logarithm. Finally, the

average of the results is calculated to obtain the loss. This

approach is based on the original work by [5].

Algorithm 2 Dissimilarity NT-Xent Loss

The data are composed of pairs selected in a two-step

random process. First, a class is chosen at random, with no

consideration given to its frequency in the overall dataset,

and then two unique instances are randomly selected. This

ensures equal representation for each class, regardless of its

prevalence in the total dataset.

3.3 Phase 3: dissimilarity representation

In feature space representation, dissimilarity focuses on

highlighting the differences between samples, and it is

Fig. 1 Contrastive dissimilarity training schema
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advantageous when conventional features fall short in

differentiating samples. This is often the case in large-scale

multi-class issues or situations where only a few samples

are available for each class. Dissimilarity can be catego-

rized into two main types: dissimilarity spaces and vectors.

3.3.1 Dissimilarity space

Let us define T as a training set containing n samples and R

as the prototype set with m samples. Ideally, it would be

optimal to employ every available sample as a prototype,

but this could require extensive or impractical computa-

tional resources. The goal of prototype selection is to

simplify the issue by choosing a subset of training samples

that adequately represent the whole. The DðT;RÞ repre-

sents dissimilarity matrix and is formulated as:

DðT;RÞ ¼

mðx1; p1Þ mðx1; p2Þ . . . mðx1; pmÞ
mðx2; p1Þ mðx2; p2Þ . . . mðx2; pmÞ

..

. ..
. . .

. ..
.

mðxn; p1Þ mðxn; p2Þ . . . mðxn; pmÞ

2
66664

3
77775

where xi is the ith sample in the training set, pj is the jth

prototype, and m is the dissimilarity function. Each row in

this matrix corresponds to a training sample, while each

column is associated with a prototype. A conventional

classification model can be trained using DðT ;RÞ.
For the testing phase, assume tk is the kth sample in the

testing set. The testing vector D0ðtk;RÞ can be expressed as:

D0ðtk;RÞ ¼ mðtk; p1Þ mðtk; p2Þ . . . mðtk; pmÞ½ �

where tk and pj are the kth testing sample and jth prototype,

respectively. The resulting D0ðtk;RÞ has a column count

matching DðT ;RÞ, allowing the usage of the trained clas-

sification model to determine class probabilities.

3.3.2 Dissimilarity vector

This proposal uses a metric learning approach that outputs

a single-value dissimilarity between two samples rather

than a vector. To boost robustness, we adopted a strategy

similar to that of [13], where dropout is enabled, resulting

in w predictions for each pair, expanding the dimensions of

the resulting vectors. Given xij as the ith class, jth sample,

pik as the ith class, kth prototype, and m as the dissimilarity

function, the resulting vector m0ðxij; pikÞ is defined as:

m0ðxij; pikÞ ¼ mðxij; pikÞ1 . . . mðxij; pikÞw½ �

The training set T includes both positive T� and negative

T� pairs. The vector is marked as positive if the sample and

prototype belong to the same class; otherwise, it is

negative. With n classes, m samples, and m0 prototypes per
class, these sets are defined as:

T� ¼ m0ðxij; pikÞ where
i ¼ 1 to n; j ¼ 1 to m; k ¼ 1 to m0

T� ¼ m0ðxij; pklÞ where
i; k ¼ 1 to n; i 6¼ k; j ¼ 1 to m; l ¼ 1 to m0

During testing, dropout is enabled to generate w dissimi-

larity values between each test sample and prototype. This

is done for all ik training prototypes, with i representing the

number of classes and k the number of prototypes in each

class, resulting in ik separate feature vectors. The trained

model then uses these vectors to make the final predictions.

Each prediction gives a specific probability, showing how

likely the test sample is to be from the same class as the

associated prototype.

4 Experimental setup

This section presents details regarding the experimental

setup adopted in this work, including datasets, training, and

evaluation protocols.

4.1 Databases

We employed 11 databases from Keel repository [2] and 2

databases from UC Irvine Machine Learning Repository

[18]. We focused primarily on datasets with an imbalance

ratio higher than five, meaning that the majority class is

five times more frequent than the minority class, the only

exceptions being Hayes-Roth and Glass1. Table 1 presents

the datasets with their main characteristics.

4.2 Training protocol

To enhance the efficacy of the contrastive learning proce-

dure, a strategic augmentation was employed within each

cross-validation fold of the training set. This augmentation

involved utilizing the Synthetic Minority Over-sampling

Technique (SMOTE) to achieve a balanced class distribu-

tion in the training set, addressing class imbalance issues.

The augmentation protocol was strictly applied during

the training phase of the contrastive dissimilarity model

and the prototype selection process. In these stages,

leveraging an enriched dataset was important for the

development of a robust model. However, it’s important to

note that for critical steps like the generation of the dis-

similarity matrix and the selection of sample pairs for

constructing the dissimilarity vector, the original, unmod-

ified dataset was exclusively used.
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We employed a two-step training protocol in our

experiments: initialization and fine-tuning, as outlined in

Table 2. We set the batch sizes at 64 for the initialization

phase and 32 for the fine-tuning phase. In early folds, using

larger batch sizes was not feasible due to the small amount

of training data.

During the initialization phase, we conducted 10,000

iterations at a learning rate of 10�4 to expedite the warm-up

period. For the fine-tuning phase, we first carried out

20,000 iterations with a learning rate of 10�5 and a tem-

perature setting of 0.5. Followed by another 20,000 itera-

tions at a reduced temperature of 0.1. The rationale behind

this was to gradually refine the network weights, initially

allowing broader adjustments at a higher temperature and

then focusing on more precise and fine-grained steps.

4.3 Evaluation protocol

Our study follows a four-step evaluation protocol: cross-

validation, prototype selection, dissimilarity representation,

and classification.

We performed a comprehensive analysis to evaluate the

performance under different data availability conditions.

First, a consistent test set was established, achieved using a

stratified holdout to split the data into 70% for training and

30% for testing. The same test set is used across all

scenarios, ensuring equitable comparison of results across

different folds. Additionally, within the 70% allocated for

training, we systematically changed the volume of data

utilized for training, ranging incrementally from 10 to

100%; any data not used for training in these scenarios was

excluded from the analysis.

