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Pairwise fusion matrix for combining classifiers

Albert H.R. Koa,∗, Robert Sabourina, Alceu de Souza Britto Jr.b, Luiz Oliveirab

aLIVIA, École de Technologie Supérieure, University of Quebec, 1100 Notre-Dame West Street, Montreal, Que., Canada H3C 1K3
bPPGIA, Pontifical Catholic University of Parana, Rua Imaculada Conceicao, 1155, PR 80215-901, Curitiba, Brazil

Received 6 July 2006; received in revised form 13 October 2006; accepted 26 January 2007

Abstract

Various fusion functions for classifier combination have been designed to optimize the results of ensembles of classifiers (EoC). We propose a
pairwise fusion matrix (PFM) transformation, which produces reliable probabilities for the use of classifier combination and can be amalgamated
with most existent fusion functions for combining classifiers. The PFM requires only crisp class label outputs from classifiers, and is suitable
for high-class problems or problems with few training samples. Experimental results suggest that the performance of a PFM can be a notch
above that of the simple majority voting rule (MAJ), and a PFM can work on problems where a behavior–knowledge space (BKS) might not
be applicable.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Different classifiers usually make different errors on differ-
ent samples, which means that we can arrive at an ensem-
ble that makes more accurate decisions by combining classi-
fiers [1–9]. For this purpose, diverse classifiers are grouped to-
gether into what is known as an ensemble of classifiers (EoC).
There are two problems in optimizing the performance of an
EoC: first, how classifiers are selected, given a pool of dif-
ferent classifiers, to construct the best ensemble; and second,
given all the selected classifiers, choosing the best rule to com-
bine their outputs. These problems are fundamentally different,
and should be solved separately to reduce the complexity in-
volved in optimizing EoCs; the former focuses on ensemble
selection [3,6,10–14] and the latter on ensemble combination,
i.e. the choice of fusion functions [2,5,9,14,15]. Various fusion
functions for classifier combination have been designed to fa-
cilitate a consensus decision from the outputs of each individ-
ual classifier. Through experimentation, some fusion functions
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have been shown to perform better than the single best clas-
sifier. But, we have no adequate understanding of the reasons
why some classifier combination schemes are better than others
[2,7,14,16,17].

An important consideration in classifier combination is that
much better results can be achieved if diverse classifiers, rather
than similar classifiers, are combined. There are several meth-
ods for creating diverse classifiers, among them are Random
Subspaces [18], Bagging and Boosting [19–21]. The Random
Subspaces method creates various classifiers by using differ-
ent subsets of features to train them. Bagging generates diverse
classifiers by randomly selecting subsets of samples to train
classifiers. Boosting also uses parts of samples to train classi-
fiers, but not randomly; in this case, difficult samples have a
greater probability of being selected and easier samples have
less chance of being used for training. To summarize, diverse
classifiers are needed to optimize the performance of an EoC, as
well as an adequate fusion function for classifier combination.
A number of different combination schemes have been sug-
gested [2,5–7,9,11,14,15,22,23]. In general, two kinds of fusion
functions are available: (a) fusion functions of label outputs,
such as majority voting, behavior–knowledge space (BKS),
naive Bayes (NB) methods, etc. and (b) fusion functions of
continuous-value outputs, which require the class probabilities
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outputs from classifiers. Different from the continuous-valued
fusion functions, the label outputs fusion functions could not
apply a posteriori probabilities of classes provided by each
individual classifier. In the case where only class labels are
offered as outputs by each individual classifier, then the simple
majority vote rule (MAJ) is suggested.

To improve the performance of the fusion functions of la-
bel outputs, the BKS [11] has been proposed as an interesting
fusion function that takes into account the interaction of clas-
sifiers. The method does not require any a posteriori probabil-
ities of classes provided by each individual classifier. By con-
trast, it estimates the probability of each possible class label by
constructing a table with L + 1 dimensions for an ensemble of
L classifiers, each dimension corresponds to the output of each
classifier, and the additional dimension is for the true labels of
concerned samples. By this means, with only the class label
outputs of each classifier the BKS can estimate the likelihood
of a given sample belonging to a class. The problem of the
BKS is that it can apply only on low-dimensional problems.
Moreover, in order to have an accurate probability estimation,
it requires a large number of samples for the training.

On the other hand, the continuous-valued fusion functions
require a posteriori probabilities of classes provided by each
individual classifier and thus can use simple probability com-
bination functions, such as sum, product, maximum and min-
imum. Moreover, they can also be more sophisticated classi-
fier combination schemes than label outputs fusion functions,
such as decision templates (DTs), Dempster–Shafer combina-
tion (DSC), fuzzy integral, or multilayer perceptrons (MLP)
[6,11,22,23]. While it is true that these functions deal with the
problem of combining classifiers as a problem of pattern recog-
nition and take into account the interactions from classifiers,
most of them do need further training. As insufficient train-
ing data usually lead to imperfect training, these sophisticated
fusion functions might perform worse than the simple fusion
functions [24]. It has, in fact, been suggested that, given insuffi-
cient training samples, simple fusion functions may outperform
some trained fusion functions [24].

Herein lies the dilemma of EoCs. Given a limited number of
samples, we need to take into account the interaction among
classifiers. When the number of samples is too small, most
trained fusion functions will not work well. For classifiers with
crisp label outputs, this is especially a serious problem, because
the number of fusion functions for label outputs is limited, and
the BKS is suited neither to high-dimensional class problem
nor to ensembles with a large number of classifiers. Therefore,
we note three constraints for classifier combination: (a) clas-
sifiers without a posteriori probabilities of classes as outputs
cannot use continuous-valued fusion functions; (b) trainable fu-
sion functions need a number of samples for training, otherwise
they will not perform well; (c) in most cases the independence
of each classifier is the basic assumption. This assumption is,
however, usually not true. Here are the key questions that need
to be addressed:

(1) Can label outputs classifiers apply continuous-valued fu-
sion functions?

Fig. 1. An example of pairwise confusion matrices transformation in a
six-classifier ensemble. (a) The original ensemble with six classifiers and (b)
the transformation yields to 15 classifier pairs, each classifier pair is equal
to the link between two classifiers in (a).

(2) Can a trainable fusion function perform well without a large
training data set?

(3) Can we take the interaction among classifiers into account
in combining classifiers?

Given the challenge of combining classifiers, we suggest that
the methods for combining classifiers can be improved by a
simple transformation of an EoC into an ensemble of classifier
pairs. We propose a pairwise fusion matrix (PFM) for classifier
combination. A PFM is actually a three-dimensional confusion
matrix consisting of the label outputs of any two classifiers and
the real labels of samples. It is a method for transforming EoCs
(Fig. 1) by which an ensemble of L classifiers is transformed
into another ensemble of L × (L − 1)/2 classifier pairs.

With the prospect of using classifier pairs, it becomes possi-
ble to transform the crisp class label outputs into class proba-
bility outputs and thus allow the use of other fusion functions
of continuous-valued outputs. At the same time we do take into
account the interaction between classifiers in a pairwise man-
ner. Moreover, the construction of PFM does not require as
many samples needed for ensemble training as the BKS.

It is important to note that the classifier combination problem
is very complex, and there are still a great many issues asso-
ciated with it that we do not fully understand. It is difficult to
say whether or not a method is better if we have an insufficient
theoretical framework with which to assess it. The analysis and
the method in this paper constitute only a small step towards a
considerably improved understanding of classifier combination.