For the prototype selection, we employed the K-means

clustering algorithm. The algorithm iteratively assigns each

data point to the nearest centroid and recalculates the

centroids until convergence is achieved. The resulting

centroids form the prototype set. To determine the optimal

number of prototypes for each task, we trained the models

on the last fold of the dataset, adjusting the count of pro-

totypes from two to ten to identify the configuration

yielding the highest performance. The last fold contains

100% of the training set, we partitioned this subset in 70%

for training and the remaining 30% for evaluation.

Our analysis includes two dissimilarity approaches. The

first approach uses a dissimilarity matrix with one row per

training sample and one column per prototype. This matrix

is suitable for training standard classifiers like support

vector machine (SVM) or random forest (RF), for instance.

For evaluation, we use testing samples instead of training

ones.

The second approach employs a dissimilarity vector,

which combines samples and prototypes and considers both

positive and negative combinations. We paired each sam-

ple with each prototype. Following the same strategy out-

lined before, we evaluated different values of w for each

dataset. Since we are dealing with a relatively small

number of classes, the resulting dataset is somewhat

balanced.

The final classification is done using scikit-learn [34]

with three main classifiers: SVM, random forest, and Naive

Bayes. We report only the best F1-Score. For random

forest and Naive Bayes, we kept the default

Table 1 Databases
No Source Database Instances Features Classes Imbalance ratio

01 Keel Hayes-Roth 132 4 3 1.70

02 Keel Glass1 214 9 2 1.82

03 Keel New-Thyroid 215 5 3 5.00

04 Keel Dermatology 366 34 6 5.60

05 Keel Balance 625 4 3 5.88

06 Keel Segment0 2308 19 2 6.02

07 UCI DryBean [20] 13,611 16 7 6.79

08 Keel Glass 214 9 6 8.44

09 Keel Page-Blocks0 5472 10 2 8.79

10 Keel Vowel0 988 13 2 9.98

11 Keel Yeast4 1484 8 2 28.10

12 UCI HCV [16] 615 12 5 76.14

13 Keel Yeast 1484 8 10 92.60

Table 2 Training protocol

Step Iterations Temperature Learning rate

Initialization 10,000 1 10�4

Fine-tuning 20,000 0.5 10�5

20,000 0.1 10�5
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hyperparameters settings. For SVM, we used an RBF

kernel and a grid search to find the optimal values of C

(0.001, 0.01, 1, 10, 25, 50, 100, 1000) and c (1, 10�1, 10�2,

10�3, 10�4, 10�5).

4.4 Projection head

The projection head is a key component in our contrastive

dissimilarity model. It shapes how the model measures

differences between data points. The more complex the

projection head, represented by its depth and density, the

better it can identify complex patterns in the data. How-

ever, a more complex projection head also risks overfitting.

To find the optimal network architecture, we experi-

mented with settings ranging from a single-layer to six-

layer networks, in which the first layer had neuron counts

varying from 16 (24) to 1024 (210). In multi-layer setups,

each subsequent layer was designed with half the number

of neurons compared to the preceding layer. To identify the

optimal configuration, we follow the same strategy as

before, training the models using the last fold of the

dataset, which constituted 100% of the training data, fur-

ther dividing it into two parts: 70% for training and 30%

for evaluation.

5 Results and discussion

In this analysis, we conduct an extensive assessment con-

trasting our innovative contrastive dissimilarity approach

with established machine learning techniques, particularly

focusing on their F1-score metrics. The study involves a

comparison with three traditional algorithms: support

vector machine (SVM), random forest (RF), and Naive

Bayes (NB), considering both scenarios with and without

Synthetic Minority Over-sampling Technique (SMOTE),

as outlined in Table 7.

Table 3 presents our main findings, encompassing the

results from our proposed contrastive dissimilarity space

(CS) and vector (CV), traditional models (the best of RF,

SVM, or NB, abbreviated as Tradt), as well as classic

dissimilarity space and vector (DS and DV, respectively).

Our contrastive dissimilarity space model (CS) shows

enhanced efficacy over traditional algorithms employing

SMOTE, achieving 78 victories (60%), 30 draws (23.1%),

and 22 defeats (16.9%). When pitted against traditional

methods without SMOTE, it records 75 victories (57.7%),

34 draws (26.2%), and 21 defeats (16.1%). A two-tailed

paired t test confirms these differences as statistically sig-

nificant (t(129) = 5.24, p\ .001; t(129) = 5.3, p\ .001,

respectively).

Analyzing the losses more closely, they were primarily

in scenarios containing more training data, whereas our

model excelled in data-scarce situations. Against tradi-

tional models using SMOTE, our approach was outclassed

occasionally—thrice by Naive Bayes, twelve times by

random forest, and seven times by SVM. Without SMOTE,

it was surpassed twice by Naive Bayes, five times by

random forest, and fourteen times by SVM.

In datasets limited to the first three folds (30% of total

data), our model demonstrates remarkable efficiency.

Against traditional models with SMOTE, it notches 32

wins (82.1%), 5 draws (12.8%), and 2 losses (5.1%).

Against models without SMOTE, it achieves 30 wins

(76.9%), 7 draws (18%), and only 2 losses (5.1%). Statis-

tical analysis via a two-tailed paired t test highlights sig-

nificant differences in both scenarios (t(38) = 4.81 and 4.3,

p values\ .001), with a combined win and draw rate of

94.9% in these limited data cases, surpassing the all-case

rates of 83.1 and 83.9%.

The contrastive dissimilarity vector model (CV) slightly

lags behind established models using SMOTE, securing 52

wins (40%), 16 draws (12.3%), and 62 losses (47.7%).

Against models not using SMOTE, it records 50 wins

(38.5%), 23 draws (17.7%), and 57 losses (43.8%). These

differences, analyzed through a two-tailed paired t test, are

not statistically significant (t(129) = �0.57, p = .57; t(129)

= �0.55, p = .58).

Focusing on the initial 30 % of the data set, the vector

model shows a slight uptick in performance. Against

SMOTE-enabled models, it achieves 21 wins (53.8%), 6

draws (15.4%), and 12 losses (30.8%). Without SMOTE, it

records 22 wins (56.4%), 5 draws (12.8%), and 12 losses

(30.8%). A two-tailed paired t test indicates these results

are not significantly different (t(38) = 2.04 and 1.85,

p values of 0.049 and 0.072). Detailed insights and per-

formance limitations are further discussed in B.

5.1 Classical dissimilarity comparison

In head-to-head comparisons, the contrastive dissimilarity

space model significantly outshines conventional models,

recording 96 wins (73.8%), 23 draws (17.7%), and just 11

losses (8.5%) (t(129) = 7.6, p \ .001). In limited data

scenarios (first three folds), its performance remains

exceptional, with 35 wins (89.7%), 4 draws (10.3%), and

no losses (t(38) = 5.86, p\ .001).

The vector-based approach also exhibits superior

effectiveness over traditional models, securing 82 wins

(63.1%), 23 draws (17.7%), and 25 losses (19.2%) (t(129)

= 6.83, p\ .001). Its performance further improves in the

first three folds, achieving 28 wins (71.8%), 8 draws

(20.5%), and 3 losses (7.7%) (t(38) = 5.1, p\ .001).
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Table 3 F1-score across different proportions

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hayes-Roth CS 0.74 0.76 0.73 0.76 0.76 0.76 0.72 0.78 0.78 0.74

CS wt/ SMOTE 0.46 0.6 0.7 0.63 0.64 0.69 0.69 0.71 0.69 0.63

CV 0.78 0.8 0.8 0.78 0.79 0.75 0.75 0.76 0.81 0.79

CV wt/ SMOTE 0.48 0.6 0.65 0.63 0.65 0.72 0.74 0.76 0.65 0.77

Tradt 0.51 0.57 0.57 0.58 0.72 0.74 0.78 0.78 0.82 0.8

Tradt wt/ SMOTE 0.49 0.59 0.6 0.58 0.7 0.75 0.75 0.78 0.77 0.79

DS 0.54 0.69 0.72 0.72 0.75 0.72 0.81 0.77 0.77 0.8

DV 0.42 0.56 0.69 0.64 0.57 0.7 0.64 0.76 0.67 0.73

Glass1 CS 0.64 0.89 0.87 0.9 0.82 0.79 0.69 0.8 0.81 0.84

CS wt/ SMOTE 0.6 0.66 0.77 0.78 0.78 0.81 0.79 0.77 0.81 0.79

CV 0.6 0.71 0.84 0.77 0.8 0.8 0.71 0.82 0.84 0.78

CV wt/ SMOTE 0.57 0.66 0.77 0.8 0.83 0.82 0.84 0.81 0.84 0.79

Tradt 0.56 0.68 0.78 0.76 0.79 0.77 0.81 0.81 0.82 0.82

Tradt wt/ SMOTE 0.59 0.71 0.82 0.77 0.77 0.79 0.75 0.86 0.84 0.84

DS 0.39 0.39 0.8 0.74 0.79 0.68 0.77 0.8 0.75 0.77

DV 0.5 0.7 0.7 0.68 0.8 0.78 0.75 0.79 0.77 0.74

New-Thyroid CS 1.0 0.98 1.0 1.0 1.0 0.98 0.98 0.96 0.96 0.96

CS wt/ SMOTE 0.88 0.78 0.97 1.0 0.98 0.98 0.98 0.98 0.98 1.0

CV 1.0 0.98 0.98 0.98 1.0 1.0 1.0 1.0 1.0 1.0

CV wt/ SMOTE 0.88 0.98 0.97 0.98 0.98 0.96 0.98 0.98 0.98 0.98

Tradt 0.96 1.0 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Tradt wt/ SMOTE 0.95 0.96 0.98 1.0 0.98 0.96 0.96 0.96 0.96 0.98

DS 0.96 0.85 0.96 0.98 0.98 0.96 0.98 0.98 0.98 1.0

DV 0.81 0.79 0.85 0.85 0.96 0.94 0.96 0.94 0.96 0.96

Dermatology CS 0.97 1.0 0.98 0.98 0.96 1.0 1.0 1.0 1.0 0.99

CS wt/ SMOTE 0.82 0.86 0.89 0.92 0.88 0.96 0.94 0.97 0.95 0.96

CV 1.0 1.0 1.0 1.0 0.99 0.99 0.99 0.99 0.99 0.99

CV wt/ SMOTE 0.86 0.91 0.97 0.97 0.98 0.96 0.96 0.97 0.97 0.97

Tradt 0.97 0.95 0.97 0.98 0.97 0.96 0.96 0.98 1.0 0.97

Tradt wt/ SMOTE 0.95 0.97 0.97 0.98 0.98 0.97 0.99 0.99 0.98 0.98

DS 0.91 0.88 0.91 0.93 0.92 0.92 0.94 0.92 0.93 0.95

DV 0.94 0.96 0.96 0.96 0.98 0.95 0.94 0.98 0.95 0.98

Balance CS 0.84 0.83 0.85 0.87 0.9 0.89 0.92 0.91 0.93 0.92

CS wt/ SMOTE 0.66 0.6 0.77 0.86 0.88 0.89 0.9 0.91 0.86 0.87

CV 0.78 0.75 0.74 0.72 0.71 0.76 0.72 0.8 0.73 0.77

CV wt/ SMOTE 0.69 0.72 0.7 0.7 0.72 0.71 0.67 0.79 0.7 0.77

Tradt 0.81 0.77 0.8 0.86 0.87 0.85 0.91 0.93 0.9 0.95

Tradt wt/ SMOTE 0.8 0.77 0.88 0.93 0.94 0.9 0.88 0.89 0.95 0.92

DS 0.68 0.73 0.83 0.84 0.9 0.86 0.88 0.92 0.92 0.93

DV 0.38 0.46 0.48 0.55 0.62 0.62 0.61 0.78 0.69 0.69

Segment0 CS 0.99 0.99 0.99 0.99 0.99 1.0 1.0 1.0 1.0 1.0

CS wt/ SMOTE 0.99 0.99 0.99 0.99 1.0 1.0 1.0 1.0 1.0 1.0

CV 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.0 0.99

CV wt/ SMOTE 0.95 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Tradt 0.98 0.99 0.99 0.99 0.99 1.0 0.99 1.0 1.0 1.0

Tradt wt/ SMOTE 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

DS 0.92 0.97 0.98 0.99 0.99 0.99 0.98 1.0 0.99 0.99

DV 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
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Table 3 (continued)