The paper is organized as follows. In Section 2, we introduce
label outputs fusion functions for classifier combination. The
proposed pairwise confusion matrices are presented in Section
3, and we discuss its relationship with BKS in Section 4. Ex-
perimental results are compared in Section 5. Discussion and
our conclusion are presented in the remaining sections.

2. Fusion functions for label outputs classifier combination

Several fusion functions of label outputs for combining clas-
sifiers have been proposed [2,7,16,17]. These directly compare
the outputs from all individual classifiers in an ensemble. Some
related theoretical studies are presented in Refs. [2,7,17]. As
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stated in Refs. [17,25], most of these fusion functions rely on
the very restrictive assumption of the independence of esti-
mates. To address this shortcoming, other, more sophisticated
strategies have been proposed which use more available infor-
mation in combining classifiers [6,11,22,23]. We detail some
popular fusion functions of label outputs in the section below.

2.1. Simple majority voting rule (MAJ)

This rule does not require the a posteriori outputs for each
class, and each classifier gives only one crisp class output as
a vote for that class. Then, the ensemble output is assigned
to the class with the maximum number of votes among all
classes. For any sample x ∈ X, for a group of L classifiers
in a T-class problem, we denote the decision of label outputs
from classifier f (i) is c(i), 1�c(i)�T , and we write di,t = 1
for c(i) = t, 1� t �T and zero otherwise. Consequently, we
calculate the discriminant function for class l, 1� l�T , as

g(l|x) =
L∑

i=1

di,l , (1)

and the class is selected as the one with the maximum value of
g(l|x):

k = arg
T

max
l=1

g(l|x). (2)

2.2. Weighted majority voting rule (W-MAJ)

Similar to MAJ, the weighted majority voting rule (W-MAJ)
applies a voting scheme to decide the output class. However, in
this case each classifier is weighted by a different coefficient:

g(l|x) =
L∑

i=1

bidi,l , (3)

where bi is the coefficient for the classifier f (i), with the sum
equal to 1:

L∑

i=1

bi = 1. (4)

It has been suggested that if each classifier is independent of
one another, then the coefficient bi can be set as [22]:

bi ∝ log
pi

1 − pi

, (5)

where pi is the classification accuracy of classifier f (i) on a
training data set.

2.3. Naive bayes (NB)

Among these methods, the simplest is based on the assump-
tion that all classifiers are mutually independent. Under this
precondition, for a group of L classifiers in a T-class problem,
we can calculate the probability P(l|c(i), x) of the class label

being l, 1� l�T , if classifier f (i) gives the class label output
c(i) on a sample x. Then we can use these estimated probabil-
ities for classifying samples in the test set X:

P̃ (l|x) ∝
L∏

i=1

P(l|c(i), x), (6)

k = arg
T

max
l=1

P̃ (l|x). (7)

This is the so-called naive Bayes (NB) combination [6,7]. How-
ever, it is very unlikely that all classifiers in an ensemble will
be mutually independent.

2.4. Behavior–knowledge space (BKS) and Wernecke’s
method (WER)

Some authors propose constructing a complex BKS ta-
ble [11] in order to have full access to the information on
classifier behavior. Given N samples and L classifiers in a
T-class problem, the ideal goal is to obtain the probability
P(l|c(1), . . . , c(i), . . . , c(L), x) for the whole data X, where
l is a possible class label for a sample 1� l�T , and c(i) is
the decision of classifier f (i) over the sample, with L classi-
fiers 1� i�L. Each probability can be located in a cell of a
look-up table (BKS table), and then be used by multinomial
combination, such as direct comparison of these probabilities
in the BKS table, known as the BKS [11], or considering a
95% confidence interval of the probabilities in the BKS table,
known as Wernecke’s method (WER) [23]. For BKS, the class
is assigned by simply comparing the values in each cell in
BKS table:

k = arg
T

max
l=1

P(l|c(1), . . . , c(i), . . . , c(L), x). (8)

In reality, however, this probability could be impossible to
obtain. With L classifiers in a T-class problem, there are T ×
T L different situations for this group of classifiers, and it is
not difficult to see that the number of samples N is unlikely
to be sufficient for T L+1 different situations, i.e. in general,
N>T L+1. As a result, obtaining any idea of this probability is
also unlikely, and thus it is usually impossible to proceed with
BKS or WER, except on low-class dimensions with a very small
number of classifiers in an ensemble and a very large number
of samples. Given the strict limit on the size of the training
data set, some authors suggest that BKS tends to overfit [22],
as well as being too self-assured [24].

Above all, it is remarkable that most trained fusion functions
tend to explore more information from the training set. For this
reason, most classifier combination strategies need to take the
interaction between classifiers and between classes into con-
sideration. If these elements are ignored, as with NB, then the
performance cannot be satisfactory. If these elements are fully
explored, as with BKS or WER, given the complicated behavior
of classifiers in an ensemble, especially in a high-class dimen-
sion and with a large number of classifiers, the number of sam-
ples can scarcely be sufficient, and the probabilities obtained
will usually be unreliable.
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Herein lies the problem with training ensembles for combin-
ing classifiers. The fact that an ensemble acts in an extremely
large space means that we need to use a method which is both
effective and accurate. To partly resolve the problem, we pro-
pose a trained fusion function for better classifier combination
in large-class dimension.

3. The concept of pairwise fusion matrices

3.1. Pairwise fusion matrix (PFM) transformation

The dilemma of EoCs is that, given a limited number of
samples, we need to take into account the interaction among
classifiers. Pairwise fusion matrix (PFM) transformation makes
use of pairwise estimation to solve this problem. If we only
take classifier pairs into account, we need only to calculate the
probability P(l|c(i), c(j), x), where c(i) and c(j) are the de-
cisions of classifier f (i) and classifier f (j) over a sample x,
respectively. For P(l|c(i), c(j), x), there are only T ×T 2 =T 3

different situations, and if the number of samples N is large
enough, i.e. N?T 3, we can obtain a reliable estimation of this
probability. This probability can be approximated by calculat-
ing PFM:

P(l|c(i), c(j), x) = n(x ∈ l, c(i), c(j))/n(c(i), c(j)), (9)

where n(c(i), c(j)) is the total number of samples on which
classifier f (i) gives crisp output c(i) and classifier f (j) gives
crisp output c(j), while n(x ∈ l, c(i), c(j)) is the number
of samples the real class label of which is l, 1� l�T . The
probability P(l|c(i), c(j), x) is, in fact, the concept of a three-
dimensional confusion matrix, where the decision of classifier
c(i), the decision of classifier c(j) and the real class label of
such samples represent each dimension.

The following is one example of a three-classifier PFM,
which demonstrates the situation where the classifiers give dif-
ferent decisions. Suppose for a pattern x in a 10-class prob-
lem, the decision of the first classifier is 3, that of a second
classifier is 8 and that of a third classifier is 5, i.e. c(1) = 3,
c(2) = 8 and c(3) = 5. Obviously, for any class label l, PFM
will give three probabilities based on different classifier pairs,
P(l|c(1) = 3, c(2) = 8, x) , P(l|c(1) = 3, c(3) = 5, x) , and
P(l|c(2) = 8, c(3) = 5, x).