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

DryBean CS 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

CS wt/ SMOTE 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

CV 0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93

CV wt/ SMOTE 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

Tradt 0.92 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.93 0.94

Tradt wt/ SMOTE 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

DS 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

DV 0.92 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Glass CS 0.45 0.5 0.68 0.68 0.66 0.65 0.65 0.67 0.63 0.68

CS wt/ SMOTE 0.34 0.37 0.57 0.53 0.59 0.58 0.6 0.61 0.58 0.63

CV 0.58 0.6 0.76 0.66 0.7 0.67 0.63 0.63 0.66 0.73

CV wt/ SMOTE 0.35 0.47 0.56 0.58 0.56 0.61 0.66 0.71 0.63 0.67

Tradt 0.41 0.41 0.59 0.57 0.48 0.66 0.65 0.64 0.66 0.68

Tradt wt/ SMOTE 0.41 0.4 0.49 0.54 0.56 0.6 0.6 0.65 0.66 0.73

DS 0.29 0.31 0.51 0.48 0.51 0.61 0.63 0.65 0.74 0.65

DV 0.3 0.37 0.51 0.44 0.51 0.63 0.68 0.6 0.63 0.61

Page-Blocks0 CS 0.9 0.91 0.93 0.94 0.94 0.92 0.9 0.92 0.93 0.93

CS wt/ SMOTE 0.84 0.86 0.88 0.9 0.89 0.92 0.91 0.92 0.91 0.9

CV 0.89 0.88 0.91 0.92 0.9 0.89 0.89 0.89 0.9 0.89

CV wt/ SMOTE 0.82 0.82 0.84 0.86 0.84 0.83 0.84 0.81 0.84 0.83

Tradt 0.86 0.9 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93

Tradt wt/ SMOTE 0.88 0.91 0.91 0.92 0.93 0.92 0.93 0.93 0.93 0.93

DS 0.85 0.86 0.86 0.9 0.91 0.9 0.92 0.91 0.91 0.92

DV 0.86 0.88 0.91 0.93 0.93 0.93 0.92 0.93 0.94 0.94

Vowel0 CS 0.85 0.85 0.91 0.96 1.0 1.0 1.0 1.0 1.0 1.0

CS wt/ SMOTE 0.83 0.88 0.87 0.92 1.0 0.99 1.0 1.0 1.0 1.0

CV 0.83 0.87 0.89 0.9 0.93 0.94 0.93 0.98 0.97 0.95

CV wt/ SMOTE 0.76 0.83 0.85 0.86 0.92 0.91 0.91 0.93 0.93 0.93

Tradt 0.83 0.85 0.87 0.94 0.97 1.0 1.0 1.0 0.98 1.0

Tradt wt/ SMOTE 0.79 0.85 0.86 0.88 0.96 0.98 0.98 1.0 1.0 1.0

DS 0.82 0.85 0.85 0.87 1.0 1.0 1.0 1.0 0.99 1.0

DV 0.78 0.79 0.86 0.87 0.94 0.94 0.94 1.0 1.0 1.0

Yeast4 CS 0.49 0.68 0.77 0.75 0.65 0.67 0.74 0.7 0.74 0.72

CS wt/ SMOTE 0.49 0.55 0.6 0.6 0.55 0.55 0.55 0.55 0.65 0.69

CV 0.6 0.61 0.62 0.61 0.6 0.6 0.61 0.59 0.6 0.61

CV wt/ SMOTE 0.6 0.59 0.65 0.58 0.59 0.57 0.59 0.57 0.57 0.6

Tradt 0.57 0.59 0.75 0.66 0.72 0.63 0.7 0.69 0.65 0.66

Tradt wt/ SMOTE 0.62 0.58 0.75 0.61 0.65 0.6 0.65 0.65 0.69 0.69

DS 0.49 0.55 0.66 0.59 0.59 0.6 0.57 0.65 0.63 0.62

DV 0.48 0.49 0.83 0.57 0.55 0.55 0.59 0.63 0.59 0.53

HCV CS 0.49 0.65 0.76 0.49 0.83 0.69 0.69 0.79 0.83 0.78

CS wt/ SMOTE 0.28 0.45 0.4 0.46 0.7 0.51 0.58 0.61 0.73 0.54

CV 0.52 0.61 0.5 0.58 0.69 0.62 0.69 0.76 0.83 0.84

CV wt/ SMOTE 0.42 0.5 0.46 0.48 0.64 0.5 0.6 0.69 0.75 0.74

Tradt 0.43 0.45 0.54 0.55 0.5 0.59 0.66 0.75 0.68 0.68

Tradt wt/ SMOTE 0.39 0.47 0.49 0.54 0.56 0.57 0.72 0.71 0.72 0.72

DS 0.19 0.3 0.45 0.38 0.51 0.48 0.63 0.61 0.65 0.64

DV 0.44 0.37 0.26 0.42 0.39 0.57 0.47 0.43 0.51 0.4
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These outcomes emphasize the benefits of adopting

metric learning to create task-specific dissimilarity mea-

sures, marking a significant shift from the conventional

reliance on static distance functions.

5.2 Augmentation protocol

Our training protocol applied SMOTE to mitigate class

imbalance challenges, particularly in the initial folds where

the availability of training data is considerably constrained.

To comprehensively assess the impact of utilizing this

approach, we evaluated the contrastive dissimilarity space

and vector models on both the original and SMOTE-aug-

mented training sets.

Utilizing the unmodified dataset, the contrastive dis-

similarity space model markedly declines, especially in the

initial folds, with 8 wins (6.2%), 35 draws (26.9%), and 87

losses (66.9%), underscoring a significant difference

(t(129) = �9.3, p \.001). The vector model, using the

original dataset, also shows a decrease in effectiveness,

particularly in the early folds, achieving 9 wins (6.9%), 20

draws (15.4%), and 101 losses (77.7%), indicating a sig-

nificant difference (t(129) = �8.61, p\. 001).

The Silhouette coefficient is a metric used to assess the

quality of clustering by measuring both the separation

between clusters and their internal cohesion. It ranges from

-1 to 1, with values near 1 indicating well-separated and

distinct clusters, and values closer to -1 suggesting clus-

ters that are indistinct or overlapping. Table 4 showcases

the Silhouette coefficient of the contrastive dissimilarity

space matrix, comparing the impact of training the model

with and without the SMOTE. The inclusion of SMOTE

marginally improved the Silhouette coefficient, denoting

better cluster distinction and cohesion, the improvement is

statistically significant (t(12) = �3.1, p = 0.01).

5.3 Balanced databases

We extended our analysis to more balanced datasets to

assess the efficacy of our proposed method. Specifically,

we employed 6 databases from UC Irvine Machine

Learning Repository [18] and one from Keel repository [2].

We targeted primarily on datasets with an imbalance ratio

nearing one, indicating a near-equal distribution between

the majority and minority classes. Table 5 presents the

datasets with their main characteristics.

The contrastive dissimilarity space model shows a slight

edge over traditional models with SMOTE, achieving 33

wins (47.1%), 15 draws (21.4%), and 22 losses (31.4%).

Statistical analysis yields a t value of �1.22 and a p value

of 0.227. Against traditional models without SMOTE, it

records 32 wins (45.7%), 14 draws (20%), and 24 losses

(34.3%), with a t value of �1.69 and a p value of 0.096.

The effectiveness becomes more pronounced when training

data is limited (only 30% of the dataset, covering the first

Table 3 (continued)

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Yeast CS – 0.58 0.6 0.6 0.61 0.61 0.6 0.57 0.59 0.58

CS wt/ SMOTE – 0.56 0.54 0.55 0.56 0.52 0.51 0.52 0.56 0.58

CV – 0.37 0.46 0.49 0.46 0.44 0.48 0.42 0.4 0.44

CV wt/ SMOTE – 0.35 0.4 0.34 0.33 0.37 0.39 0.37 0.35 0.38

Tradt – 0.56 0.59 0.6 0.61 0.61 0.59 0.58 0.61 0.56

Tradt wt/ SMOTE – 0.58 0.57 0.62 0.62 0.61 0.58 0.57 0.59 0.57

DS – 0.5 0.54 0.5 0.58 0.58 0.58 0.57 0.6 0.55

DV – 0.42 0.43 0.42 0.46 0.49 0.5 0.49 0.47 0.5

Table 4 Silhouette coefficient

Database Without SMOTE With SMOTE

Hayes-Roth 0.02 (0.03) 0.09 (0.04)

Glass1 0.08 (0.04) 0.11 (0.06)

New-Thyroid 0.57 (0.06) 0.60 (0.02)

Dermatology 0.39 (0.04) 0.43 (0.02)

Balance 0.08 (0.05) 0.12 (0.02)

Segment0 0.71 (0.03) 0.72 (0.03)

DryBean 0.31 (0.01) 0.31 (0.01)

Glass - 0.06 (0.04) - 0.03 (0.02)

Page-Blocks0 0.44 (0.03) 0.43 (0.05)

Vowel0 0.51 (0.08) 0.54 (0.10)

Yeast4 0.25 (0.03) 0.41 (0.02)

HCV 0.25 (0.06) 0.26 (0.02)

Yeast - 0.02 (0.01) 0.01 (0.01)
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three folds), it records 13 wins (61.9%), 3 draws (14.3%),

and 5 losses (23.8%) in both scenarios (t(20) = 0.08, p =

0.940). Table 6 showcases the results.

Similarly, the contrastive dissimilarity vector model

underperforms when compared to traditional models with

SMOTE, securing 23 wins (32.9%), 14 draws (20%), and

33 losses (47.1%), evidenced by a t value of �2.79 and a p

value of 0.007. When facing traditional models without

SMOTE, it achieves 24 wins (34.3%), 12 draws (17.1%),

and 34 losses (48.6%), with a t value of �3.37 and a

p value of 0.001. The approach shows a slight improve-

ment in performance with limited training data, but not to a

significant extent.

Table 5 Balanced databases

No Source Database Instances Features Classes Imbalance ratio

01 UCI Raisin [7] 900 7 2 1.00

02 UCI TME [12] 400 50 4 1.00

03 UCI Sirtuin6 [43] 100 6 2 1.00

04 Keel Penbased 1100 16 10 1.10

05 UCI Coimbra [26] 116 9 2 1.23

06 UCI Algerian Fire [50] 244 10 2 1.30

07 UCI TCGA-LGG [44] 839 23 2 1.38

Table 6 Balanced data F1-score

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Raisin CS 0.88 0.88 0.87 0.89 0.88 0.9 0.9 0.88 0.89 0.88

CV 0.84 0.87 0.85 0.87 0.87 0.88 0.88 0.88 0.88 0.88

Tradt 0.84 0.88 0.85 0.88 0.88 0.87 0.88 0.89 0.88 0.87

Tradt w/ SMOTE 0.84 0.88 0.85 0.88 0.88 0.87 0.87 0.89 0.88 0.87

TME CS 0.43 0.53 0.63 0.65 0.6 0.67 0.62 0.68 0.69 0.74

CV 0.44 0.58 0.63 0.66 0.69 0.7 0.73 0.71 0.72 0.71

Tradt 0.64 0.69 0.69 0.73 0.7 0.72 0.7 0.72 0.72 0.72

Tradt w/ SMOTE 0.64 0.71 0.72 0.71 0.73 0.7 0.73 0.72 0.77 0.72

Sirtuin6 CS 0.87 0.93 0.77 0.8 0.86 0.8 0.76 0.69 0.7 0.7

CV 0.86 0.93 0.7 0.8 0.77 0.73 0.8 0.76 0.7 0.76

Tradt 0.87 0.83 0.87 0.8 0.8 0.87 0.93 0.83 0.9 0.83

Tradt w/ SMOTE 0.8 0.86 0.9 0.8 0.83 0.83 0.93 0.83 0.87 0.83

Penbased CS 0.95 0.98 0.99 1.0 0.99 0.98 0.99 0.99 0.99 0.98

CV 0.86 0.87 0.91 0.91 0.91 0.92 0.93 0.93 0.94 0.93

Tradt 0.9 0.93 0.97 0.96 0.97 0.99 0.99 0.99 0.98 0.98

Tradt w/ SMOTE 0.9 0.93 0.97 0.96 0.98 0.99 0.99 0.99 0.98 0.98

Coimbra CS 0.6 0.88 0.8 0.77 0.82 0.71 0.76 0.66 0.71 0.7

CV 0.57 0.82 0.77 0.77 0.79 0.71 0.77 0.6 0.68 0.74

Tradt 0.69 0.7 0.74 0.73 0.7 0.79 0.76 0.65 0.68 0.74

Tradt w/ SMOTE 0.66 0.74 0.76 0.74 0.76 0.79 0.79 0.68 0.74 0.74

Algerian Fire CS 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

CV 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Tradt 0.9 1.0 0.99 1.0 1.0 1.0 1.0 0.97 0.97 0.99