For any sample x with a class label k, PFM provides a pair-
wise matrix of classifier f (i) and classifier f (j) with the prob-
ability of how likely it will be classified as class c(i) by f (i)

and as class c(j) by f (j). For any sample x classified as class
l by classifier f (i), PFM provides a partial confusion matrix
between classifier f (j) and the real class labels of samples. All
the confusion matrices of classifier f (j) can be derived quickly
from any pairwise confusion matrices concerning f (j):

P(l|c(j), x) =
T∑

i=1

P(l|c(i), c(j), x), (10)

where c(i) constitutes the class label outputs of classifier f (i).
In other words, it is a cube of T 3 cells with N samples filled

in; since L classifiers mean L × (L − 1)/2 classifier pairs, we
can obtain L × (L − 1)/2 pairwise confusion matrices (PFM).

Even though PFM is basically based on the label outputs
of classifiers, it can also be constructed based on continuous-
valued outputs of classifiers, in case it is applicable. If classifiers
give the continuous class probability of each sample, PFMs can
explore this property by calculating the probability-based PFM
(PPFM):

P(l|c(i), c(j), x) = 1

N

N∑

x=1

P(l|c(i), x) · P(l|c(j), x), (11)

where P(l|c(i), x) is the probability of a class c(i) being as-
signed by classifier f (i) to sample x, the real class label of
which is l, and P(l|x, c(j)) is the probability of a class c(j)

assigned by classifier f (j) to sample x whose real class label
is l.

The probabilities from these pairwise confusion matrices of-
fer several advantages over the traditional ensemble combina-
tion strategies: (a) they do not require the class probability out-
puts of each sample but only the class label outputs of each
sample from individual classifiers; (b) they transform the sim-
ple class label outputs into the class probability outputs; and
(c) they take into account of the interaction between classifiers.

Note that the use of pairwise confusion matrices is a trans-
formation that is to be combined with other fusion functions
for the classifier combination. But, PFM allows the use of other
fusion functions of continuous-value outputs and does not sup-
pose the independence of each classifier. We show several ex-
amples of applied PFM on some fusion functions in the next
section.

3.2. Apply PFM on fusion functions of continuous-value
outputs

Based on these pairwise class probabilities, we can apply
other different classifier combination rules. We give an exam-
ple of the application of PFMs in general fusion functions of
continuous-value outputs:

(1) PFM–maximum rule (PFM–MAX)

k = arg
T

max
l=1

L/2
max

i,j=1,i �=j
P (l|c(i), c(j), x). (12)

(2) PFM–minimum rule (PFM–MIN)

k = arg
T

max
l=1

L/2
min

i,j=1,i �=j
P (l|c(i), c(j), x). (13)

(3) PFM–sum rule (PFM–SUM)

k = arg
T

max
l=1

2

L × (L − 1)

L/2∑

i,j=1,i �=j

P (l|c(i), c(j), x).

(14)
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(4) PFM–product rule (PFM–PRO)

k = arg
T

max
l=1

L/2∏

i,j=1,i �=j

P (l|c(i), c(j), x). (15)

Other fusion functions, such as DT or NB, will require fur-
ther training, but are applicable as well. Furthermore, since the
nature of pairwise confusion matrices is based on a pairwise
approach, it is very likely that the probabilities displayed in
the cells of pairwise confusion matrices can be weighted by
the classification rates of classifiers and the pairwise diversity
between classifiers. We discuss this idea in the next section.

3.3. Apply PFM on fusion functions of label outputs

Although one of the advantages of PFM lies in the use of
fusion functions of continuous-value outputs, PFM can apply
on fusion functions of label outputs as well. Given that MAJ can
outperform some fusion functions of continuous-value outputs
[24], we are interested to know if the PFM can bring about any
improvement on MAJ.

We define this combination scheme as PFM–majority voting
rule (PFM–MAJ). This rule is similar to the simple MAJ rule,
but uses the pairwise probability P(l|c(i), c(j), x) from the
classifier pair f (i) and f (j) instead of the simple probability
Pi(l|x) from a single classifier f (i) considering class l. For any
sample x ∈ X, for a group of L × (L − 1)/2 classifier pairs
in a T-class problem, we denote the decision of label outputs
from classifiers f (i) and f (j) is c(i) and c(j), respectively:

l̃ = arg
T

max
l=1

P(l|c(i), c(j), x). (16)

We then denote di,j |t = 1 for l̃ = t, 1� t �T and zero other-
wise. Consequently, we calculate the discriminant function for
class l, 1� l�T as

g(l̂|x) =
L∑

i,j=1;i �=j

d
i,j |l̃ , (17)

and the class is selected as the one with the maximum value of
g(l̂|x):

k = arg
T

max
l̂=1

g(l̂|x). (18)

Suppose for a pattern x in a 10-class problem classified by
three classifiers with the decisions c(1)=3, c(2)=8 and c(3)=5.
For any class label l, PFM gives the probabilities based on
classifier pairs P(l|c(1)=3, c(2)=8, x) , P(l|c(1)=3, c(3)=
5, x) , and P(l|c(2)=8, c(3)=5, x). Suppose for all class label
1� l�10, P(3|c(1)=3, c(2)=8, x), P(3|c(1)=3, c(3)=5, x)

and P(8|c(2) = 8, c(3) = 5, x) have the greatest probabilities
based on its own classifier pairs. The class 3 has the support
of the classifier pair c(1) = 3, c(2) = 8 and the classifier pair
c(1)=3, c(3)=5, and the class 8 has the support of the classifier
pair c(2) = 8, c(3) = 5, i.e. d1,2|3 = 1, d1,3|3 = 1 and d2,3|8 = 1.
As a result, the class 3 has more votes than the class 8 and any

other class labels, since g(3|x) = 2 and g(8|x) = 1, the class 3
will be the decision of the EoC.

3.4. Other alternatives for PFM

We have shown that PFM can apply on both label outputs
and continuous-value fusion functions. We also know that PFM
can be constructed based on label outputs (PFM) or probability
outputs (PPFM). PFM is, in fact, a flexible transformation that
can allow us to apply various classifier combination schemes.
Moreover, thanks to its pairwise nature, PFM can be further
weighted by other factors. We give some examples of its alter-
natives:

(1) PFM weighted by individual classifier recognition rate
(PFM–IRR):
Given the probability P(l|c(i), c(j), x) from pairwise con-
fusion matrices on an evaluated class k, where c(i) and c(j)

are the decisions of classifier f (i) and classifier f (j), with
1� i, j �L, i �= j and 1� l�T , we can use the individual
classifier recognition rate (IRR) R(f (i)) and R(f (i)) of
classifier f (i) and classifier f (j), respectively, to weight
the probability obtained (PFM–IRR):

Ṗ (l|c(i), c(j), x) = P(l|c(i), c(j), x)

∗ R(f (i)) ∗ R(f (j)). (19)

(2) PFM weighted by diversity of classifier pair (PFM–DIV):
If the pairwise diversity div(f (i), f (j)) between classi-
fier f (i) and classifier f (j) is offered, we can use this
property too. Note that there are two types of diversity
measures. Diversity might measure the ambiguity be-
tween classifiers f (i), f (j), denoted divamb(f (i), f (j)),
or the similarity between classifiers f (i), f (j), denoted
divsim(f (i), f (j)). According to the different properties
of diversity measures, we make use of them in different
ways (PFM–DIV):

P̈ (l|c(i), c(j), x) = P(l|c(i), c(j), x) ∗ R(f (i))

∗ R(f (j)) ∗ divamb

× (f (i), f (j)), (20)

P̈ (l|c(i), c(j), x) = P(l|c(i), c(j), x) ∗ R(f (i))

∗ R(f (j)) ∗ (1 − divsim

× (f (i), f (j))). (21)

(3) PFM weighted by class probabilities (PFM–P):
In a case where an a posteriori probability of each class
is given by classifiers, a PFM can be weighted by this
confidence value as well (PFM–P):

P̆ (l|c(i), c(j), x) = P(l|c(i), c(j), x)

∗ P(c(i)|x) ∗ P(c(j)|x), (22)

where P(c(i)|x) is the a posteriori probability of class c(i)

that classifier f (i) assigns to a sample x.