Tradt w/ SMOTE 0.87 1.0 0.99 1.0 1.0 1.0 1.0 0.96 0.97 0.99

TCGA-LGG CS 0.88 0.88 0.85 0.85 0.85 0.83 0.84 0.83 0.84 0.82

CV 0.87 0.87 0.86 0.86 0.85 0.84 0.84 0.84 0.84 0.84

Tradt 0.84 0.85 0.84 0.85 0.84 0.84 0.83 0.83 0.83 0.83

Tradt w/ SMOTE 0.84 0.85 0.85 0.84 0.84 0.83 0.83 0.83 0.83 0.83
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These findings point to some advantages of the con-

trastive dissimilarity model, particularly in scenarios with

restricted training data. Nonetheless, the statistical signifi-

cance of these advantages remains low, highlighting the

need for additional studies in balanced datasets.

5.4 Computational complexity

Computational complexity can be divided into three main

steps: the input size, the neural network, and the dissimi-

larity representation. The input size depends exclusively on

the data being evaluated, and thus, we cannot make any

strong assumptions about it. We denote its computational

complexity as OðinputÞ.
The neural network training computational complexity

is primarily determined by the projection head architecture,

meaning that the more parameters it has, the more time it

will take to train and predict. In this work, the larger

evaluated projection head contained around six hundred

thousand parameters. We shall denote its training compu-

tational complexity as OðnetworktrainÞ.
The final step is the dissimilarity representation, which

has two approaches: space and vector. The dissimilarity

space builds a matrix with n rows and m columns, where n

represents the number of samples and m the number of

prototypes, resulting in a complexity of

Oðn � m � networkpredictÞ. The dissimilarity vector composes

a feature vector for each combination of sample and pro-

totype, generating w dissimilarity values for each, resulting

in a complexity of Oðn � m � networkpredict � wÞ.

6 Conclusion

This study introduced a novel approach to classifying

imbalanced tabular datasets that combines metric learning

and dissimilarity, known as contrastive dissimilarity. Our

proposal improved robustness and classification perfor-

mance by developing a task-specific dissimilarity function

that went beyond traditional distance measures.

Experiments were conducted in a comprehensive

experimental setting with varying training sizes. The con-

trastive dissimilarity space approach was especially useful

in scenarios with limited data availability. It consistently

outperformed traditional machine learning algorithms,

including SVM, random forest, and Naive Bayes, with over

90% of wins and ties. While its performance in balanced

dataset contexts was variable, it still showed promising

results, particularly with limited training data.

While our approach produced promising results that

warrant further investigation, it has two significant practi-

cal limitations: First, the data availability threshold varies

depending on the scenario being evaluated, making it dif-

ficult to pinpoint a precise threshold at which our method

outperforms traditional approaches. Second, our proposal

includes some hyperparameters that need to be fine-tuned

for optimal performance, such as the projection head

architecture, temperature, learning rate, batch size, proto-

type selection, and the use of Synthetic Minority Over-

sampling Technique (SMOTE).

Finally, our proposed method represents a promising

advance in handling complex and imbalanced datasets. Its

flexibility and robust performance under changing condi-

tions make it useful for a wide range of applications.

Potential applications include domains that deal with

imbalanced data, such as medical diagnoses, fraud detec-

tion, and rare events in general.

Future work will focus on improving the dissimilarity

vector model and determining the data availability

threshold. Furthermore, we intend to test additional long-

tail classification scenarios using image datasets such as

CIFAR10-LT, CIFAR100-LT, and ImageNet-LT.

Appendix A Traditional models

This appendix presents Table 7 containing performance of

three traditional machine learning models with and without

SMOTE applied to the datasets in this study: support vector

machine (SVM), random forest, and Naive Bayes. The

performance of each model is evaluated using the F1-score
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Table 7 Traditional models F1-score

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Hayes-Roth SVM 0.49 0.59 0.56 0.58 0.7 0.72 0.72 0.78 0.77 0.79