In order to prove that PFMs are applicable, we need to carry
out the experiments on classifier combination. But before that,
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we shall discuss the similarity and the difference of PFM and
BKS, which is one of the most popular fusion functions of la-
bel outputs. Since PFM transforms a group of classifiers into
another group of classifier pairs, we need to apply a certain
fusion function on PFM so that we can compare it and under-
stand its relationship with BKS. Given that MAJ is one of the
most used fusion functions of label outputs, we decide to focus
on PFM–MAJ on our discussion.

4. The relationship between BKS and PFM–MAJ

To better understand the relationship between the BKS and
the PFM, we start with a simplified 2-class problem. Supposing
three classifiers fi, fj , fk are constructed for BKS, the class
lmax is selected among all classes l, 1� l�L as the ensemble
output on a sample x if:

lmax = arg max
l

n(l|ci, cj , ck), (23)

where n(l|ci, cj , ck) is the number of samples found in the BKS
table. It refers to the number of samples with the real class l
being classified as class ci, cj , ck by three classifiers fi, fj , fk ,
respectively.

For the PFM–MAJ, the decision is made by the outputs of
three classifier pairs, lmax(ci, cj ), lmax(ci, ck) and lmax(cj , ck).

lmax(ci, cj ) = arg max
l

n(l|ci, cj ). (24)

Now, we notice the relationship between BKS and
PFM–MAJ, for there is a direct relationship between
n(l|ci, cj , ck) and n(l|ci, cj ):

n(l|ci, cj ) = n(l|ci, cj , ck) + n(l|ci, cj , c̄k), (25)

where c̄k is any class outputs different from ck from the clas-
sifier fk . As a result, lmax(ci, cj ) can be written as

lmax(ci, cj ) = arg max
l

(n(l|ci, cj , ck) + n(l|ci, cj , c̄k)). (26)

For any class outputs ¯lmax �= lmax , this indicates that

n(lmax |ci, cj , ck) + n(lmax |ci, cj , c̄k)

> n( ¯lmax |ci, cj , ck) + n( ¯lmax |ci, cj , c̄k). (27)

The sufficient condition that guarantees lmax(ci, cj ) = lmax

is thus that

n(lmax |ci, cj , ck) − n( ¯lmax |ci, cj , ck)

> n( ¯lmax |ci, cj , c̄k) − n(lmax |ci, cj , c̄k). (28)

Note that from the BKS, we already know that

n(lmax |ci, cj , ck) > n( ¯lmax |ci, cj , ck), (29)

so that the first term of the above equation is greater than 0:

n(lmax |ci, cj , ck) − n( ¯lmax |ci, cj , ck) > 0. (30)

This indicates that PFM–MAJ is different from BKS, al-
though they have a strong relationship. In some certain cases,
they might produce the same results. In other cases, they will

lead to different decisions. But, we do not know whether
PFM–MAJ can perform better than BKS. For other PFM-
related fusion functions such as PFM–SUM, PFM–PRO,
PFM–MAX and PFM–MIN, we have even less understanding
about the relationship with BKS. We could, however, compare
their performances and have a general idea on whether it is ad-
equate to apply PFM. For this reason, we carry out experiments
on UCI machine learning repository in the next section.

5. Experimental comparison of classifier combination
rules of crisp label outputs

Contrary to the fusion methods of continuous-valued outputs,
until now there are only few fusion methods of crisp label
outputs. The PFM is a practical concept and might be a good
solution for the crisp label output combination. It has three
fundamental aspects different from other fusion functions: First,
it requires only crisp label outputs and not the continuous-
valued outputs. Second, it is actually a transformation from
the crisp label outputs of classifiers to the continuous-valued
outputs of classifier pairs. Third, in general, PFM is itself not
a fusion function, it should be applied on other existing fusion
functions like SUM, majority voting, etc.

This paper focuses thus on the comparison of PFM and other
fusion methods of crisp label outputs, such as the (NB) com-
bination, the BKS, the Majority Vote (MAJ) and the Weighted
Majority Vote (W-MAJ). The PFM is combined with some
simple fusion functions such as SUM, MAJ, MAX, MIN and
MAJ. Note that for every fusion function, we can always carry
out the PFM. Although it is possible for us to combine PFM
with other more sophisticated fusion functions, this will require
more training. In this paper we only evaluate the PFM com-
bined with the simple fusion functions.

For the experiments, we think it is important to evaluate the
PFM on different ensemble creation methods, namely Random
Subspaces, Bagging and Boosting, and these experiments were
carried out on the problems extracted from the UCI machine
learning repository. We also regard it important to evaluate the
PFM on a large database with a large ensemble size, so we
carried out an experiment on a 10-class handwritten numeral
problem extracted from NIST SD19 with 100 classifiers. The
experimental protocols and the results are shown in the follow-
ing sections.

5.1. Experiments on UCI machine learning repository

To ensure that the PFM is useful for combining classifiers,
we tested it on problems extracted from a UCI machine learn-
ing repository. There are several requirements for the selection
of pattern recognition problems. First, to avoid identical sam-
ples being trained in Random Subspace, only databases without
symbolic features are used. Second, to simplify the problem,
we do not use databases with missing features. In accordance
with the requirements listed above, we carried out our exper-
iments on 13 databases selected from the UCI data repository
(see Table 1). Among available samples, in general, 50% are
used as a training data set, and 50% are used as a test data
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Table 1
UCI data for ensembles of classifiers

Database Classes Tr Ts Features RS-Card. Bagging (%) Boosting (%)

Ionosphere 2 175 175 34 20 66 66
Liver disorders 2 172 172 6 4 66 66
Pima diabetes 2 384 384 8 4 66 66
Wisconsin breast cancer 2 284 284 30 5 66 66
Iris 3 75 75 4 2 66 66
Wine 3 88 88 13 6 66 66
New thyroid 3 107 108 5 3 66 66
Vehicle 4 423 423 18 16 66 66
Satellite 6 4435 2000 36 6 66 66
Glass 7 107 107 10 8 66 66
Image segmentation 7 210 2100 19 4 66 66
Vowel 11 495 495 10 8 66 66
Letter recognition 26 10 000 10 000 16 12 66 66

Tr: training samples; Ts: test samples; RS-Card: random subspace cardinality; Bagging: proportion of samples used for bagging; Boost: proportion of samples
used for boost.