SVM with SMOTE 0.51 0.57 0.45 0.58 0.72 0.72 0.72 0.78 0.77 0.8

RF 0.33 0.54 0.6 0.55 0.68 0.75 0.75 0.77 0.77 0.77

RF with SMOTE 0.46 0.49 0.57 0.56 0.67 0.74 0.78 0.77 0.82 0.77

NB 0.49 0.49 0.46 0.51 0.56 0.59 0.62 0.68 0.69 0.62

NB with SMOTE 0.49 0.55 0.46 0.46 0.58 0.56 0.62 0.67 0.69 0.62

Glass1 SVM 0.42 0.71 0.76 0.76 0.77 0.75 0.75 0.75 0.74 0.73

SVM with SMOTE 0.51 0.68 0.78 0.7 0.79 0.77 0.78 0.73 0.75 0.75

RF 0.59 0.68 0.82 0.77 0.75 0.79 0.73 0.86 0.84 0.84

RF with SMOTE 0.56 0.65 0.75 0.76 0.74 0.76 0.81 0.81 0.82 0.82

NB 0.48 0.6 0.6 0.61 0.56 0.53 0.56 0.58 0.62 0.6

NB with SMOTE 0.49 0.58 0.6 0.58 0.58 0.58 0.6 0.63 0.62 0.6

New-Thyroid SVM 0.95 0.95 0.98 1.0 0.98 0.96 0.96 0.96 0.96 0.98

SVM with SMOTE 0.53 1.0 0.87 0.9 0.98 0.96 0.96 0.98 0.96 0.94

RF 0.91 0.96 0.96 0.9 0.92 0.9 0.92 0.92 0.9 0.94

RF with SMOTE 0.96 0.94 0.92 0.94 0.92 0.94 0.96 0.94 0.94 0.96

NB 0.91 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

NB with SMOTE 0.85 0.96 0.96 0.98 0.98 0.98 0.98 0.96 0.98 0.98

Glass1 SVM 0.95 0.97 0.95 0.96 0.92 0.97 0.94 0.97 0.96 0.97

SVM with SMOTE 0.92 0.94 0.74 0.97 0.93 0.96 0.94 0.97 0.95 0.97

RF 0.89 0.94 0.97 0.98 0.98 0.97 0.99 0.99 0.98 0.98

RF with SMOTE 0.97 0.95 0.97 0.98 0.97 0.95 0.96 0.98 1.0 0.97

NB 0.88 0.94 0.84 0.88 0.82 0.82 0.82 0.82 0.82 0.82

NB with SMOTE 0.9 0.95 0.84 0.9 0.82 0.82 0.82 0.82 0.82 0.82

Balance SVM 0.8 0.77 0.88 0.93 0.94 0.9 0.88 0.89 0.95 0.92

SVM with SMOTE 0.81 0.77 0.8 0.86 0.87 0.85 0.91 0.93 0.9 0.95

RF 0.52 0.56 0.57 0.57 0.6 0.61 0.6 0.6 0.6 0.61

RF with SMOTE 0.51 0.57 0.57 0.59 0.59 0.6 0.6 0.6 0.59 0.62

NB 0.62 0.58 0.55 0.63 0.61 0.6 0.62 0.62 0.62 0.63

NB with SMOTE 0.61 0.57 0.6 0.62 0.66 0.64 0.65 0.67 0.69 0.67

Segment0 SVM 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

SVM with SMOTE 0.92 0.99 0.99 0.99 0.99 1.0 0.99 1.0 1.0 1.0

RF 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

RF with SMOTE 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.99

NB 0.7 0.7 0.68 0.69 0.69 0.75 0.76 0.76 0.77 0.78

NB with SMOTE 0.72 0.71 0.69 0.69 0.7 0.76 0.76 0.76 0.76 0.78

DryBean SVM 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

SVM with SMOTE 0.92 0.89 0.9 0.91 0.91 0.92 0.94 0.92 0.93 0.92

RF 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94

RF with SMOTE 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.94

NB 0.9 0.9 0.9 0.9 0.9 0.9 0.91 0.91 0.91 0.91

NB with SMOTE 0.9 0.9 0.9 0.9 0.91 0.91 0.91 0.91 0.91 0.91

Glass SVM 0.41 0.4 0.49 0.54 0.56 0.6 0.6 0.65 0.66 0.64

SVM with SMOTE 0.16 0.38 0.59 0.55 0.47 0.66 0.65 0.64 0.65 0.61

RF 0.41 0.39 0.47 0.47 0.42 0.51 0.56 0.62 0.66 0.73

RF with SMOTE 0.41 0.41 0.55 0.57 0.48 0.54 0.61 0.62 0.66 0.68

NB 0.29 0.29 0.45 0.4 0.47 0.48 0.47 0.46 0.46 0.46

NB with SMOTE 0.29 0.26 0.36 0.35 0.45 0.52 0.55 0.51 0.54 0.52
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Table 7 (continued)

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Page-Blocks0 SVM 0.86 0.89 0.9 0.92 0.91 0.92 0.93 0.93 0.92 0.92