Table 2
Comparison of recognition rates of different fusion functions with Random Subspace on UCI machine learning problems

Fusion functions MAJ (%) NB (%) BKS (%) PFM–MAJ (%) PFM–SUM (%) W-MAJ (%)

Ionosphere 81.39 (0.09) 81.47 (0.06) 90.75 (−) 83.10 (0.06) 81.09 (0.07) 80.46 (0.06)
Liver disorders 63.90 (0.11) 56.53 (0.24) 81.01 (0.04) 65.28 (0.08) 64.96 (0.08) 64.10 (0.06)
Pima diabetes 78.94 (0.16) 60.23 (0.60) 83.68 (0.03) 80.34 (0.06) 78.30 (0.05) 79.40 (0.03)
Wisconsin Breast cancer 93.54 (0.05) 93.68 (0.48) 92.14 (0.04) 94.17 (0.03) 93.54 (0.03) 93.78 (0.01)
Iris 90.06 (0.18) 91.53 (0.08) 88.81 (0.12) 93.21 (0.11) 91.84 (0.17) 91.52 (0.27)
Wine 84.42 (0.15) 89.96 (0.23) 94.76 (0.13) 90.30 (0.24) 88.82 (0.18) 85.92 (0.31)
New thyroid 95.27 (0.02) 88.04 (0.10) 91.80 (0.04) 94.95 (0.01) 93.91 (0.03) 95.43 (0.03)
Vehicle 68.08 (0.01) 63.66 (0.03) 63.87 (0.02) 67.01 (0.01) 68.20 (0.01) 68.18 (0.01)
Satellite 93.64 (–) 94.03 (–) – 94.37 (–) 93.72 (–) 93.64 (–)
Glass 94.27 (0.50) 76.85 (0.43) – 95.57 (0.24) 94.88 (0.26) 92.99 (1.09)
Image segmetation 75.91 (0.51) 64.78 (2.88) – 85.31 (0.19) 82.98 (0.17) 73.92 (1.42)
Vowel 95.08 (0.01) 92.35 (0.02) – 94.85 (0.01) 95.40 (–) 95.11 (0.01)
Letter 84.24 (0.04) 90.72 (0.04) – 91.08 (0.09) 85.56 (0.09) 84.78 (0.03)

Fusion functions → PFM–MIN (%) PFM–MAX (%) PFM–PROD (%) PFM–IRR–MAJ (%) PFM–DIV–MAJ (%)

Ionosphere 79.66 (0.11) 67.59 (0.05) 79.76 (0.11) 82.89 (0.02) 82.86 (0.02)
Liver disorder 64.41 (0.06) 56.14 (0.07) 65.13 (0.05) 65.33 (0.04) 65.26 (0.05)
Pima diabetes 79.11 (0.02) 74.31 (0.01) 80.51 (0.04) 80.40 (0.04) 80.33 (0.03)
Wisconsin Breast cancer 92.90 (0.03) 87.32 (0.07) 93.89 (0.01) 94.20 (0.01) 93.70 (0.02)
Iris 89.04 (0.12) 86.39 (0.06) 88.96 (0.13) 93.36 (0.11) 92.88 (0.04)
Wine 94.47 (0.11) 81.47 (0.08) 93.05 (0.13) 90.73 (0.23) 92.69 (0.08)
New thyroid 84.87 (0.14) 90.29 (0.04) 85.09 (0.14) 95.13 (0.02) 94.61 (0.01)
Vehicle 62.50 (0.03) 68.27 (0.01) 62.30 (0.03) 67.04 (0.01) 66.77 (0.01)
Satellite 95.15 (–) 91.56 (0.01) 94.87 (–) 94.40 (–) 94.43 (–)
Glass 84.98 (0.47) 86.71 (0.15) 85.07 (0.47) 96.28 (0.14) 90.01 (0.83)
Image segmentation 91.43 (0.12) 53.80 (1.68) 90.85 (0.12) 86.32 (0.16) 87.67 (0.11)
Vowel 90.34 (0.05) 91.83 (0.02) 90.48 (0.05) 94.90 (0.01) 93.89 (0.02)
Letter 96.41 (0.02) 79.87 (0.04) 96.22 (0.02) 91.15 (0.02) 91.96 (0.01)

All numbers are in percents (%), the variances are indicated in parenthesis. Note that three classification algorithms were used and only average values are
shown here.

set, except for the Image Segmentation data set, whose train-
ing data set and test data set have been defined on UCI data
repository. Of the training data set, 70% are used for classifier
training and 30% are used for validation.

Three ensemble creation methods have been used in our
study: Random Subspaces [10], Bagging and Boosting [26–28].
The Random Subspaces method creates various classifiers by

using different subsets of features to train them. Bagging gen-
erates diverse classifiers by randomly selecting subsets of sam-
ples to train classifiers. Similar to Bagging, Boosting uses parts
of samples to train classifiers as well, but not randomly; diffi-
cult samples have a greater probability of being selected, and
easier samples have less chance of being used for training. En-
semble training (including BKS, NB and PFM) used the entire
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Table 3
Comparison of recognition rates of different fusion functions with Bagging on UCI machine learning problems

Fusion Functions → MAJ (%) NB (%) BKS (%) PFM–MAJ (%) PFM–SUM (%) W-MAJ (%)

Ionosphere 78.40 (0.04) 77.07 (0.98) 91.04 (–) 79.81 (0.02) 79.49 (0.02) 79.20 (0.05)
Liver disorders 61.22 (0.08) 55.86 (0.02) 80.00 (0.03) 62.38 (0.08) 62.17 (0.07) 61.50 (0.06)
Pima diabetes 72.88 (0.01) 59.49 (0.01) 80.24 (0.02) 72.96 (0.01) 72.82 (0.01) 72.91 (0.01)
Wisconsin Breast cancer 94.27 (–) 94.36 (0.01) 94.32 (–) 94.53 (–) 94.27 (–) 94.34 (–)
Iris 91.32 (0.02) 92.51 (0.02) 88.81 (0.03) 92.09 (0.02) 91.77 (0.02) 91.66 (0.02)
Wine 78.71 (0.06) 79.41 (0.04) 78.50 (0.06) 80.05 (0.05) 79.08 (0.06) 78.86 (0.11)
New thyroid 92.14 (0.01) 89.48 (1.99) 91.73 (0.02) 92.33 (0.02) 90.98 (0.02) 92.39 (0.01)
Vehicle 67.29 (0.01) 65.74 (0.01) 64.82 (0.03) 67.01 (0.01) 67.23 (0.01) 67.26 (0.01)
Satellite 93.16 (–) 93.62 (–) – 93.90 (–) 93.24 (–) 93.14 (–)
Glass 96.50 (–) 88.15 (–) – 96.50 (–) 96.45 (–) 96.52 (0.01)
Image segmentation 86.22 (0.03) 87.78 (–) – 89.02 (–) 86.68 (–) 88.77 (–)
Vowel 95.69 (0.02) 94.52 (0.01) – 96.55 (0.02) 96.20 (0.02) 95.91 (0.01)
Letter 91.19 (–) 90.85(–) – 92.79 (–) 94.30 (–) 90.87 (–)

Fusion functions → PFM–MIN (%) PFM–MAX (%) PFM–PROD(%) PFM–IRR–MAJ (%) PFM–DIV–MAJ (%)

Ionosphere 79.55 (0.02) 66.41 (0.92) 79.63 (0.02) 79.97 (0.02) 79.79 (0.01)
Liver disorder 60.76 (0.09) 56.44 (0.05) 63.59 (0.07) 62.58 (0.08) 63.15 (0.09)
Pima diabetes 71.81 (0.01) 71.03 (0.01) 73.01 (0.01) 73.00 (0.01) 72.8867
Wisconsin Breast cancer 94.23 (0.01) 93.48 (–) 94.59 (–) 94.58 (–) 94.42 (–)
Iris 89.60 (0.03) 87.87 (0.03) 89.60 (0.03) 92.10 (0.02) 92.18 (0.02)
Wine 76.48 (0.10) 64.58 (0.20) 76.41 (0.11) 80.01 (0.06) 79.92 (0.05)
New thyroid 90.84 (0.03) 89.25 (0.01) 90.88 (0.03) 92.46 (0.02) 92.73 (0.02)
Vehicle 63.60 (0.02) 66.61 (0.01) 64.11 (0.02) 66.96 (0.01) 67.04 (0.01)
Satellite 94.80 (–) 90.03 (0.01) 94.54 (–) 93.94 (–) 93.92 (–)
Glass 94.60 (0.01) 95.34 (–) 94.66 (0.01) 96.54 (–) 96.28 (0.01)
Image segmentation 85.14 (0.02) 85.88 (0.01) 85.14 (0.02) 89.10 (–) 89.04 (–)
Vowel 91.84 (0.03) 86.80 (0.03) 91.89 (0.03) 96.61 (0.01) 96.38 (0.02)
Letter 87.54 (0.02) 93.48 (–) 87.61 (0.02) 92.89 (–) 92.49 (–)

All numbers are in percents (%), the variances are indicated in parenthesis. Note that three classification algorithms were used and only average values are
shown here.

available training data set. The cardinality of Random Subspace
is set under the condition that all classifiers have recognition
rates of more than 50%.

The three different classification algorithms used in our ex-
periments are K-nearest neighbors classifiers (KNN), Parzen
windows classifiers (PWC) and quadratic discriminant classi-
fiers (QDC) [29]. For each of the 13 databases and for each
of the three classification algorithms, 10 classifiers were gen-
erated as the pool of classifiers. Among these, each classifier
has a 50% chance of being selected from this pool to con-
struct ensembles, ensembles were thus constructed by differ-
ent numbers of classifiers, and at least three classifiers are re-
quired for an ensemble. As a result, all ensembles were con-
structed from 3 to 8 classifiers. Thirty ensembles had been gen-
erated for each database, for each ensemble generation method
and for each classification algorithm. Note that each ensemble
can have different number of classifiers. In total, we evaluated
30 × 13 × 3 × 3 = 3510 ensembles. We then combined these
ensembles with 10 different fusion functions.

First, we see that the use of the PFM does make other
continuous-valued fusion functions applicable, and PFM gives
comparable results with other traditional label outputs fusion
functions. Second, we also note that the best fusion function
depends on the different problems, and the BKS is not always
better than PFM applied fusion functions [14]. Third, among all

the PFM applied fusion functions, we cannot figure out the best
fusion function for PFM, but all PFM–MAJ, PFM–IRR–MAJ
and PFM–DIV–MAJ have stable performances (Tables 2–4).

In previous studies, the BKS has been shown to be compara-
tively accurate when an ensemble of three classifiers is involved
[19], but the BKS could be outperformed by most of the other
fusion functions when more classifiers are involved [22]. In our
study, the BKS apparently performs very well in 2- and 3-class
problems (Tables 2–4). But when the class dimension is larger
than 6, due to huge data size and limited computer memory we
could not construct the BKS table.

Finally, if we compare the performance of the PFM–MAJ
with that of the MAJ, which is concerned with one of the
best fusion functions for classifiers with only crisp class label
outputs [14], we find that in general the PFM–MAJ gives better
performances than the simple MAJ rule, and in some cases
comparable with that achieved by the BKS (Tables 2–4). The
advantage of the PFM–MAJ over the simple MAJ might be
due to the exploration of the interaction of classifiers from the
PFM. The results are thus encouraging.

Nevertheless, the ensembles tested were constructed by ran-
domly selected classifiers without any ensemble selection pro-
cedure. To better understand the effect of fusion functions on
real problems, we must test this rule on a high-class problem
with a large data set, and we need to go through the ensemble
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Table 4
Comparison of recognition rates of different fusion functions with Boosting on UCI machine learning problems

Fusion functions → MAJ (%) NB (%) BKS (%) PFM–MAJ (%) PFM–SUM (%) W-MAJ(%)

Ionosphere 62.40 (0.74) 74.85 (0.77) 77.53 (2.02) 80.19 (0.01) 79.42 (0.12) 63.32 (2.65)
Liver disorders 61.43 (0.21) 57.22 (0.35) 80.76 (0.05) 64.09 (0.18) 64.07 (0.14) 63.46 (0.22)
Pima diabetes 70.09 (0.34) 68.59 (0.32) 79.28 (0.09) 71.37 (0.04) 70.26 (0.01) 70.17 (0.47)
Breast cancer 94.91 (–) 94.77 (–) 94.59 (–) 94.86 (–) 94.88 (–) 94.92 (–)
Iris 93.91 (0.01) 94.93 (0.01) 94.19 (–) 94.12 (0.01) 93.96 (0.01) 94.12 (0.03)
Wine 81.28 (0.02) 79.76 (0.05) 80.61 (0.04) 81.79 (0.02) 81.45 (0.02) 81.40 (0.02)
New thyroid 92.51 (–) 92.28 (–) 92.88 (–) 92.71 (–) 92.71 (–) 92.45 (–)
Vehicle 67.29 (–) 65.74 (0.01) 64.82 (0.02) 67.01 (0.01) 67.23 (–) 68.21 (–)
Satellite 96.39 (–) 96.57 (–) – 96.66 (–) 96.43 (–) 96.40 (–)
Glass 95.96 (–) 88.18 (–) – 95.95 (–) 95.95 (–) 95.96 (–)
Image 86.33 (–) 88.62 (–) – 89.17 (–) 88.76 (–) 86.34 (–)
Vowel 97.90 (–) 97.00 (–) – 97.87 (–) 97.96 (–) 97.91 (–)
Letter 92.23 (–) 93.96 (–) – 94.70 (–) 93.31 (–) 92.05 (–)

Fusion functions → PFM–MIN PFM–MAX PFM–PROD PFM–IRR–MAJ PFM–DIV–MAJ

Ionosphere 78.15 (0.04) 69.08 (0.27) 78.27 (0.04) 78.60 (0.04) 77.12 (2.07)
Liver disorder 62.89 (0.16) 55.22 (0.05) 63.89 (0.16) 64.26 (0.18) 64.28 (0.21)
Pima diabetes 71.88 (0.04) 69.35 (0.01) 71.78 (0.03) 71.56 (0.04) 71.49 (0.04)
Breast cancer 94.26 (–) 94.28 (–) 94.42 (–) 94.86 (–) 94.82 (–)
Iris 94.19 (–) 93.64 (0.01) 93.64 (–) 94.12 (0.01) 94.55 (0.01)
Wine 80.26 (–) 78.86 (–) 81.06 (–) 81.78 (–) 81.34 (–)
New thyroid 92.00 (–) 92.32 (0.01) 92.00 (–) 92.71 (–) 92.71 (–)
Vehicle 65.26 (0.02) 67.71 (–) 65.33 (0.02) 68.10 (0.01) 68.18 (–)
Satellite 96.85 (–) 95.41 (–) 96.83 (–) 96.67 (–) 96.72 (–)
Glass 95.95 (–) 96.00 (–) 95.95 (–) 95.95 (–) 95.95 (–)
Image 87.99 (–) 88.85 (–) 87.87 (–) 89.21 (–) 89.08 (–)
Vowel 96.35 (0.01) 96.71 (0.01) 96.34 (0.01) 97.90 (–) 97.78 (–)
Letter 94.29 (–) 92.00 (–) 94.25 (–) 94.72 (–) 94.83 (–)

All numbers are in percents (%), the variances are indicated in parenthesis. Note that three classification algorithms were used and only average values are
shown here.

selection procedure. We then thus detail the further experiments
in the next section.