SVM with SMOTE 0.84 0.87 0.86 0.89 0.88 0.9 0.91 0.91 0.89 0.91

RF 0.88 0.91 0.91 0.91 0.93 0.92 0.92 0.93 0.93 0.93

RF with SMOTE 0.86 0.9 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93

NB 0.69 0.71 0.75 0.76 0.76 0.75 0.75 0.73 0.72 0.72

NB with SMOTE 0.76 0.75 0.76 0.76 0.77 0.76 0.76 0.75 0.75 0.73

Vowel0 SVM 0.78 0.83 0.82 0.8 0.96 0.98 0.98 1.0 1.0 1.0

SVM with SMOTE 0.83 0.85 0.85 0.92 0.97 1.0 1.0 1.0 0.94 1.0

RF 0.77 0.85 0.86 0.88 0.94 0.94 0.96 0.96 0.96 0.98

RF with SMOTE 0.76 0.84 0.87 0.94 0.96 0.96 0.96 0.98 0.98 0.98

NB 0.79 0.79 0.8 0.79 0.8 0.8 0.81 0.83 0.8 0.82

NB with SMOTE 0.72 0.75 0.8 0.79 0.74 0.77 0.78 0.77 0.77 0.78

Yeast4 SVM 0.62 0.58 0.75 0.61 0.65 0.6 0.65 0.65 0.69 0.69

SVM with SMOTE 0.57 0.59 0.73 0.59 0.57 0.58 0.61 0.52 0.62 0.6

RF 0.49 0.49 0.55 0.49 0.55 0.55 0.55 0.55 0.61 0.61

RF with SMOTE 0.49 0.52 0.75 0.66 0.72 0.63 0.7 0.69 0.65 0.66

NB 0.19 0.07 0.09 0.09 0.1 0.11 0.13 0.13 0.13 0.15

NB with SMOTE 0.25 0.09 0.14 0.13 0.15 0.15 0.14 0.16 0.15 0.18

HCV SVM 0.39 0.29 0.47 0.34 0.56 0.57 0.57 0.64 0.6 0.57

SVM with SMOTE 0.26 0.37 0.35 0.39 0.41 0.56 0.46 0.41 0.5 0.67

RF 0.36 0.47 0.48 0.45 0.44 0.36 0.44 0.5 0.49 0.52

RF with SMOTE 0.43 0.45 0.54 0.49 0.5 0.59 0.56 0.75 0.68 0.68

NB 0.28 0.33 0.49 0.54 0.49 0.53 0.72 0.71 0.72 0.72

NB with SMOTE 0.28 0.33 0.44 0.55 0.46 0.55 0.66 0.65 0.67 0.67

Yeast SVM – 0.58 0.53 0.62 0.62 0.58 0.58 0.56 0.56 0.57

SVM with SMOTE – 0.29 0.33 0.34 0.31 0.35 0.34 0.39 0.44 0.42

RF – 0.39 0.57 0.49 0.62 0.61 0.57 0.57 0.59 0.51

RF with SMOTE – 0.56 0.59 0.6 0.61 0.61 0.59 0.58 0.61 0.56

NB – 0.32 0.44 0.34 0.34 0.32 0.32 0.33 0.33 0.33

NB with SMOTE – 0.32 0.39 0.34 0.31 0.33 0.33 0.38 0.36 0.37

Raisin SVM 0.82 0.88 0.85 0.88 0.88 0.87 0.87 0.89 0.88 0.87

SVM with SMOTE 0.82 0.88 0.85 0.88 0.88 0.87 0.87 0.89 0.88 0.87

RF 0.82 0.88 0.85 0.88 0.88 0.87 0.87 0.89 0.88 0.87

RF with SMOTE 0.84 0.84 0.81 0.86 0.86 0.86 0.86 0.86 0.88 0.87

NB 0.82 0.84 0.82 0.82 0.84 0.84 0.82 0.82 0.82 0.82

NB with SMOTE 0.84 0.84 0.81 0.86 0.86 0.86 0.86 0.86 0.88 0.87

TME SVM 0.84 0.84 0.81 0.86 0.86 0.86 0.86 0.86 0.88 0.87

SVM with SMOTE 0.64 0.69 0.69 0.73 0.7 0.72 0.7 0.72 0.7 0.71

RF 0.64 0.69 0.69 0.73 0.7 0.72 0.7 0.72 0.7 0.71

RF with SMOTE 0.64 0.69 0.69 0.73 0.7 0.72 0.7 0.72 0.7 0.71

NB 0.64 0.69 0.69 0.73 0.7 0.72 0.7 0.72 0.7 0.71

NB with SMOTE 0.59 0.63 0.65 0.69 0.66 0.68 0.64 0.65 0.72 0.72

Sirtuin6 SVM 0.87 0.79 0.8 0.73 0.72 0.83 0.93 0.83 0.8 0.7

SVM with SMOTE 0.8 0.79 0.77 0.73 0.71 0.83 0.93 0.83 0.8 0.7

RF 0.87 0.79 0.8 0.73 0.72 0.83 0.93 0.83 0.8 0.7

RF with SMOTE 0.8 0.79 0.77 0.73 0.71 0.83 0.93 0.83 0.8 0.7

NB 0.87 0.79 0.8 0.73 0.72 0.83 0.93 0.83 0.8 0.7

NB with SMOTE 0.52 0.72 0.83 0.8 0.73 0.73 0.77 0.77 0.73 0.73
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metric. The results are organized in a tabular format, with

the datasets listed in rows and varying proportions of

training data, ranging from 10 to 100%, displayed in

columns.

Appendix B Dissimilarity vector

The performance of the dissimilarity vector was lower than

anticipated, prompting us to detail its shortcomings in this

appendix. The dissimilarity vector has a very simplistic

nature that rely on the differences between the represen-

tations of samples. In tabular data, these representations are

relatively fixed, as a result, when the data points are not

distinctly separate, the dissimilarity vector tends to reflect

less discriminative differences. Figure 2 illustrates this

concept using a sample fold from the Glass1 dataset, the

lack of distinctiveness in the original features, and thus in

the prototypes, leads to a untidy dissimilarity representa-

tion. For ease visualization, the data is condensed into two

dimensions using t-SNE.

Contrastingly, Fig. 3 depicts the dissimilarity space

representation, noticeably more structured and coherent,

particularly in our proposed method.

Table 7 (continued)

Database Method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Penbased SVM 0.9 0.93 0.97 0.96 0.97 0.99 0.99 0.99 0.98 0.98

SVM with SMOTE 0.75 0.79 0.8 0.82 0.82 0.82 0.82 0.81 0.82 0.82

RF 0.84 0.9 0.92 0.91 0.93 0.95 0.95 0.95 0.96 0.96

RF with SMOTE 0.81 0.9 0.91 0.93 0.93 0.95 0.95 0.96 0.96 0.96

NB 0.75 0.79 0.8 0.82 0.82 0.82 0.82 0.81 0.82 0.82

NB with SMOTE 0.81 0.9 0.91 0.93 0.93 0.95 0.95 0.96 0.96 0.96

Coimbra SVM 0.63 0.7 0.74 0.67 0.7 0.74 0.74 0.57 0.68 0.74

SVM with SMOTE 0.66 0.63 0.68 0.68 0.68 0.71 0.65 0.62 0.68 0.68

RF 0.69 0.63 0.71 0.73 0.7 0.79 0.76 0.65 0.68 0.68

RF with SMOTE 0.57 0.68 0.76 0.73 0.73 0.79 0.79 0.62 0.68 0.74

NB 0.66 0.63 0.68 0.68 0.68 0.71 0.65 0.62 0.68 0.68

NB with SMOTE 0.63 0.63 0.63 0.66 0.63 0.71 0.65 0.62 0.65 0.68

Algerian Fire SVM 0.86 0.92 0.96 0.93 0.97 0.97 0.96 0.92 0.93 0.94

SVM with SMOTE 0.87 0.92 0.9 0.9 0.92 0.92 0.92 0.92 0.92 0.93

RF 0.9 1.0 0.99 1.0 1.0 1.0 1.0 0.97 0.97 0.99

RF with SMOTE 0.87 0.92 0.9 0.9 0.92 0.92 0.92 0.92 0.92 0.93

NB 0.87 0.92 0.9 0.9 0.92 0.92 0.92 0.92 0.92 0.93

NB with SMOTE 0.87 0.92 0.9 0.9 0.92 0.92 0.92 0.92 0.92 0.93

TCGA-LGG SVM 0.87 0.92 0.9 0.9 0.92 0.92 0.92 0.92 0.92 0.93

SVM with SMOTE 0.84 0.85 0.85 0.84 0.83 0.83 0.83 0.83 0.83 0.83

RF 0.83 0.83 0.81 0.81 0.83 0.84 0.83 0.82 0.81 0.81

RF with SMOTE 0.82 0.83 0.84 0.83 0.84 0.82 0.82 0.81 0.81 0.82

NB 0.6 0.55 0.56 0.55 0.57 0.74 0.72 0.72 0.72 0.7

NB with SMOTE 0.64 0.57 0.57 0.58 0.58 0.77 0.71 0.7 0.76 0.71
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Fig. 2 Glass1 dissimilarity vector

Fig. 3 Glass1 dissimilarity space
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