5.2. Large size and high-dimensional ensembles: random
subspace with KNN classifiers

Although experiments on the UCI machine learning reposi-
tory suggest that the PFM is useful and stable for classifier com-
bination, the results are still not reliable, for most problems on
UCI machine learning repository have low-class dimensions,
have few samples and have few features. Because of low-class
dimensions, the problems are too simplified and not always fit
to the real world problems; because of few samples, the Bag-
ging and Boosting Ensemble Creation Methods cannot create
diverse ensembles, and because of few features, the Random
Subspace Ensemble Creation Method is strongly limited in its
feature subspaces. It is doubtful that the experiments on the
UCI machine learning repository can represent the qualities of
the fusion functions in high-class problems with large data set.

To compensate this drawback of UCI data sets, we carry out
further experiments on a well-known database, a handwritten
numeral recognition problem known as NIST SD19. It is a 10-
class problem and the problem includes more than 150 000
samples for the training and the validation, 60 089 samples for
the test and a large number of features can be extracted from

it. In our case more than 100 features were extracted from the
patterns. We detail the experiments on the sections below.

5.2.1. Experimental protocol for KNN
We carried out experiments on a 10-class handwritten nu-

meral problem. The data were extracted from NIST SD19, es-
sentially as in Ref. [30], based on the ensembles of KNNs
generated by the Random Subspaces method. We used near-
est neighbor classifiers (K = 1) for KNN, each KNN classifier
having a different feature subset of 32 features extracted from
the total of 132 features. Four databases were used: the train-
ing set with 5000 samples (hsf_{0.3}) to create 100 KNN in
Random Subspaces, we use relatively small size of data set to
better observe the impact of EoC. The optimization set con-
taining 10 000 samples (hsf _{0.3}) was used for genetic algo-
rithm (GA) searching for ensemble selection. To avoid overfit-
ting during GA searching, the selection set containing 10 000
samples (hsf _{0.3}) was used to select the best solution from
the current population according to the objective function de-
fined, and then to store it in a separate archive after each gener-
ation. The same selection set was also used for training fusion
functions, including PFM transformation and the NB fusion
function. Note that with 100 classifiers and 10 classes, BKS
and WER would require constructing a table with 10101 cells,
which is impossible to realize. Using the best solution from this
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Table 5
Mean recognition rates of ensembles selected by compound diversity functions and combined with various fusion functions

O.F. → /F.F. ↓ MVE CFD COR DM DF DIFF EN GD INT KW Q

MAJ (%) 96.45 96.22 96.29 96.19 96.20 96.23 96.18 96.19 96.22 96.20 96.20
W-MAJ (%) 96.47 96.24 96.25 96.21 96.20 96.25 96.22 96.25 96.26 96.18 96.24
NB (%) 96.27 95.78 95.77 95.79 95.76 95.80 95.75 95.75 95.81 95.74 95.79

PFM–MAJ (%) 96.94 96.88 96.88 96.84 96.82 96.87 96.85 96.86 96.87 96.82 96.86
PFM–IRR–MAJ (%) 96.94 96.88 96.87 96.84 96.82 96.87 96.85 96.86 96.87 96.82 96.86
PFM–DIV–MAJ(%) 96.95 96.89 96.88 96.86 96.81 96.87 96.87 96.87 96.87 96.84 96.86

PFM–MAX (%) 79.63 77.56 77.53 78.06 78.97 78.28 78.07 77.88 78.06 78.17 78.09
PFM–MIN (%) 78.00 70.76 70.28 71.29 71.88 69.99 70.66 70.29 70.81 71.28 70.64
PFM–SUM (%) 96.43 96.21 96.21 96.17 96.17 96.21 96.19 96.21 96.22 96.16 96.21
PFM–PROD (%) 71.04 70.37 69.99 70.55 70.90 69.73 70.06 69.68 69.97 70.64 69.89

The accuracy of the PFM–DIV–MAJ is the mean value of the results applying 10 different diversity measures. All variances are smaller than 0.01%. O.F.:
Objective functions; F.F.: Fusion functions.
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Fig. 2. The recognition rates achieved by EoCs selected by 10 compound
diversity functions and majority voting error (MVE) using the simple MAJ
as fusion function.

archive, the test set containing 60 089 samples (hsf_{7}) was
used to evaluate the EoC accuracies.

We need to address the fact that the classifiers used were
generated with feature subsets having only 32 features out of a
total of 132. The weak classifiers can help us better observe the
effects of EoCs. If a classifier uses all available features and all
training samples, a much better performance can be observed
[27,28,31]. But, since this is not the objective of this paper, we
focus on the improvement of EoCs by optimizing fusion func-
tions on combining classifiers. The benchmark KNN classifier
uses all 132 features, and so, with K = 1 we can have 93.34%
recognition rates. The combination of all 100 KNN by simple
MAJ gives 96.28% classification accuracy and gives 96.96%
by PFM–MAJ. The possible upper limit of classification accu-
racy (the oracle) is defined as the ratio of samples which are
classified correctly by at least one classifier in a pool for all
samples. The oracle is 99.95% for KNN.

For evaluating classifier combinations, we first need to go
through the process of ensemble selection, because one of the
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Fig. 3. The recognition rates achieved by EoCs selected by 10 compound
diversity functions and majority voting error (MVE) using PFM–MAJ as
fusion function.

most important requirements of EoCs is that they contain di-
verse classifiers. We tested two kinds of different objective
functions in this section. The majority voting error (MVE) was
tested because of its reputation as one of the best objective
functions in selecting classifiers for ensembles [14], it evalu-
ates directly the global EoC performance by MAJ rule. In addi-
tion, we also tested 10 different traditional diversity measures
and 10 different compound diversity measures which combine
the pairwise diversity measures and individual classifier per-
formance to estimate ensemble accuracy, but did not use the
global EoC performance.

These objective functions are evaluated by GA searching. We
used GA because the complexity of population-based searching
algorithms can be flexibly adjusted depending on the size of the
population and the number of generations with which to pro-
ceed. Moreover, because the algorithm returns a population of
the best combinations, it can potentially be exploited to prevent
generalization problems [14]. GA was set with 128 individu-
als in the population and 500 generations, which means that
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Fig. 4. The rejection curve of ensemble of KNNs selected by majority voting error (MVE) with evaluated fusion functions: MAJ, W-MAJ, PFM–SUM,
PFM–MAJ, PFM–IRR–MAJ and PFM–DIV–MAJ. The accuracy of the PFM–DIV–MAJ is the mean value of the results applying 10 different diversity measures.

64 000 ensembles were evaluated in each experiment. The mu-
tation probability is 0.01 with 11 different objective functions
MVE and 10 compound diversity functions [32], including the
disagreement measure (DM) [18], the double-fault (DF) [33],
Kohavi–Wolpert variance (KW) [12], the interrater agreement
(INT) [34], the entropy measure (EN) [3], the difficulty measure
(DIFF) [35], generalized diversity (GD) [13], coincident failure
diversity (CFD) [13], Q-statistics (Q) [36], and the correlation
coefficient (COR) [3]), and with 30 replications. A threshold of
three classifiers was applied as the minimum number of classi-
fiers for an EoC during the whole searching process (Table 5).
To summarize, 10 different fusion functions were tested.

We observe that, although traditional fusion functions like
the MAJ, the W-MAJ and the NB have stable performances,
the use of the PFM–MAJ, the PFM–IRR–MAJ and the
PFM–DIV–MAJ can lead to a better performance (Table 5).
Note that in this 10-class problem with 100 classifiers, it is
impossible to apply the BKS.

We can observe that the advantage of using the PFM–MAJ
instead of the MAJ is very clear (Figs. 2 and 3). By contrast,
the PFM–MAX, the PFM–MIN and the PFM–PROD do not
bring about any improvements. This is not surprising, since the
MAX, the MIN, and the PROD rules have been regarded as sub-
optimal fusion functions compared with the SUM or the MAJ
[14]. Given that 100 classifiers generate 4950 classifier pairs,
an extremely biased value of the probability from any classifier
pairs can affect the results seriously with the PFM–MAX, the
PFM–MIN or the PFM–PROD rules.

The other fusion function that performs well and in a stable
fashion is the PFM–SUM, the results of which are close to
those achieved by the simple MAJ, but not yet as good as
the PFM–MAJ. The PFM–SUM apparently outperforms the
PFM–PROD in this respect (Table 5). A similar statement can
be found in Ref. [15], where the authors suggest that the SUM
is to be preferred over the PROD in the case where a posteriori

probabilities are not well estimated. We thus suggest that the
use of the PFM–MAJ or the PFM–SUM is more adequate than
the PFM–MAX, the PFM–MIN or the PFM–PRO.

Until recently, there have been few other fusion func-
tions that perform better than simple MAJ for crisp class
label output classifiers. But, when PFM transformation is
carried out, and those classifier pairs from ensembles are
evaluated by the PFM–MAJ, we observe an improvement in
the recognition rates of EoCs, the results achieved by the
PFM–MAJ being a notch above those of the simple MAJ.
This affirms the improvement brought about by the PFM
(see Figs. 2 and 3).

We select the six best fusion functions for applying the
rejection mechanism. In Fig. 4, we can observe that the MAJ
and the W-MAJ have very similar performances, but the
PFM–MAJ, the PFM–IRR–MAJ and the PFM–DIV–MAJ ap-
parently outperform the MAJ and the W-MAJ. The advantage
of the PFM–MAJ over the simple MAJ might be due to the
exploration of the interaction of classifiers from the PFM.
Using the information from the PFM, the system can achieve
more accurate results. Interestingly, the performance of the
PFM–SUM is not as good as the PFM–MAJ. This might indi-
cate that the PFM might need more training samples to have a
better estimation of the probability if we want to improve the
performance of the PFM–SUM.

6. Discussion

For EoCs, the ideal is to obtain the probability P(l|c(1), . . . ,

c(i), . . . , c(L), x) for the whole data set X, where l is the pos-
sible class label and c(1), . . . , c(i), . . . , c(L) are decisions of
individual classifiers f (1), . . . , f (i), . . . , f (L), respectively.
But, in reality, this approach might not work owing to the lim-
itation with respect to the number of samples. Instead of esti-
mating P(l|c(1), . . . , c(i), . . . , c(L), x), the proposed method
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deals with the probability P(l|c(i), c(j), x) from pairwise con-
fusion matrices on an evaluated class l, and thus is much more
applicable, while at the same time taking into account classifier
interaction.

When no class probability outputs are provided, most fusion
functions, such as MAX, MIN, SUM and PRO, cannot be ap-
plied. The few available fusion functions are the simple MAJ,
W-MAJ, NB or BKS, WER. However, for high-class problems
and large size ensembles, there is no way to use BKS or WER,
e.g. a 10-class problem with 100 classifiers requires the con-
struction of a table with 10101 cells. Nevertheless, with PFM,
we do not need as many samples as with BKS, PFM is a cube
with 103 cells in this case, a size which is quite a reasonable
and modest.

Furthermore, we show that all kinds of fusion functions are
applicable. The result is encouraging. On the tested the UCI
machine learning problems, the PFM–MAJ usually outper-
forms the simple MAJ as a fusion function for combining clas-
sifiers. We also note that the best fusion function seems to be
problem-dependent, the PFM–DIV–MAJ, the PFM–IRR–DIV,
the PFM–SUM, the PFM–MAX, the PFM–MIN and the
PFM–MAX can slightly outperform the PFM–MAJ in some
cases. Although we cannot figure out the best fusion func-
tion for the PFM, this shows that the use of the PFM allows
the application of other continuous-valued fusion functions,
and there will be many more choices of fusion functions for
combining classifiers with only crisp class outputs.

To demonstrate that the advantages of PFM are not limited
by the random classifier selection on the UCI machine learning
repository, we apply the ensemble selection scheme with 10
compound diversity functions [32] on the NIST SD19 database.
We can observe that the advantage of using the PFM–MAJ
instead of the MAJ is very clear (Figs. 2 and 3).

The key element that makes an ensemble of classifier pairs
outperform an EoC is that the use of the PFM takes the in-
teraction into consideration. The pairwise manner may still be
sub-optimal, but, if the class dimension is low and we have
few classifiers and a large number of samples, PFM can be
upgraded to the third degree, i.e. we can obtain the probabili-
ties of any class label l by calculating P(l|c(i), c(j), c(h), x)

based on three classifier outputs c(i), c(j), c(h). This would re-
quire the construction of four-dimensional confusion matrices
and allow us to interpret the interaction of three classifiers at
the same time. The use of diversity could further improve the
recognition rates slightly in some cases, but not significantly.

7. Conclusion

In this paper, we propose a pairwise fusion matrix (PFM)
transformation for classifier combination. PFM has some ad-
vantages:

(1) It transforms crisp class label outputs into class probability
outputs.

(2) It is suited to most kinds of existing fusion functions for
combining classifiers.

(3) It takes into account the interaction of classifiers in a pair-
wise manner.

(4) Because of its pairwise nature, it does not need too many
samples for training compared with BKS or WER.

The experiment reveals that the performance of PFM is encour-
aging. Intuitively, the PFM can also be used for other trained
fusion functions, such as NB or DT [22]. This will require an-
other training, but we are interested in investigating the poten-
tial use of PFM in improving the performance of trained fusion
functions.

Another possible improvement scheme would be the use of
PFM–MAJ directly as an objective function for ensemble se-
lection. In the same way that the simple MAJ is used for en-
semble selection (i.e. MVE) and for classifier combination, one
can also apply the PFM–MAJ for both ensemble selection and
classifier combination.

The use of diversity might slightly improve the methods for
classifier combination in some problems, but the effect is not
significant. We suggest that more attention be paid to the possi-
bility of using diversity for classifier combination in the future.
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